Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.3/dft/scalar/codelets/t2_8.c @ 95:89f5e221ed7b
Add FFTW3
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
94:d278df1123f9 | 95:89f5e221ed7b |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-11 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Sun Nov 25 07:35:59 EST 2012 */ | |
23 | |
24 #include "codelet-dft.h" | |
25 | |
26 #ifdef HAVE_FMA | |
27 | |
28 /* Generated by: ../../../genfft/gen_twiddle.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 8 -name t2_8 -include t.h */ | |
29 | |
30 /* | |
31 * This function contains 74 FP additions, 50 FP multiplications, | |
32 * (or, 44 additions, 20 multiplications, 30 fused multiply/add), | |
33 * 64 stack variables, 1 constants, and 32 memory accesses | |
34 */ | |
35 #include "t.h" | |
36 | |
37 static void t2_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
38 { | |
39 DK(KP707106781, +0.707106781186547524400844362104849039284835938); | |
40 { | |
41 INT m; | |
42 for (m = mb, W = W + (mb * 6); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 6, MAKE_VOLATILE_STRIDE(16, rs)) { | |
43 E TS, T1m, TJ, T1l, T1k, Tw, T1w, T1u; | |
44 { | |
45 E T2, T3, Tl, Tn, T5, T4, Tm, Tr, T6; | |
46 T2 = W[0]; | |
47 T3 = W[2]; | |
48 Tl = W[4]; | |
49 Tn = W[5]; | |
50 T5 = W[1]; | |
51 T4 = T2 * T3; | |
52 Tm = T2 * Tl; | |
53 Tr = T2 * Tn; | |
54 T6 = W[3]; | |
55 { | |
56 E T1, T1s, TG, Td, T1r, Tu, TY, Tk, TW, T18, T1d, TD, TH, TA, T13; | |
57 E TE, T14; | |
58 { | |
59 E To, Ts, Tf, T7, T8, Ti, Tb, T9, Tc, TC, Ta, TF, TB, Tg, Th; | |
60 E Tj; | |
61 T1 = ri[0]; | |
62 To = FMA(T5, Tn, Tm); | |
63 Ts = FNMS(T5, Tl, Tr); | |
64 Tf = FMA(T5, T6, T4); | |
65 T7 = FNMS(T5, T6, T4); | |
66 Ta = T2 * T6; | |
67 T1s = ii[0]; | |
68 T8 = ri[WS(rs, 4)]; | |
69 TF = Tf * Tn; | |
70 TB = Tf * Tl; | |
71 Ti = FNMS(T5, T3, Ta); | |
72 Tb = FMA(T5, T3, Ta); | |
73 T9 = T7 * T8; | |
74 Tc = ii[WS(rs, 4)]; | |
75 TG = FNMS(Ti, Tl, TF); | |
76 TC = FMA(Ti, Tn, TB); | |
77 { | |
78 E Tp, T1q, Tt, Tq, TX; | |
79 Tp = ri[WS(rs, 6)]; | |
80 Td = FMA(Tb, Tc, T9); | |
81 T1q = T7 * Tc; | |
82 Tt = ii[WS(rs, 6)]; | |
83 Tq = To * Tp; | |
84 Tg = ri[WS(rs, 2)]; | |
85 T1r = FNMS(Tb, T8, T1q); | |
86 TX = To * Tt; | |
87 Tu = FMA(Ts, Tt, Tq); | |
88 Th = Tf * Tg; | |
89 Tj = ii[WS(rs, 2)]; | |
90 TY = FNMS(Ts, Tp, TX); | |
91 } | |
92 { | |
93 E TO, TQ, TN, TP, T1a, T1b; | |
94 { | |
95 E TK, TM, TL, T19, TV; | |
96 TK = ri[WS(rs, 7)]; | |
97 TM = ii[WS(rs, 7)]; | |
98 Tk = FMA(Ti, Tj, Th); | |
99 TV = Tf * Tj; | |
100 TL = Tl * TK; | |
