Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.3/dft/scalar/codelets/t2_64.c @ 95:89f5e221ed7b
Add FFTW3
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
94:d278df1123f9 | 95:89f5e221ed7b |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-11 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Sun Nov 25 07:36:01 EST 2012 */ | |
23 | |
24 #include "codelet-dft.h" | |
25 | |
26 #ifdef HAVE_FMA | |
27 | |
28 /* Generated by: ../../../genfft/gen_twiddle.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 64 -name t2_64 -include t.h */ | |
29 | |
30 /* | |
31 * This function contains 1154 FP additions, 840 FP multiplications, | |
32 * (or, 520 additions, 206 multiplications, 634 fused multiply/add), | |
33 * 349 stack variables, 15 constants, and 256 memory accesses | |
34 */ | |
35 #include "t.h" | |
36 | |
37 static void t2_64(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
38 { | |
39 DK(KP995184726, +0.995184726672196886244836953109479921575474869); | |
40 DK(KP773010453, +0.773010453362736960810906609758469800971041293); | |
41 DK(KP956940335, +0.956940335732208864935797886980269969482849206); | |
42 DK(KP881921264, +0.881921264348355029712756863660388349508442621); | |
43 DK(KP820678790, +0.820678790828660330972281985331011598767386482); | |
44 DK(KP098491403, +0.098491403357164253077197521291327432293052451); | |
45 DK(KP534511135, +0.534511135950791641089685961295362908582039528); | |
46 DK(KP303346683, +0.303346683607342391675883946941299872384187453); | |
47 DK(KP831469612, +0.831469612302545237078788377617905756738560812); | |
48 DK(KP980785280, +0.980785280403230449126182236134239036973933731); | |
49 DK(KP668178637, +0.668178637919298919997757686523080761552472251); | |
50 DK(KP198912367, +0.198912367379658006911597622644676228597850501); | |
51 DK(KP923879532, +0.923879532511286756128183189396788286822416626); | |
52 DK(KP707106781, +0.707106781186547524400844362104849039284835938); | |
53 DK(KP414213562, +0.414213562373095048801688724209698078569671875); | |
54 { | |
55 INT m; | |
56 for (m = mb, W = W + (mb * 10); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 10, MAKE_VOLATILE_STRIDE(128, rs)) { | |
57 E Tg0, TlC, TlB, Tg3; | |
58 { | |
59 E T2, T3, Tc, T8, Te, T5, T6, T14, T3d, T3i, TJ, T7, Tr, T3g, TG; | |
60 E T10, T3a, TL, TP, Tb, Tt, T17, Td, Ti, T3N, T3R, T1i, Tu, T1I, T2U; | |
61 E T1t, T3U, T5O, T48, T2u, T7B, TK, T79, T3D, T2h, T2l, T3G, T1x, T3X, T2d; | |
62 E T1M, T2X, T4B, T4x, T3j, T4T, T29, T5s, T81, T5w, T7X, T7N, T7h, T64, T6a; | |
63 E T6e, T7l, T60, T7R, T6h, T5A, T7o, T6J, T6k, T5E, T6N, T7r, T6x, T6t, T7c; | |
64 E TO, T2x, T7E, TU, TQ, T2C, T2y, T5R, T4b, T4c, T4g, T4W, T3m, T3r, T3n; | |
65 E T1k, Tx, Ty, T4p, T4s, TC, T23, T1Z, T19, Th, T31, T35, T1e, T44, T41; | |
66 E T1a, T6W, T70, T55, T59, T3v, T3z, Tf, T1R, T2N, T2Q, T1V, T1p, T1l, Tm; | |
67 { | |
68 E T1H, T1s, T2g, Tg, Tw, TH, T2t, T47, T3h, T3M, T4w, T28, T3Q, T4A, T2c; | |
69 E Ts; | |
70 { | |
71 E T4, T13, TI, TF, TZ, Ta, T9; | |
72 T2 = W[0]; | |
73 T3 = W[2]; | |
74 Tc = W[5]; | |
