comparison src/fftw-3.3.3/dft/simd/common/n2fv_32.c @ 95:89f5e221ed7b

Add FFTW3
author Chris Cannam <cannam@all-day-breakfast.com>
date Wed, 20 Mar 2013 15:35:50 +0000
parents
children
comparison
equal deleted inserted replaced
94:d278df1123f9 95:89f5e221ed7b
1 /*
2 * Copyright (c) 2003, 2007-11 Matteo Frigo
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 */
20
21 /* This file was automatically generated --- DO NOT EDIT */
22 /* Generated on Sun Nov 25 07:37:24 EST 2012 */
23
24 #include "codelet-dft.h"
25
26 #ifdef HAVE_FMA
27
28 /* Generated by: ../../../genfft/gen_notw_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 32 -name n2fv_32 -with-ostride 2 -include n2f.h -store-multiple 2 */
29
30 /*
31 * This function contains 186 FP additions, 98 FP multiplications,
32 * (or, 88 additions, 0 multiplications, 98 fused multiply/add),
33 * 120 stack variables, 7 constants, and 80 memory accesses
34 */
35 #include "n2f.h"
36
37 static void n2fv_32(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
38 {
39 DVK(KP980785280, +0.980785280403230449126182236134239036973933731);
40 DVK(KP831469612, +0.831469612302545237078788377617905756738560812);
41 DVK(KP198912367, +0.198912367379658006911597622644676228597850501);
42 DVK(KP668178637, +0.668178637919298919997757686523080761552472251);
43 DVK(KP923879532, +0.923879532511286756128183189396788286822416626);
44 DVK(KP414213562, +0.414213562373095048801688724209698078569671875);
45 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
46 {
47 INT i;
48 const R *xi;
49 R *xo;
50 xi = ri;
51 xo = ro;
52 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(64, is), MAKE_VOLATILE_STRIDE(64, os)) {
53 V T31, T32, T33, T34, T35, T36, T37, T38, T39, T3a, T3b, T3c, T1h, Tr, T3d;
54 V T3e, T3f, T3g, T1a, T1k, TI, T1b, T1L, T1P, T1I, T1G, T1O, T1Q, T1H, T1z;
55 V T1c, TZ;
56 {
57 V T2x, T1T, T2K, T1W, T1p, Tb, T1A, T16, Tu, TF, T2N, T2H, T2b, T2t, TY;
58 V T1w, TT, T1v, T20, T2C, Tj, Te, T2h, To, T2f, T23, T2D, TB, TG, Th;
59 V T2i, Tk;
60 {
61 V TL, TW, TP, TQ, T2F, T27, T28, TO;
62 {
63 V T1, T2, T12, T13, T4, T5, T7, T8;
64 T1 = LD(&(xi[0]), ivs, &(xi[0]));
65 T2 = LD(&(xi[WS(is, 16)]), ivs, &(xi[0]));
66 T12 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
67 T13 = LD(&(xi[WS(is, 24)]), ivs, &(xi[0]));
68 T4 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
69 T5 = LD(&(xi[WS(is, 20)]), ivs, &(xi[0]));
70 T7 = LD(&(xi[WS(is, 28)]), ivs, &(xi[0]));
71 T8 = LD(&(xi[WS(is, 12)]), ivs, &(xi[0]));
72 {
73 V TM, T25, T26, TN;
74 {
75 V TJ, T3, T14, T1U, T6, T1V, T9, TK, TU, TV, T1R, T1S, Ta, T15;
76 TJ = LD(&(xi[WS(is, 31)]), ivs, &(xi[WS(is, 1)]));
77 T1R = VADD(T1, T2);
78 T3 = VSUB(T1, T2);
79 T1S = VADD(T12, T13);
80 T14 = VSUB(T12, T13);
81 T1U = VADD(T4, T5);
82 T6 = VSUB(T4, T5);
83 T1V = VADD(T7, T8);
84 T9 = VSUB(T7, T8);
85 TK = LD(&(xi[WS(is, 15)]), ivs, &(xi[WS(is, 1)]));
86 TU = LD(&(xi[WS(is, 23)]), ivs, &(xi[WS(is, 1)]));
87 T2x = VSUB(T1R, T1S);
88 T1T = VADD(T1R, T1S);
89 TV = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
90 TM = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
91 T2K = VSUB(T1V, T1U);
92 T1W = VADD(T1U, T1V);
93 Ta = VADD(T6, T9);