101 T19 = Tl * TM; | |
102 TO = ri[WS(rs, 3)]; | |
103 TW = FNMS(Ti, Tg, TV); | |
104 TQ = ii[WS(rs, 3)]; | |
105 TN = FMA(Tn, TM, TL); | |
106 TP = T3 * TO; | |
107 T1a = FNMS(Tn, TK, T19); | |
108 T1b = T3 * TQ; | |
109 } | |
110 { | |
111 E Tx, Tz, Ty, T12, T1c, TR; | |
112 Tx = ri[WS(rs, 1)]; | |
113 TR = FMA(T6, TQ, TP); | |
114 Tz = ii[WS(rs, 1)]; | |
115 T1c = FNMS(T6, TO, T1b); | |
116 Ty = T2 * Tx; | |
117 T18 = TN - TR; | |
118 TS = TN + TR; | |
119 T12 = T2 * Tz; | |
120 T1d = T1a - T1c; | |
121 T1m = T1a + T1c; | |
122 TD = ri[WS(rs, 5)]; | |
123 TH = ii[WS(rs, 5)]; | |
124 TA = FMA(T5, Tz, Ty); | |
125 T13 = FNMS(T5, Tx, T12); | |
126 TE = TC * TD; | |
127 T14 = TC * TH; | |
128 } | |
129 } | |
130 } | |
131 { | |
132 E Te, T1p, T1t, Tv; | |
133 { | |
134 E T1g, T10, T1z, T1B, T1A, T1j, T1C, T1f; | |
135 { | |
136 E T1x, T11, T16, T1y; | |
137 { | |
138 E TU, TZ, TI, T15; | |
139 Te = T1 + Td; | |
140 TU = T1 - Td; | |
141 TZ = TW - TY; | |
142 T1p = TW + TY; | |
143 TI = FMA(TG, TH, TE); | |
144 T15 = FNMS(TG, TD, T14); | |
145 T1t = T1r + T1s; | |
146 T1x = T1s - T1r; | |
147 T1g = TU - TZ; | |
148 T10 = TU + TZ; | |
149 T11 = TA - TI; | |
150 TJ = TA + TI; | |
151 T1l = T13 + T15; | |
152 T16 = T13 - T15; | |
153 T1y = Tk - Tu; | |
154 Tv = Tk + Tu; | |
155 } | |
156 { | |
157 E T1i, T1e, T17, T1h; | |
158 T1i = T18 + T1d; | |
159 T1e = T18 - T1d; | |
160 T17 = T11 + T16; | |
161 T1h = T16 - T11; | |
162 T1z = T1x - T1y; | |
163 T1B = T1y + T1x; | |
164 T1A = T1h + T1i; | |
165 T1j = T1h - T1i; | |
166 T1C = T1e - T17; | |
167 T1f = T17 + T1e; | |
168 } | |
169 } | |
170 ri[WS(rs, 7)] = FNMS(KP707106781, T1j, T1g); | |
171 ii[WS(rs, 7)] = FNMS(KP707106781, T1C, T1B); | |
172 ri[WS(rs, 1)] = FMA(KP707106781, T1f, T10); | |
173 ri[WS(rs, 5)] = FNMS(KP707106781, T1f, T10); | |
174 ii[WS(rs, 1)] = FMA(KP707106781, T1A, T1z); | |
175 ii[WS(rs, 5)] = FNMS(KP707106781, T1A, T1z); | |
176 ri[WS(rs, 3)] = FMA(KP707106781, T1j, T1g); | |
177 ii[WS(rs, 3)] = FMA(KP707106781, T1C, T1B); | |
178 } | |
179 T1k = Te - Tv; | |
180 Tw = Te + Tv; | |
181 T1w = T1t - T1p; | |
182 T1u = T1p + T1t; | |
183 } | |
184 } | |
185 } | |
186 { | |
187 E TT, T1v, T1n, T1o; | |
188 TT = TJ + TS; | |
189 T1v = TS - TJ; | |
190 T1n = T1l - T1m; | |
191 T1o = T1l + T1m; | |
192 ii[WS(rs, 2)] = T1v + T1w; | |
193 ii[WS(rs, 6)] = T1w - T1v; | |
194 ri[0] = Tw + TT; | |
195 ri[WS(rs, 4)] = Tw - TT; | |
196 ii[0] = T1o + T1u; | |
197 ii[WS(rs, 4)] = T1u - T1o; | |
198 ri[WS(rs, 2)] = T1k + T1n; | |
199 ri[WS(rs, 6)] = T1k - T1n; | |
