Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.3/dft/simd/common/t1sv_4.c @ 95:89f5e221ed7b
Add FFTW3
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
94:d278df1123f9 | 95:89f5e221ed7b |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-11 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Sun Nov 25 07:39:24 EST 2012 */ | |
23 | |
24 #include "codelet-dft.h" | |
25 | |
26 #ifdef HAVE_FMA | |
27 | |
28 /* Generated by: ../../../genfft/gen_twiddle.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 4 -name t1sv_4 -include ts.h */ | |
29 | |
30 /* | |
31 * This function contains 22 FP additions, 12 FP multiplications, | |
32 * (or, 16 additions, 6 multiplications, 6 fused multiply/add), | |
33 * 35 stack variables, 0 constants, and 16 memory accesses | |
34 */ | |
35 #include "ts.h" | |
36 | |
37 static void t1sv_4(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
38 { | |
39 { | |
40 INT m; | |
41 for (m = mb, W = W + (mb * 6); m < me; m = m + (2 * VL), ri = ri + ((2 * VL) * ms), ii = ii + ((2 * VL) * ms), W = W + ((2 * VL) * 6), MAKE_VOLATILE_STRIDE(8, rs)) { | |
42 V T1, Tv, T3, T6, T5, Ta, Td, Tc, Tg, Tj, Tt, T4, Tf, Ti, Tn; | |
43 V Tb, T2, T9; | |
44 T1 = LD(&(ri[0]), ms, &(ri[0])); | |
45 Tv = LD(&(ii[0]), ms, &(ii[0])); | |
46 T3 = LD(&(ri[WS(rs, 2)]), ms, &(ri[0])); | |
47 T6 = LD(&(ii[WS(rs, 2)]), ms, &(ii[0])); | |
48 T2 = LDW(&(W[TWVL * 2])); | |
49 T5 = LDW(&(W[TWVL * 3])); | |
50 Ta = LD(&(ri[WS(rs, 1)]), ms, &(ri[WS(rs, 1)])); | |
51 Td = LD(&(ii[WS(rs, 1)]), ms, &(ii[WS(rs, 1)])); | |
52 T9 = LDW(&(W[0])); | |
53 Tc = LDW(&(W[TWVL * 1])); | |
54 Tg = LD(&(ri[WS(rs, 3)]), ms, &(ri[WS(rs, 1)])); | |
55 Tj = LD(&(ii[WS(rs, 3)]), ms, &(ii[WS(rs, 1)])); | |
56 Tt = VMUL(T2, T6); | |
57 T4 = VMUL(T2, T3); | |
58 Tf = LDW(&(W[TWVL * 4])); | |
59 Ti = LDW(&(W[TWVL * 5])); | |
60 Tn = VMUL(T9, Td); | |
61 Tb = VMUL(T9, Ta); | |
62 { | |
63 V Tu, T7, Tp, Th, To, Te; | |
64 Tu = VFNMS(T5, T3, Tt); | |
65 T7 = VFMA(T5, T6, T4); | |
66 Tp = VMUL(Tf, Tj); | |
67 Th = VMUL(Tf, Tg); | |
68 To = VFNMS(Tc, Ta, Tn); | |
69 Te = VFMA(Tc, Td, Tb); | |
70 { | |
71 V Tw, Tx, T8, Tm, Tq, Tk; | |
72 Tw = VADD(Tu, Tv); | |
73 Tx = VSUB(Tv, Tu); | |
74 T8 = VADD(T1, T7); | |
75 Tm = VSUB(T1, T7); | |
76 Tq = VFNMS(Ti, Tg, Tp); | |
77 Tk = VFMA(Ti, Tj, Th); | |
78 { | |
79 V Ts, Tr, Tl, Ty; | |
80 Ts = VADD(To, Tq); | |
81 Tr = VSUB(To, Tq); | |
82 Tl = VADD(Te, Tk); | |
83 Ty = VSUB(Te, Tk); | |
84 ST(&(ri[WS(rs, 1)]), VADD(Tm, Tr), ms, &(ri[WS(rs, 1)])); | |
85 ST(&(ri[WS(rs, 3)]), VSUB(Tm, Tr), ms, &(ri[WS(rs, 1)])); | |
86 ST(&(ii[WS(rs, 2)]), VSUB(Tw, Ts), ms, &(ii[0])); | |
87 ST(&(ii[0]), VADD(Ts, Tw), ms, &(ii[0])); | |
88 ST(&(ii[WS(rs, 3)]), VADD(Ty, Tx), ms, &(ii[WS(rs, 1)])); | |
89 ST(&(ii[WS(rs, 1)]), VSUB(Tx, Ty), ms, &(ii[WS(rs, 1)])); | |
90 ST(&(ri[0]), VADD(T8, Tl), ms, &(ri[0])); | |
91 ST(&(ri[WS(rs, 2)]), VSUB(T8, Tl), ms, &(ri[0])); | |
92 } | |
93 } | |
94 } | |
95 } | |
96 } | |
97 VLEAVE(); | |
98 } | |
99 | |
100 static const tw_instr twinstr[] = { | |
101 VTW(0, 1), | |
102 VTW(0, 2), | |
103 VTW(0, 3), | |
104 {TW_NEXT, (2 * VL), 0} | |
105 }; | |
106 | |