94 T15 = VSUB(T9, T6);
95 T25 = VADD(TJ, TK);
96 TL = VSUB(TJ, TK);
97 T26 = VADD(TV, TU);
98 TW = VSUB(TU, TV);
99 TN = LD(&(xi[WS(is, 19)]), ivs, &(xi[WS(is, 1)]));
100 TP = LD(&(xi[WS(is, 27)]), ivs, &(xi[WS(is, 1)]));
101 T1p = VFNMS(LDK(KP707106781), Ta, T3);
102 Tb = VFMA(LDK(KP707106781), Ta, T3);
103 T1A = VFMA(LDK(KP707106781), T15, T14);
104 T16 = VFNMS(LDK(KP707106781), T15, T14);
105 TQ = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)]));
106 }
107 T2F = VSUB(T25, T26);
108 T27 = VADD(T25, T26);
109 T28 = VADD(TM, TN);
110 TO = VSUB(TM, TN);
111 }
112 }
113 {
114 V Ty, T21, Tx, Tz, T1Y, T1Z;
115 {
116 V Ts, Tt, TD, T29, TR, TE, Tv, Tw;
117 Ts = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
118 Tt = LD(&(xi[WS(is, 17)]), ivs, &(xi[WS(is, 1)]));
119 TD = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)]));
120 T29 = VADD(TP, TQ);
121 TR = VSUB(TP, TQ);
122 TE = LD(&(xi[WS(is, 25)]), ivs, &(xi[WS(is, 1)]));
123 Tv = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
124 Tw = LD(&(xi[WS(is, 21)]), ivs, &(xi[WS(is, 1)]));
125 Ty = LD(&(xi[WS(is, 29)]), ivs, &(xi[WS(is, 1)]));
126 T1Y = VADD(Ts, Tt);
127 Tu = VSUB(Ts, Tt);
128 {
129 V T2G, T2a, TX, TS;
130 T2G = VSUB(T29, T28);
131 T2a = VADD(T28, T29);
132 TX = VSUB(TR, TO);
133 TS = VADD(TO, TR);
134 T1Z = VADD(TD, TE);
135 TF = VSUB(TD, TE);
136 T21 = VADD(Tv, Tw);
137 Tx = VSUB(Tv, Tw);
138 T2N = VFMA(LDK(KP414213562), T2F, T2G);
139 T2H = VFNMS(LDK(KP414213562), T2G, T2F);
140 T2b = VSUB(T27, T2a);
141 T2t = VADD(T27, T2a);
142 TY = VFMA(LDK(KP707106781), TX, TW);
143 T1w = VFNMS(LDK(KP707106781), TX, TW);
144 TT = VFMA(LDK(KP707106781), TS, TL);
145 T1v = VFNMS(LDK(KP707106781), TS, TL);
146 Tz = LD(&(xi[WS(is, 13)]), ivs, &(xi[WS(is, 1)]));
147 }
148 }
149 T20 = VADD(T1Y, T1Z);
150 T2C = VSUB(T1Y, T1Z);
151 {
152 V Tc, Td, Tm, Tn;
153 Tc = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
154 Td = LD(&(xi[WS(is, 18)]), ivs, &(xi[0]));
155 Tm = LD(&(xi[WS(is, 22)]), ivs, &(xi[0]));
156 Tn = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
157 {
158 V Tf, TA, T22, Tg;
159 Tf = LD(&(xi[WS(is, 10)]), ivs, &(xi[0]));
160 TA = VSUB(Ty, Tz);
161 T22 = VADD(Ty, Tz);
162 Tg = LD(&(xi[WS(is, 26)]), ivs, &(xi[0]));
163 Tj = LD(&(xi[WS(is, 30)]), ivs, &(xi[0]));
164 Te = VSUB(Tc, Td);
165 T2h = VADD(Tc, Td);
166 To = VSUB(Tm, Tn);
167 T2f = VADD(Tn, Tm);
168 T23 = VADD(T21, T22);
169 T2D = VSUB(T21, T22);
170 TB = VADD(Tx, TA);
171 TG = VSUB(Tx, TA);
172 Th = VSUB(Tf, Tg);
173 T2i = VADD(Tf, Tg);
174 Tk = LD(&(xi[WS(is, 14)]), ivs, &(xi[0]));
175 }
176 }
177 }
178 }
179 {
180 V T1t, TH, T1s, TC, T2P, T2U, T2n, T2d, T2w, T2u, T1q, T19, T1B, Tq, T2W;
181 V T2M, T2B, T2T, T2v, T2r, T2o, T2m, T2X, T2I;
182 {
183 V T1X, T2p, T2E, T2O, T2s, T2y, T2j, T17, Ti, T2e, Tl, T2c, T2l, T24;
184 T1X = VSUB(T1T, T1W);
185 T2p = VADD(T1T, T1W);
186 T2E = VFNMS(LDK(KP414213562), T2D, T2C);
187 T2O = VFMA(LDK(KP414213562), T2C, T2D);
188 T2s = VADD(T20, T23);
189 T24 = VSUB(T20, T23);
190 T1t = VFNMS(LDK(KP707106781), TG, TF);
191 TH = VFMA(LDK(KP707106781), TG, TF);
192 T1s = VFNMS(LDK(KP707106781), TB, Tu);
193 TC = VFMA(LDK(KP707106781), TB, Tu);