200 } | |
201 } | |
202 } | |
203 } | |
204 | |
205 static const tw_instr twinstr[] = { | |
206 {TW_CEXP, 0, 1}, | |
207 {TW_CEXP, 0, 3}, | |
208 {TW_CEXP, 0, 7}, | |
209 {TW_NEXT, 1, 0} | |
210 }; | |
211 | |
212 static const ct_desc desc = { 8, "t2_8", twinstr, &GENUS, {44, 20, 30, 0}, 0, 0, 0 }; | |
213 | |
214 void X(codelet_t2_8) (planner *p) { | |
215 X(kdft_dit_register) (p, t2_8, &desc); | |
216 } | |
217 #else /* HAVE_FMA */ | |
218 | |
219 /* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 8 -name t2_8 -include t.h */ | |
220 | |
221 /* | |
222 * This function contains 74 FP additions, 44 FP multiplications, | |
223 * (or, 56 additions, 26 multiplications, 18 fused multiply/add), | |
224 * 42 stack variables, 1 constants, and 32 memory accesses | |
225 */ | |
226 #include "t.h" | |
227 | |
228 static void t2_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
229 { | |
230 DK(KP707106781, +0.707106781186547524400844362104849039284835938); | |
231 { | |
232 INT m; | |
233 for (m = mb, W = W + (mb * 6); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 6, MAKE_VOLATILE_STRIDE(16, rs)) { | |
234 E T2, T5, T3, T6, T8, Tc, Tg, Ti, Tl, Tm, Tn, Tz, Tp, Tx; | |
235 { | |
236 E T4, Tb, T7, Ta; | |
237 T2 = W[0]; | |
238 T5 = W[1]; | |
239 T3 = W[2]; | |
240 T6 = W[3]; | |
241 T4 = T2 * T3; | |
242 Tb = T5 * T3; | |
243 T7 = T5 * T6; | |
244 Ta = T2 * T6; | |
245 T8 = T4 - T7; | |
246 Tc = Ta + Tb; | |
247 Tg = T4 + T7; | |
248 Ti = Ta - Tb; | |
249 Tl = W[4]; | |
250 Tm = W[5]; | |
251 Tn = FMA(T2, Tl, T5 * Tm); | |
252 Tz = FNMS(Ti, Tl, Tg * Tm); | |
253 Tp = FNMS(T5, Tl, T2 * Tm); | |
254 Tx = FMA(Tg, Tl, Ti * Tm); | |
255 } | |
256 { | |
257 E Tf, T1i, TL, T1d, TJ, T17, TV, TY, Ts, T1j, TO, T1a, TC, T16, TQ; | |
258 E TT; | |
259 { | |
260 E T1, T1c, Te, T1b, T9, Td; | |
261 T1 = ri[0]; | |
262 T1c = ii[0]; | |
263 T9 = ri[WS(rs, 4)]; | |
264 Td = ii[WS(rs, 4)]; | |
265 Te = FMA(T8, T9, Tc * Td); | |
266 T1b = FNMS(Tc, T9, T8 * Td); | |
267 Tf = T1 + Te; | |
268 T1i = T1c - T1b; | |
269 TL = T1 - Te; | |
270 T1d = T1b + T1c; | |
271 } | |
272 { | |
273 E TF, TW, TI, TX; | |
274 { | |
275 E TD, TE, TG, TH; | |
276 TD = ri[WS(rs, 7)]; | |
277 TE = ii[WS(rs, 7)]; | |
278 TF = FMA(Tl, TD, Tm * TE); | |
279 TW = FNMS(Tm, TD, Tl * TE); | |
280 TG = ri[WS(rs, 3)]; | |
281 TH = ii[WS(rs, 3)]; | |
282 TI = FMA(T3, TG, T6 * TH); | |
283 TX = FNMS(T6, TG, T3 * TH); | |
284 } | |
285 TJ = TF + TI; | |
286 T17 = TW + TX; | |
287 TV = TF - TI; | |
288 TY = TW - TX; | |
289 } | |
290 { | |
291 E Tk, TM, Tr, TN; | |