75 T8 = W[4]; | |
76 Te = W[6]; | |
77 T4 = T2 * T3; | |
78 T13 = T2 * Tc; | |
79 TI = T3 * Tc; | |
80 TF = T3 * T8; | |
81 T1H = T8 * Te; | |
82 TZ = T2 * T8; | |
83 T5 = W[1]; | |
84 T6 = W[3]; | |
85 T1s = T3 * Te; | |
86 T2g = T2 * Te; | |
87 T14 = FNMS(T5, T8, T13); | |
88 T3d = FMA(T5, T8, T13); | |
89 T3i = FNMS(T6, T8, TI); | |
90 TJ = FMA(T6, T8, TI); | |
91 T7 = FNMS(T5, T6, T4); | |
92 Tr = FMA(T5, T6, T4); | |
93 Ta = T2 * T6; | |
94 Tg = T7 * Tc; | |
95 Tw = Tr * Tc; | |
96 T3g = FMA(T6, Tc, TF); | |
97 TG = FNMS(T6, Tc, TF); | |
98 T10 = FMA(T5, Tc, TZ); | |
99 T3a = FNMS(T5, Tc, TZ); | |
100 TH = TG * Te; | |
101 T2t = T10 * Te; | |
102 T47 = T3a * Te; | |
103 T3h = T3g * Te; | |
104 TL = W[8]; | |
105 TP = W[9]; | |
106 T9 = T7 * T8; | |
107 Tb = FMA(T5, T3, Ta); | |
108 Tt = FNMS(T5, T3, Ta); | |
109 T3M = T2 * TL; | |
110 T4w = T8 * TL; | |
111 T28 = T3 * TL; | |
112 T3Q = T2 * TP; | |
113 T4A = T8 * TP; | |
114 T2c = T3 * TP; | |
115 T17 = FNMS(Tb, Tc, T9); | |
116 Td = FMA(Tb, Tc, T9); | |
117 Ts = Tr * T8; | |
118 Ti = W[7]; | |
119 } | |
120 { | |
121 E T5r, T80, T1L, T2k, T1w, T5z, T2B, T2v; | |
122 T3N = FMA(T5, TP, T3M); | |
123 T3R = FNMS(T5, TL, T3Q); | |
124 T1i = FMA(Tt, Tc, Ts); | |
125 Tu = FNMS(Tt, Tc, Ts); | |
126 T1I = FNMS(Tc, Ti, T1H); | |
127 T2U = FMA(Tc, Ti, T1H); | |
128 T1t = FMA(T6, Ti, T1s); | |
129 T3U = FNMS(T6, Ti, T1s); | |
130 T5O = FNMS(T3d, Ti, T47); | |
131 T48 = FMA(T3d, Ti, T47); | |
132 T2u = FMA(T14, Ti, T2t); | |
133 T7B = FNMS(T14, Ti, T2t); | |
134 T1L = T8 * Ti; | |
135 T2k = T2 * Ti; | |
136 T1w = T3 * Ti; | |
137 TK = FMA(TJ, Ti, TH); | |
138 T79 = FNMS(TJ, Ti, TH); | |
139 T3D = FMA(T5, Ti, T2g); | |
140 T2h = FNMS(T5, Ti, T2g); | |
141 T2l = FMA(T5, Te, T2k); | |
142 T3G = FNMS(T5, Te, T2k); | |
143 T1x = FNMS(T6, Te, T1w); | |
144 T3X = FMA(T6, Te, T1w); | |
145 T2d = FNMS(T6, TL, T2c); | |
146 T1M = FMA(Tc, Te, T1L); | |
147 T2X = FNMS(Tc, Te, T1L); | |
148 T4B = FNMS(Tc, TL, T4A); | |
149 T4x = FMA(Tc, TP, T4w); | |
150 T3j = FMA(T3i, Ti, T3h); | |
151 T4T = FNMS(T3i, Ti, T3h); | |
152 T29 = FMA(T6, TP, T28); | |
153 T5r = T3g * TL; | |
154 T80 = T7 * TP; | |
155 { | |
156 E T7M, T7g, T63, T5v, T7W; | |
157 T5v = T3g * TP; | |
158 T7W = T7 * TL; | |
159 T5s = FMA(T3i, TP, T5r); | |
160 T81 = FNMS(Tb, TL, T80); | |
161 T5w = FNMS(T3i, TL, T5v); | |
162 T7X = FMA(Tb, TP, T7W); | |
163 T7M = TG * TL; | |
164 T7g = T10 * TL; | |
165 T63 = T3a * TP; | |
166 { | |
167 E T6d, T7k, T69, T5Z, T7Q; | |
168 T69 = Tr * TL; | |
169 T7N = FMA(TJ, TP, T7M); | |
170 T7h = FMA(T14, TP, T7g); | |
171 T64 = FNMS(T3d, TL, T63); | |
172 T6a = FMA(Tt, TP, T69); | |
173 T6d = Tr * TP; | |
174 T7k = T10 * TP; | |
175 T5Z = T3a * TL; | |
176 T7Q = TG * TP; | |
177 T6e = FNMS(Tt, TL, T6d); | |
178 T7l = FNMS(T14, TL, T7k); | |
179 T60 = FMA(T3d, TP, T5Z); | |
180 T7R = FNMS(TJ, TL, T7Q); | |
181 T5z = Tr * Te; | |
182 } | |
183 } | |
184 { | |
185 E T6I, T5D, T6M, T6s, T6w; | |
186 T6I = T7 * Te; | |
187 T5D = Tr * Ti; | |
188 T6M = T7 * Ti; | |
189 T6h = FNMS(Tt, Ti, T5z); | |