194 T2y = VSUB(T2h, T2i);
195 T2j = VADD(T2h, T2i);
196 T17 = VFMA(LDK(KP414213562), Te, Th);
197 Ti = VFNMS(LDK(KP414213562), Th, Te);
198 T2e = VADD(Tj, Tk);
199 Tl = VSUB(Tj, Tk);
200 T2c = VADD(T24, T2b);
201 T2l = VSUB(T2b, T24);
202 {
203 V T2L, T2A, T2q, T2k;
204 T2P = VSUB(T2N, T2O);
205 T2U = VADD(T2O, T2N);
206 {
207 V T2z, T2g, T18, Tp;
208 T2z = VSUB(T2e, T2f);
209 T2g = VADD(T2e, T2f);
210 T18 = VFMA(LDK(KP414213562), Tl, To);
211 Tp = VFNMS(LDK(KP414213562), To, Tl);
212 T2n = VFMA(LDK(KP707106781), T2c, T1X);
213 T2d = VFNMS(LDK(KP707106781), T2c, T1X);
214 T2w = VSUB(T2t, T2s);
215 T2u = VADD(T2s, T2t);
216 T2L = VSUB(T2z, T2y);
217 T2A = VADD(T2y, T2z);
218 T2q = VADD(T2j, T2g);
219 T2k = VSUB(T2g, T2j);
220 T1q = VADD(T17, T18);
221 T19 = VSUB(T17, T18);
222 T1B = VSUB(Tp, Ti);
223 Tq = VADD(Ti, Tp);
224 }
225 T2W = VFNMS(LDK(KP707106781), T2L, T2K);
226 T2M = VFMA(LDK(KP707106781), T2L, T2K);
227 T2B = VFMA(LDK(KP707106781), T2A, T2x);
228 T2T = VFNMS(LDK(KP707106781), T2A, T2x);
229 T2v = VSUB(T2p, T2q);
230 T2r = VADD(T2p, T2q);
231 T2o = VFMA(LDK(KP707106781), T2l, T2k);
232 T2m = VFNMS(LDK(KP707106781), T2l, T2k);
233 T2X = VSUB(T2H, T2E);
234 T2I = VADD(T2E, T2H);
235 }
236 }
237 {
238 V T2V, T2Z, T2Y, T30, T2R, T2J;
239 T2V = VFNMS(LDK(KP923879532), T2U, T2T);
240 T2Z = VFMA(LDK(KP923879532), T2U, T2T);
241 T31 = VFNMSI(T2w, T2v);
242 STM2(&(xo[48]), T31, ovs, &(xo[0]));
243 T32 = VFMAI(T2w, T2v);
244 STM2(&(xo[16]), T32, ovs, &(xo[0]));
245 T33 = VADD(T2r, T2u);
246 STM2(&(xo[0]), T33, ovs, &(xo[0]));
247 T34 = VSUB(T2r, T2u);
248 STM2(&(xo[32]), T34, ovs, &(xo[0]));
249 T35 = VFNMSI(T2o, T2n);
250 STM2(&(xo[56]), T35, ovs, &(xo[0]));
251 T36 = VFMAI(T2o, T2n);
252 STM2(&(xo[8]), T36, ovs, &(xo[0]));
253 T37 = VFMAI(T2m, T2d);
254 STM2(&(xo[40]), T37, ovs, &(xo[0]));
255 T38 = VFNMSI(T2m, T2d);
256 STM2(&(xo[24]), T38, ovs, &(xo[0]));
257 T2Y = VFMA(LDK(KP923879532), T2X, T2W);
258 T30 = VFNMS(LDK(KP923879532), T2X, T2W);
259 T2R = VFMA(LDK(KP923879532), T2I, T2B);
260 T2J = VFNMS(LDK(KP923879532), T2I, T2B);
261 {
262 V T1J, T1r, T1C, T1M, T2S, T2Q, T1u, T1D, T1E, T1x;
263 T1J = VFNMS(LDK(KP923879532), T1q, T1p);
264 T1r = VFMA(LDK(KP923879532), T1q, T1p);
265 T1C = VFMA(LDK(KP923879532), T1B, T1A);
266 T1M = VFNMS(LDK(KP923879532), T1B, T1A);
267 T39 = VFNMSI(T30, T2Z);
268 STM2(&(xo[12]), T39, ovs, &(xo[0]));
269 T3a = VFMAI(T30, T2Z);
270 STM2(&(xo[52]), T3a, ovs, &(xo[0]));
271 T3b = VFNMSI(T2Y, T2V);
272 STM2(&(xo[44]), T3b, ovs, &(xo[0]));
273 T3c = VFMAI(T2Y, T2V);
274 STM2(&(xo[20]), T3c, ovs, &(xo[0]));
275 T2S = VFMA(LDK(KP923879532), T2P, T2M);
276 T2Q = VFNMS(LDK(KP923879532), T2P, T2M);
277 T1u = VFMA(LDK(KP668178637), T1t, T1s);
278 T1D = VFNMS(LDK(KP668178637), T1s, T1t);
279 T1E = VFNMS(LDK(KP668178637), T1v, T1w);
280 T1x = VFMA(LDK(KP668178637), T1w, T1v);
281 {
282 V T1K, T1F, T1N, T1y;
283 T1h = VFNMS(LDK(KP923879532), Tq, Tb);
284 Tr = VFMA(LDK(KP923879532), Tq, Tb);
285 T3d = VFNMSI(T2S, T2R);
286 STM2(&(xo[60]), T3d, ovs, &(xo[0]));
287 T3e = VFMAI(T2S, T2R);
288 STM2(&(xo[4]), T3e, ovs, &(xo[0]));
289 T3f = VFMAI(T2Q, T2J);
290 STM2(&(xo[36]), T3f, ovs, &(xo[0]));