292 { | |
293 E Th, Tj, To, Tq; | |
294 Th = ri[WS(rs, 2)]; | |
295 Tj = ii[WS(rs, 2)]; | |
296 Tk = FMA(Tg, Th, Ti * Tj); | |
297 TM = FNMS(Ti, Th, Tg * Tj); | |
298 To = ri[WS(rs, 6)]; | |
299 Tq = ii[WS(rs, 6)]; | |
300 Tr = FMA(Tn, To, Tp * Tq); | |
301 TN = FNMS(Tp, To, Tn * Tq); | |
302 } | |
303 Ts = Tk + Tr; | |
304 T1j = Tk - Tr; | |
305 TO = TM - TN; | |
306 T1a = TM + TN; | |
307 } | |
308 { | |
309 E Tw, TR, TB, TS; | |
310 { | |
311 E Tu, Tv, Ty, TA; | |
312 Tu = ri[WS(rs, 1)]; | |
313 Tv = ii[WS(rs, 1)]; | |
314 Tw = FMA(T2, Tu, T5 * Tv); | |
315 TR = FNMS(T5, Tu, T2 * Tv); | |
316 Ty = ri[WS(rs, 5)]; | |
317 TA = ii[WS(rs, 5)]; | |
318 TB = FMA(Tx, Ty, Tz * TA); | |
319 TS = FNMS(Tz, Ty, Tx * TA); | |
320 } | |
321 TC = Tw + TB; | |
322 T16 = TR + TS; | |
323 TQ = Tw - TB; | |
324 TT = TR - TS; | |
325 } | |
326 { | |
327 E Tt, TK, T1f, T1g; | |
328 Tt = Tf + Ts; | |
329 TK = TC + TJ; | |
330 ri[WS(rs, 4)] = Tt - TK; | |
331 ri[0] = Tt + TK; | |
332 { | |
333 E T19, T1e, T15, T18; | |
334 T19 = T16 + T17; | |
335 T1e = T1a + T1d; | |
336 ii[0] = T19 + T1e; | |
337 ii[WS(rs, 4)] = T1e - T19; | |
338 T15 = Tf - Ts; | |
339 T18 = T16 - T17; | |
340 ri[WS(rs, 6)] = T15 - T18; | |
341 ri[WS(rs, 2)] = T15 + T18; | |
342 } | |
343 T1f = TJ - TC; | |
344 T1g = T1d - T1a; | |
345 ii[WS(rs, 2)] = T1f + T1g; | |
346 ii[WS(rs, 6)] = T1g - T1f; | |
347 { | |
348 E T11, T1k, T14, T1h, T12, T13; | |
349 T11 = TL - TO; | |
350 T1k = T1i - T1j; | |
351 T12 = TT - TQ; | |
352 T13 = TV + TY; | |
353 T14 = KP707106781 * (T12 - T13); | |
354 T1h = KP707106781 * (T12 + T13); | |
355 ri[WS(rs, 7)] = T11 - T14; | |
356 ii[WS(rs, 5)] = T1k - T1h; | |
357 ri[WS(rs, 3)] = T11 + T14; | |
358 ii[WS(rs, 1)] = T1h + T1k; | |
359 } | |
360 { | |
361 E TP, T1m, T10, T1l, TU, TZ; | |
362 TP = TL + TO; | |
363 T1m = T1j + T1i; | |
364 TU = TQ + TT; | |
365 TZ = TV - TY; | |
366 T10 = KP707106781 * (TU + TZ); | |
367 T1l = KP707106781 * (TZ - TU); | |
368 ri[WS(rs, 5)] = TP - T10; | |
369 ii[WS(rs, 7)] = T1m - T1l; | |
370 ri[WS(rs, 1)] = TP + T10; | |
371 ii[WS(rs, 3)] = T1l + T1m; | |
372 } | |
373 } | |
374 } | |
375 } | |
376 } | |
377 } | |
378 | |
379 static const tw_instr twinstr[] = { | |
380 {TW_CEXP, 0, 1}, | |
381 {TW_CEXP, 0, 3}, | |
382 {TW_CEXP, 0, 7}, | |
383 {TW_NEXT, 1, 0} | |
384 }; | |
385 | |
386 static const ct_desc desc = { 8, "t2_8", twinstr, &GENUS, {56, 26, 18, 0}, 0, 0, 0 }; | |
387 | |
388 void X(codelet_t2_8) (planner *p) { | |
389 X(kdft_dit_register) (p, t2_8, &desc); | |
390 } | |
391 #endif /* HAVE_FMA */ |