107 static const ct_desc desc = { 4, XSIMD_STRING("t1sv_4"), twinstr, &GENUS, {16, 6, 6, 0}, 0, 0, 0 }; | |
108 | |
109 void XSIMD(codelet_t1sv_4) (planner *p) { | |
110 X(kdft_dit_register) (p, t1sv_4, &desc); | |
111 } | |
112 #else /* HAVE_FMA */ | |
113 | |
114 /* Generated by: ../../../genfft/gen_twiddle.native -simd -compact -variables 4 -pipeline-latency 8 -n 4 -name t1sv_4 -include ts.h */ | |
115 | |
116 /* | |
117 * This function contains 22 FP additions, 12 FP multiplications, | |
118 * (or, 16 additions, 6 multiplications, 6 fused multiply/add), | |
119 * 13 stack variables, 0 constants, and 16 memory accesses | |
120 */ | |
121 #include "ts.h" | |
122 | |
123 static void t1sv_4(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
124 { | |
125 { | |
126 INT m; | |
127 for (m = mb, W = W + (mb * 6); m < me; m = m + (2 * VL), ri = ri + ((2 * VL) * ms), ii = ii + ((2 * VL) * ms), W = W + ((2 * VL) * 6), MAKE_VOLATILE_STRIDE(8, rs)) { | |
128 V T1, Tp, T6, To, Tc, Tk, Th, Tl; | |
129 T1 = LD(&(ri[0]), ms, &(ri[0])); | |
130 Tp = LD(&(ii[0]), ms, &(ii[0])); | |
131 { | |
132 V T3, T5, T2, T4; | |
133 T3 = LD(&(ri[WS(rs, 2)]), ms, &(ri[0])); | |
134 T5 = LD(&(ii[WS(rs, 2)]), ms, &(ii[0])); | |
135 T2 = LDW(&(W[TWVL * 2])); | |
136 T4 = LDW(&(W[TWVL * 3])); | |
137 T6 = VFMA(T2, T3, VMUL(T4, T5)); | |
138 To = VFNMS(T4, T3, VMUL(T2, T5)); | |
139 } | |
140 { | |
141 V T9, Tb, T8, Ta; | |
142 T9 = LD(&(ri[WS(rs, 1)]), ms, &(ri[WS(rs, 1)])); | |
143 Tb = LD(&(ii[WS(rs, 1)]), ms, &(ii[WS(rs, 1)])); | |
144 T8 = LDW(&(W[0])); | |
145 Ta = LDW(&(W[TWVL * 1])); | |
146 Tc = VFMA(T8, T9, VMUL(Ta, Tb)); | |
147 Tk = VFNMS(Ta, T9, VMUL(T8, Tb)); | |
148 } | |
149 { | |
150 V Te, Tg, Td, Tf; | |
151 Te = LD(&(ri[WS(rs, 3)]), ms, &(ri[WS(rs, 1)])); | |
152 Tg = LD(&(ii[WS(rs, 3)]), ms, &(ii[WS(rs, 1)])); | |
153 Td = LDW(&(W[TWVL * 4])); | |
154 Tf = LDW(&(W[TWVL * 5])); | |
155 Th = VFMA(Td, Te, VMUL(Tf, Tg)); | |
156 Tl = VFNMS(Tf, Te, VMUL(Td, Tg)); | |
157 } | |
158 { | |
159 V T7, Ti, Tn, Tq; | |
160 T7 = VADD(T1, T6); | |
161 Ti = VADD(Tc, Th); | |
162 ST(&(ri[WS(rs, 2)]), VSUB(T7, Ti), ms, &(ri[0])); | |
163 ST(&(ri[0]), VADD(T7, Ti), ms, &(ri[0])); | |
164 Tn = VADD(Tk, Tl); | |
165 Tq = VADD(To, Tp); | |
166 ST(&(ii[0]), VADD(Tn, Tq), ms, &(ii[0])); | |
167 ST(&(ii[WS(rs, 2)]), VSUB(Tq, Tn), ms, &(ii[0])); | |
168 } | |
169 { | |
170 V Tj, Tm, Tr, Ts; | |
171 Tj = VSUB(T1, T6); | |
172 Tm = VSUB(Tk, Tl); | |
173 ST(&(ri[WS(rs, 3)]), VSUB(Tj, Tm), ms, &(ri[WS(rs, 1)])); | |
174 ST(&(ri[WS(rs, 1)]), VADD(Tj, Tm), ms, &(ri[WS(rs, 1)])); | |
175 Tr = VSUB(Tp, To); | |
176 Ts = VSUB(Tc, Th); | |
177 ST(&(ii[WS(rs, 1)]), VSUB(Tr, Ts), ms, &(ii[WS(rs, 1)])); | |
178 ST(&(ii[WS(rs, 3)]), VADD(Ts, Tr), ms, &(ii[WS(rs, 1)])); | |
179 } | |
180 } | |
181 } | |
182 VLEAVE(); | |
183 } | |
184 | |
185 static const tw_instr twinstr[] = { | |
186 VTW(0, 1), | |
187 VTW(0, 2), | |
188 VTW(0, 3), | |
189 {TW_NEXT, (2 * VL), 0} | |
190 }; | |
191 | |
192 static const ct_desc desc = { 4, XSIMD_STRING("t1sv_4"), twinstr, &GENUS, {16, 6, 6, 0}, 0, 0, 0 }; | |
193 | |
194 void XSIMD(codelet_t1sv_4) (planner *p) { | |
195 X(kdft_dit_register) (p, t1sv_4, &desc); | |
196 } | |
197 #endif /* HAVE_FMA */ |