291 T3g = VFNMSI(T2Q, T2J);
292 STM2(&(xo[28]), T3g, ovs, &(xo[0]));
293 T1K = VADD(T1D, T1E);
294 T1F = VSUB(T1D, T1E);
295 T1N = VSUB(T1x, T1u);
296 T1y = VADD(T1u, T1x);
297 T1a = VFMA(LDK(KP923879532), T19, T16);
298 T1k = VFNMS(LDK(KP923879532), T19, T16);
299 TI = VFNMS(LDK(KP198912367), TH, TC);
300 T1b = VFMA(LDK(KP198912367), TC, TH);
301 T1L = VFMA(LDK(KP831469612), T1K, T1J);
302 T1P = VFNMS(LDK(KP831469612), T1K, T1J);
303 T1I = VFMA(LDK(KP831469612), T1F, T1C);
304 T1G = VFNMS(LDK(KP831469612), T1F, T1C);
305 T1O = VFMA(LDK(KP831469612), T1N, T1M);
306 T1Q = VFNMS(LDK(KP831469612), T1N, T1M);
307 T1H = VFMA(LDK(KP831469612), T1y, T1r);
308 T1z = VFNMS(LDK(KP831469612), T1y, T1r);
309 T1c = VFMA(LDK(KP198912367), TT, TY);
310 TZ = VFNMS(LDK(KP198912367), TY, TT);
311 }
312 }
313 }
314 }
315 }
316 {
317 V T1d, T1i, T10, T1l;
318 {
319 V T3h, T3i, T3j, T3k;
320 T3h = VFNMSI(T1O, T1L);
321 STM2(&(xo[42]), T3h, ovs, &(xo[2]));
322 STN2(&(xo[40]), T37, T3h, ovs);
323 T3i = VFMAI(T1O, T1L);
324 STM2(&(xo[22]), T3i, ovs, &(xo[2]));
325 STN2(&(xo[20]), T3c, T3i, ovs);
326 T3j = VFMAI(T1Q, T1P);
327 STM2(&(xo[54]), T3j, ovs, &(xo[2]));
328 STN2(&(xo[52]), T3a, T3j, ovs);
329 T3k = VFNMSI(T1Q, T1P);
330 STM2(&(xo[10]), T3k, ovs, &(xo[2]));
331 STN2(&(xo[8]), T36, T3k, ovs);
332 {
333 V T3l, T3m, T3n, T3o;
334 T3l = VFMAI(T1I, T1H);
335 STM2(&(xo[6]), T3l, ovs, &(xo[2]));
336 STN2(&(xo[4]), T3e, T3l, ovs);
337 T3m = VFNMSI(T1I, T1H);
338 STM2(&(xo[58]), T3m, ovs, &(xo[2]));
339 STN2(&(xo[56]), T35, T3m, ovs);
340 T3n = VFMAI(T1G, T1z);
341 STM2(&(xo[38]), T3n, ovs, &(xo[2]));
342 STN2(&(xo[36]), T3f, T3n, ovs);
343 T3o = VFNMSI(T1G, T1z);
344 STM2(&(xo[26]), T3o, ovs, &(xo[2]));
345 STN2(&(xo[24]), T38, T3o, ovs);
346 T1d = VSUB(T1b, T1c);
347 T1i = VADD(T1b, T1c);
348 T10 = VADD(TI, TZ);
349 T1l = VSUB(TZ, TI);
350 }
351 }
352 {
353 V T1n, T1j, T1e, T1g, T1o, T1m, T11, T1f;
354 T1n = VFMA(LDK(KP980785280), T1i, T1h);
355 T1j = VFNMS(LDK(KP980785280), T1i, T1h);
356 T1e = VFNMS(LDK(KP980785280), T1d, T1a);
357 T1g = VFMA(LDK(KP980785280), T1d, T1a);
358 T1o = VFMA(LDK(KP980785280), T1l, T1k);
359 T1m = VFNMS(LDK(KP980785280), T1l, T1k);
360 T11 = VFNMS(LDK(KP980785280), T10, Tr);
361 T1f = VFMA(LDK(KP980785280), T10, Tr);
362 {
363 V T3p, T3q, T3r, T3s;
364 T3p = VFMAI(T1m, T1j);
365 STM2(&(xo[46]), T3p, ovs, &(xo[2]));
366 STN2(&(xo[44]), T3b, T3p, ovs);
367 T3q = VFNMSI(T1m, T1j);
368 STM2(&(xo[18]), T3q, ovs, &(xo[2]));
369 STN2(&(xo[16]), T32, T3q, ovs);
370 T3r = VFNMSI(T1o, T1n);
371 STM2(&(xo[50]), T3r, ovs, &(xo[2]));
372 STN2(&(xo[48]), T31, T3r, ovs);
373 T3s = VFMAI(T1o, T1n);
374 STM2(&(xo[14]), T3s, ovs, &(xo[2]));
375 STN2(&(xo[12]), T39, T3s, ovs);
376 {
377 V T3t, T3u, T3v, T3w;
378 T3t = VFMAI(T1g, T1f);
379 STM2(&(xo[62]), T3t, ovs, &(xo[2]));
380 STN2(&(xo[60]), T3d, T3t, ovs);
381 T3u = VFNMSI(T1g, T1f);
382 STM2(&(xo[2]), T3u, ovs, &(xo[2]));
383 STN2(&(xo[0]), T33, T3u, ovs);
384 T3v = VFMAI(T1e, T11);
385 STM2(&(xo[30]), T3v, ovs, &(xo[2]));
386 STN2(&(xo[28]), T3g, T3v, ovs);
387 T3w = VFNMSI(T1e, T11);
388 STM2(&(xo[34]), T3w, ovs, &(xo[2]));
389 STN2(&(xo[32]), T34, T3w, ovs);
390 }
391 }
392 }
393 }
394 }
395 }
396 VLEAVE();
397 }
398
399 static const kdft_desc desc = { 32, XSIMD_STRING("n2fv_32"), {88, 0, 98, 0}, &GENUS, 0, 2, 0, 0 };
400
401 void XSIMD(codelet_n2fv_32) (planner *p) {
402 X(kdft_register) (p, n2fv_32, &desc);
403 }
404
405 #else /* HAVE_FMA */
406
407 /* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 32 -name n2fv_32 -with-ostride 2 -include n2f.h -store-multiple 2 */
408
409 /*
410 * This function contains 186 FP additions, 42 FP multiplications,
411 * (or, 170 additions, 26 multiplications, 16 fused multiply/add),
412 * 72 stack variables, 7 constants, and 80 memory accesses
413 */
414 #include "n2f.h"
415
416 static void n2fv_32(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
417 {
418 DVK(KP195090322, +0.195090322016128267848284868477022240927691618);
419 DVK(KP980785280, +0.980785280403230449126182236134239036973933731);
420 DVK(KP555570233, +0.555570233019602224742830813948532874374937191);
421 DVK(KP831469612, +0.831469612302545237078788377617905756738560812);
422 DVK(KP382683432, +0.382683432365089771728459984030398866761344562);
423 DVK(KP923879532, +0.923879532511286756128183189396788286822416626);
424 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
425 {
426 INT i;
427 const R *xi;
428 R *xo;
429 xi = ri;
430 xo = ro;
431 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(64, is), MAKE_VOLATILE_STRIDE(64, os)) {
432 V T1T, T1W, T2K, T2x, T16, T1A, Tb, T1p, TT, T1v, TY, T1w, T27, T2a, T2b;
433 V T2H, T2O, TC, T1s, TH, T1t, T20, T23, T24, T2E, T2N, T2g, T2j, Tq, T1B;
434 V T19, T1q, T2A, T2L;
435 {
436 V T3, T1R, T15, T1S, T6, T1U, T9, T1V, T12, Ta;
437 {
438 V T1, T2, T13, T14;
439 T1 = LD(&(xi[0]), ivs, &(xi[0]));
440 T2 = LD(&(xi[WS(is, 16)]), ivs, &(xi[0]));
441 T3 = VSUB(T1, T2);
442 T1R = VADD(T1, T2);
443 T13 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
444 T14 = LD(&(xi[WS(is, 24)]), ivs, &(xi[0]));
445 T15 = VSUB(T13, T14);
446 T1S = VADD(T13, T14);
447 }
448 {
449 V T4, T5, T7, T8;
450 T4 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
451 T5 = LD(&(xi[WS(is, 20)]), ivs, &(xi[0]));
452 T6 = VSUB(T4, T5);
453 T1U = VADD(T4, T5);
454 T7 = LD(&(xi[WS(is, 28)]), ivs, &(xi[0]));
455 T8 = LD(&(xi[WS(is, 12)]), ivs, &(xi[0]));
456 T9 = VSUB(T7, T8);
457 T1V = VADD(T7, T8);
458 }
459 T1T = VADD(T1R, T1S);
460 T1W = VADD(T1U, T1V);
461 T2K = VSUB(T1V, T1U);
462 T2x = VSUB(T1R, T1S);
463 T12 = VMUL(LDK(KP707106781), VSUB(T9, T6));
464 T16 = VSUB(T12, T15);
465 T1A = VADD(T15, T12);
466 Ta = VMUL(LDK(KP707106781), VADD(T6, T9));
467 Tb = VADD(T3, Ta);
468 T1p = VSUB(T3, Ta);
469 }
470 {
471 V TL, T25, TX, T26, TO, T28, TR, T29;
472 {
473 V TJ, TK, TV, TW;
474 TJ = LD(&(xi[WS(is, 31)]), ivs, &(xi[WS(is, 1)]));
475 TK = LD(&(xi[WS(is, 15)]), ivs, &(xi[WS(is, 1)]));
476 TL = VSUB(TJ, TK);
477 T25 = VADD(TJ, TK);
478 TV = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
479 TW = LD(&(xi[WS(is, 23)]), ivs, &(xi[WS(is, 1)]));
480 TX = VSUB(TV, TW);
481 T26 = VADD(TV, TW);
482 }
483 {
484 V TM, TN, TP, TQ;
485 TM = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
486 TN = LD(&(xi[WS(is, 19)]), ivs, &(xi[WS(is, 1)]));
487 TO = VSUB(TM, TN);
488 T28 = VADD(TM, TN);
489 TP = LD(&(xi[WS(is, 27)]), ivs, &(xi[WS(is, 1)]));
490 TQ = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)]));
491 TR = VSUB(TP, TQ);
492 T29 = VADD(TP, TQ);
493 }
494 {
495 V TS, TU, T2F, T2G;
496 TS = VMUL(LDK(KP707106781), VADD(TO, TR));
497 TT = VADD(TL, TS);
498 T1v = VSUB(TL, TS);
499 TU = VMUL(LDK(KP707106781), VSUB(TR, TO));
500 TY = VSUB(TU, TX);
501 T1w = VADD(TX, TU);
502 T27 = VADD(T25, T26);
503 T2a = VADD(T28, T29);
504 T2b = VSUB(T27, T2a);
505 T2F = VSUB(T25, T26);
506 T2G = VSUB(T29, T28);
507 T2H = VFNMS(LDK(KP382683432), T2G, VMUL(LDK(KP923879532), T2F));
508 T2O = VFMA(LDK(KP382683432), T2F, VMUL(LDK(KP923879532), T2G));
509 }
510 }
511 {
512 V Tu, T1Y, TG, T1Z, Tx, T21, TA, T22;
513 {
514 V Ts, Tt, TE, TF;
515 Ts = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
516 Tt = LD(&(xi[WS(is, 17)]), ivs, &(xi[WS(is, 1)]));
517 Tu = VSUB(Ts, Tt);
518 T1Y = VADD(Ts, Tt);
519 TE = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)]));
520 TF = LD(&(xi[WS(is, 25)]), ivs, &(xi[WS(is, 1)]));
521 TG = VSUB(TE, TF);
522 T1Z = VADD(TE, TF);
523 }
524 {
525 V Tv, Tw, Ty, Tz;
526 Tv = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
527 Tw = LD(&(xi[WS(is, 21)]), ivs, &(xi[WS(is, 1)]));
528 Tx = VSUB(Tv, Tw);
529 T21 = VADD(Tv, Tw);
530 Ty = LD(&(xi[WS(is, 29)]), ivs, &(xi[WS(is, 1)]));
531 Tz = LD(&(xi[WS(is, 13)]), ivs, &(xi[WS(is, 1)]));
532 TA = VSUB(Ty, Tz);
533 T22 = VADD(Ty, Tz);
534 }
535 {
536 V TB, TD, T2C, T2D;
537 TB = VMUL(LDK(KP707106781), VADD(Tx, TA));
538 TC = VADD(Tu, TB);
539 T1s = VSUB(Tu, TB);
540 TD = VMUL(LDK(KP707106781), VSUB(TA, Tx));
541 TH = VSUB(TD, TG);
542 T1t = VADD(TG, TD);
543 T20 = VADD(T1Y, T1Z);
544 T23 = VADD(T21, T22);
545 T24 = VSUB(T20, T23);
546 T2C = VSUB(T1Y, T1Z);
547 T2D = VSUB(T22, T21);
548 T2E = VFMA(LDK(KP923879532), T2C, VMUL(LDK(KP382683432), T2D));
549 T2N = VFNMS(LDK(KP382683432), T2C, VMUL(LDK(KP923879532), T2D));
550 }
551 }
552 {
553 V Te, T2h, To, T2f, Th, T2i, Tl, T2e, Ti, Tp;
554 {
555 V Tc, Td, Tm, Tn;
556 Tc = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
557 Td = LD(&(xi[WS(is, 18)]), ivs, &(xi[0]));
558 Te = VSUB(Tc, Td);
559 T2h = VADD(Tc, Td);
560 Tm = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
561 Tn = LD(&(xi[WS(is, 22)]), ivs, &(xi[0]));
562 To = VSUB(Tm, Tn);
563 T2f = VADD(Tm, Tn);
564 }
565 {
566 V Tf, Tg, Tj, Tk;
567 Tf = LD(&(xi[WS(is, 10)]), ivs, &(xi[0]));
568 Tg = LD(&(xi[WS(is, 26)]), ivs, &(xi[0]));
569 Th = VSUB(Tf, Tg);
570 T2i = VADD(Tf, Tg);
571 Tj = LD(&(xi[WS(is, 30)]), ivs, &(xi[0]));
572 Tk = LD(&(xi[WS(is, 14)]), ivs, &(xi[0]));
573 Tl = VSUB(Tj, Tk);
574 T2e = VADD(Tj, Tk);
575 }
576 T2g = VADD(T2e, T2f);
577 T2j = VADD(T2h, T2i);
578 Ti = VFNMS(LDK(KP382683432), Th, VMUL(LDK(KP923879532), Te));
579 Tp = VFMA(LDK(KP923879532), Tl, VMUL(LDK(KP382683432), To));
580 Tq = VADD(Ti, Tp);
581 T1B = VSUB(Tp, Ti);
582 {
583 V T17, T18, T2y, T2z;
584 T17 = VFNMS(LDK(KP923879532), To, VMUL(LDK(KP382683432), Tl));
585 T18 = VFMA(LDK(KP382683432), Te, VMUL(LDK(KP923879532), Th));
586 T19 = VSUB(T17, T18);
587 T1q = VADD(T18, T17);
588 T2y = VSUB(T2h, T2i);
589 T2z = VSUB(T2e, T2f);
590 T2A = VMUL(LDK(KP707106781), VADD(T2y, T2z));
591 T2L = VMUL(LDK(KP707106781), VSUB(T2z, T2y));
592 }
593 }
594 {
595 V T31, T32, T33, T34, T35, T36, T37, T38, T39, T3a, T3b, T3c;
596 {
597 V T2d, T2n, T2m, T2o;
598 {
599 V T1X, T2c, T2k, T2l;
600 T1X = VSUB(T1T, T1W);
601 T2c = VMUL(LDK(KP707106781), VADD(T24, T2b));
602 T2d = VADD(T1X, T2c);
603 T2n = VSUB(T1X, T2c);
604 T2k = VSUB(T2g, T2j);
605 T2l = VMUL(LDK(KP707106781), VSUB(T2b, T24));
606 T2m = VBYI(VADD(T2k, T2l));
607 T2o = VBYI(VSUB(T2l, T2k));
608 }
609 T31 = VSUB(T2d, T2m);
610 STM2(&(xo[56]), T31, ovs, &(xo[0]));
611 T32 = VADD(T2n, T2o);
612 STM2(&(xo[24]), T32, ovs, &(xo[0]));
613 T33 = VADD(T2d, T2m);
614 STM2(&(xo[8]), T33, ovs, &(xo[0]));
615 T34 = VSUB(T2n, T2o);
616 STM2(&(xo[40]), T34, ovs, &(xo[0]));
617 }
618 {
619 V T2r, T2v, T2u, T2w;
620 {
621 V T2p, T2q, T2s, T2t;
622 T2p = VADD(T1T, T1W);
623 T2q = VADD(T2j, T2g);
624 T2r = VADD(T2p, T2q);
625 T2v = VSUB(T2p, T2q);
626 T2s = VADD(T20, T23);
627 T2t = VADD(T27, T2a);
628 T2u = VADD(T2s, T2t);
629 T2w = VBYI(VSUB(T2t, T2s));
630 }
631 T35 = VSUB(T2r, T2u);
632 STM2(&(xo[32]), T35, ovs, &(xo[0]));
633 T36 = VADD(T2v, T2w);
634 STM2(&(xo[16]), T36, ovs, &(xo[0]));
635 T37 = VADD(T2r, T2u);
636 STM2(&(xo[0]), T37, ovs, &(xo[0]));
637 T38 = VSUB(T2v, T2w);
638 STM2(&(xo[48]), T38, ovs, &(xo[0]));
639 }
640 {
641 V T2V, T2Z, T2Y, T30;
642 {
643 V T2T, T2U, T2W, T2X;
644 T2T = VSUB(T2H, T2E);
645 T2U = VSUB(T2L, T2K);
646 T2V = VBYI(VSUB(T2T, T2U));
647 T2Z = VBYI(VADD(T2U, T2T));
648 T2W = VSUB(T2x, T2A);
649 T2X = VSUB(T2O, T2N);
650 T2Y = VSUB(T2W, T2X);
651 T30 = VADD(T2W, T2X);
652 }
653 T39 = VADD(T2V, T2Y);
654 STM2(&(xo[20]), T39, ovs, &(xo[0]));
655 T3a = VSUB(T30, T2Z);
656 STM2(&(xo[52]), T3a, ovs, &(xo[0]));
657 T3b = VSUB(T2Y, T2V);
658 STM2(&(xo[44]), T3b, ovs, &(xo[0]));
659 T3c = VADD(T2Z, T30);
660 STM2(&(xo[12]), T3c, ovs, &(xo[0]));
661 }
662 {
663 V T3d, T3e, T3f, T3g;
664 {
665 V T2J, T2R, T2Q, T2S;
666 {
667 V T2B, T2I, T2M, T2P;
668 T2B = VADD(T2x, T2A);
669 T2I = VADD(T2E, T2H);
670 T2J = VADD(T2B, T2I);
671 T2R = VSUB(T2B, T2I);
672 T2M = VADD(T2K, T2L);
673 T2P = VADD(T2N, T2O);
674 T2Q = VBYI(VADD(T2M, T2P));
675 T2S = VBYI(VSUB(T2P, T2M));
676 }
677 T3d = VSUB(T2J, T2Q);
678 STM2(&(xo[60]), T3d, ovs, &(xo[0]));
679 T3e = VADD(T2R, T2S);
680 STM2(&(xo[28]), T3e, ovs, &(xo[0]));
681 T3f = VADD(T2J, T2Q);
682 STM2(&(xo[4]), T3f, ovs, &(xo[0]));
683 T3g = VSUB(T2R, T2S);
684 STM2(&(xo[36]), T3g, ovs, &(xo[0]));
685 }
686 {
687 V T1r, T1C, T1M, T1K, T1F, T1N, T1y, T1J;
688 T1r = VADD(T1p, T1q);
689 T1C = VADD(T1A, T1B);
690 T1M = VSUB(T1p, T1q);
691 T1K = VSUB(T1B, T1A);
692 {
693 V T1D, T1E, T1u, T1x;
694 T1D = VFNMS(LDK(KP555570233), T1s, VMUL(LDK(KP831469612), T1t));
695 T1E = VFMA(LDK(KP555570233), T1v, VMUL(LDK(KP831469612), T1w));
696 T1F = VADD(T1D, T1E);
697 T1N = VSUB(T1E, T1D);
698 T1u = VFMA(LDK(KP831469612), T1s, VMUL(LDK(KP555570233), T1t));
699 T1x = VFNMS(LDK(KP555570233), T1w, VMUL(LDK(KP831469612), T1v));
700 T1y = VADD(T1u, T1x);
701 T1J = VSUB(T1x, T1u);
702 }
703 {
704 V T1z, T1G, T3h, T3i;
705 T1z = VADD(T1r, T1y);
706 T1G = VBYI(VADD(T1C, T1F));
707 T3h = VSUB(T1z, T1G);
708 STM2(&(xo[58]), T3h, ovs, &(xo[2]));
709 STN2(&(xo[56]), T31, T3h, ovs);
710 T3i = VADD(T1z, T1G);
711 STM2(&(xo[6]), T3i, ovs, &(xo[2]));
712 STN2(&(xo[4]), T3f, T3i, ovs);
713 }
714 {
715 V T1P, T1Q, T3j, T3k;
716 T1P = VBYI(VADD(T1K, T1J));
717 T1Q = VADD(T1M, T1N);
718 T3j = VADD(T1P, T1Q);
719 STM2(&(xo[10]), T3j, ovs, &(xo[2]));
720 STN2(&(xo[8]), T33, T3j, ovs);
721 T3k = VSUB(T1Q, T1P);
722 STM2(&(xo[54]), T3k, ovs, &(xo[2]));
723 STN2(&(xo[52]), T3a, T3k, ovs);
724 }
725 {
726 V T1H, T1I, T3l, T3m;
727 T1H = VSUB(T1r, T1y);
728 T1I = VBYI(VSUB(T1F, T1C));
729 T3l = VSUB(T1H, T1I);
730 STM2(&(xo[38]), T3l, ovs, &(xo[2]));
731 STN2(&(xo[36]), T3g, T3l, ovs);
732 T3m = VADD(T1H, T1I);
733 STM2(&(xo[26]), T3m, ovs, &(xo[2]));
734 STN2(&(xo[24]), T32, T3m, ovs);
735 }
736 {
737 V T1L, T1O, T3n, T3o;
738 T1L = VBYI(VSUB(T1J, T1K));
739 T1O = VSUB(T1M, T1N);
740 T3n = VADD(T1L, T1O);
741 STM2(&(xo[22]), T3n, ovs, &(xo[2]));
742 STN2(&(xo[20]), T39, T3n, ovs);
743 T3o = VSUB(T1O, T1L);
744 STM2(&(xo[42]), T3o, ovs, &(xo[2]));
745 STN2(&(xo[40]), T34, T3o, ovs);
746 }
747 }
748 {
749 V Tr, T1a, T1k, T1i, T1d, T1l, T10, T1h;
750 Tr = VADD(Tb, Tq);
751 T1a = VADD(T16, T19);
752 T1k = VSUB(Tb, Tq);
753 T1i = VSUB(T19, T16);
754 {
755 V T1b, T1c, TI, TZ;
756 T1b = VFNMS(LDK(KP195090322), TC, VMUL(LDK(KP980785280), TH));
757 T1c = VFMA(LDK(KP195090322), TT, VMUL(LDK(KP980785280), TY));
758 T1d = VADD(T1b, T1c);
759 T1l = VSUB(T1c, T1b);
760 TI = VFMA(LDK(KP980785280), TC, VMUL(LDK(KP195090322), TH));
761 TZ = VFNMS(LDK(KP195090322), TY, VMUL(LDK(KP980785280), TT));
762 T10 = VADD(TI, TZ);
763 T1h = VSUB(TZ, TI);
764 }
765 {
766 V T11, T1e, T3p, T3q;
767 T11 = VADD(Tr, T10);
768 T1e = VBYI(VADD(T1a, T1d));
769 T3p = VSUB(T11, T1e);
770 STM2(&(xo[62]), T3p, ovs, &(xo[2]));
771 STN2(&(xo[60]), T3d, T3p, ovs);
772 T3q = VADD(T11, T1e);
773 STM2(&(xo[2]), T3q, ovs, &(xo[2]));
774 STN2(&(xo[0]), T37, T3q, ovs);
775 }
776 {
777 V T1n, T1o, T3r, T3s;
778 T1n = VBYI(VADD(T1i, T1h));
779 T1o = VADD(T1k, T1l);
780 T3r = VADD(T1n, T1o);
781 STM2(&(xo[14]), T3r, ovs, &(xo[2]));
782 STN2(&(xo[12]), T3c, T3r, ovs);
783 T3s = VSUB(T1o, T1n);
784 STM2(&(xo[50]), T3s, ovs, &(xo[2]));
785 STN2(&(xo[48]), T38, T3s, ovs);
786 }
787 {
788 V T1f, T1g, T3t, T3u;
789 T1f = VSUB(Tr, T10);
790 T1g = VBYI(VSUB(T1d, T1a));
791 T3t = VSUB(T1f, T1g);
792 STM2(&(xo[34]), T3t, ovs, &(xo[2]));
793 STN2(&(xo[32]), T35, T3t, ovs);
794 T3u = VADD(T1f, T1g);
795 STM2(&(xo[30]), T3u, ovs, &(xo[2]));
796 STN2(&(xo[28]), T3e, T3u, ovs);
797 }
798 {
799 V T1j, T1m, T3v, T3w;
800 T1j = VBYI(VSUB(T1h, T1i));
801 T1m = VSUB(T1k, T1l);
802 T3v = VADD(T1j, T1m);
803 STM2(&(xo[18]), T3v, ovs, &(xo[2]));
804 STN2(&(xo[16]), T36, T3v, ovs);
805 T3w = VSUB(T1m, T1j);
806 STM2(&(xo[46]), T3w, ovs, &(xo[2]));
807 STN2(&(xo[44]), T3b, T3w, ovs);
808 }
809 }
810 }
811 }
812 }
813 }
814 VLEAVE();
815 }
816
817 static const kdft_desc desc = { 32, XSIMD_STRING("n2fv_32"), {170, 26, 16, 0}, &GENUS, 0, 2, 0, 0 };
818
819 void XSIMD(codelet_n2fv_32) (planner *p) {
820 X(kdft_register) (p, n2fv_32, &desc);
821 }
822
823 #endif /* HAVE_FMA */