190 T5A = FMA(Tt, Ti, T5z); | |
191 T7o = FMA(Tb, Ti, T6I); | |
192 T6J = FNMS(Tb, Ti, T6I); | |
193 T6k = FMA(Tt, Te, T5D); | |
194 T5E = FNMS(Tt, Te, T5D); | |
195 T6N = FMA(Tb, Te, T6M); | |
196 T7r = FNMS(Tb, Te, T6M); | |
197 T6s = T2U * TL; | |
198 T6w = T2U * TP; | |
199 { | |
200 E TN, TT, TM, T2w; | |
201 TN = TG * Ti; | |
202 T2w = T10 * Ti; | |
203 T6x = FNMS(T2X, TL, T6w); | |
204 T6t = FMA(T2X, TP, T6s); | |
205 T7c = FMA(TJ, Te, TN); | |
206 TO = FNMS(TJ, Te, TN); | |
207 TT = TK * TP; | |
208 TM = TK * TL; | |
209 T2x = FNMS(T14, Te, T2w); | |
210 T7E = FMA(T14, Te, T2w); | |
211 TU = FNMS(TO, TL, TT); | |
212 TQ = FMA(TO, TP, TM); | |
213 T2B = T2u * TP; | |
214 T2v = T2u * TL; | |
215 } | |
216 } | |
217 { | |
218 E T1Y, T22, Tv, TB; | |
219 { | |
220 E T49, T4f, T4a, T3l, T3q, T3k; | |
221 T4a = T3a * Ti; | |
222 T2C = FNMS(T2x, TL, T2B); | |
223 T2y = FMA(T2x, TP, T2v); | |
224 T5R = FMA(T3d, Te, T4a); | |
225 T4b = FNMS(T3d, Te, T4a); | |
226 T49 = T48 * TL; | |
227 T4f = T48 * TP; | |
228 T3l = T3g * Ti; | |
229 T4c = FMA(T4b, TP, T49); | |
230 T4g = FNMS(T4b, TL, T4f); | |
231 T4W = FMA(T3i, Te, T3l); | |
232 T3m = FNMS(T3i, Te, T3l); | |
233 T1Y = Tu * TL; | |
234 T3q = T3j * TP; | |
235 T3k = T3j * TL; | |
236 T22 = Tu * TP; | |
237 Tv = Tu * Te; | |
238 T3r = FNMS(T3m, TL, T3q); | |
239 T3n = FMA(T3m, TP, T3k); | |
240 TB = Tu * Ti; | |
241 T1k = FNMS(Tt, T8, Tw); | |
242 Tx = FMA(Tt, T8, Tw); | |
243 } | |
244 { | |
245 E T30, T34, T18, T1d; | |
246 T30 = T17 * TL; | |
247 T34 = T17 * TP; | |
248 T18 = T17 * Te; | |
249 Ty = FMA(Tx, Ti, Tv); | |
250 T4p = FNMS(Tx, Ti, Tv); | |
251 T4s = FMA(Tx, Te, TB); | |
252 TC = FNMS(Tx, Te, TB); | |
253 T23 = FNMS(Tx, TL, T22); | |
254 T1Z = FMA(Tx, TP, T1Y); | |
255 T1d = T17 * Ti; | |
256 T19 = FMA(Tb, T8, Tg); | |
257 Th = FNMS(Tb, T8, Tg); | |
258 { | |
259 E T1j, T1o, T1Q, T1U; | |
260 T1j = T1i * TL; | |
261 { | |
262 E T6V, T6Z, T54, T58; | |
263 T6V = Ty * TL; | |
264 T6Z = Ty * TP; | |
265 T31 = FMA(T19, TP, T30); | |
266 T35 = FNMS(T19, TL, T34); | |
267 T1e = FMA(T19, Te, T1d); | |
268 T44 = FNMS(T19, Te, T1d); | |
269 T41 = FMA(T19, Ti, T18); | |
270 T1a = FNMS(T19, Ti, T18); | |
271 T6W = FMA(TC, TP, T6V); | |
272 T70 = FNMS(TC, TL, T6Z); | |
273 T1o = T1i * TP; | |
274 T54 = T41 * TL; | |
275 T58 = T41 * TP; | |
276 T1Q = T1i * Te; | |
277 T1U = T1i * Ti; | |
278 T55 = FMA(T44, TP, T54); | |
279 T59 = FNMS(T44, TL, T58); | |
280 } | |
281 T3v = Td * TL; | |
282 T3z = Td * TP; | |
283 Tf = Td * Te; | |
284 T1R = FMA(T1k, Ti, T1Q); | |
285 T2N = FNMS(T1k, Ti, T1Q); | |
286 T2Q = FMA(T1k, Te, T1U); | |
287 T1V = FNMS(T1k, Te, T1U); | |
288 T1p = FNMS(T1k, TL, T1o); | |
289 T1l = FMA(T1k, TP, T1j); | |
290 Tm = Td * Ti; | |
291 } | |
292 } | |
293 } | |
294 } | |
295 } | |
296 { | |
297 E Tl9, TlD, TY, Tg4, T8w, TdS, TkE, Tkd, T2G, Tge, Tgh, TiK, Te1, T98, Te0; | |
298 E T9f, Te5, T9p, Tgq, T39, Te8, T9M, TiN, Tgn, TeE, TbI, Thr, T74, TeP, TcB; | |
299 E Tja, Thc, T8D, TdT, T1B, TkD, T8K, TdU, Tg7, Tk7, T8T, TdY, T27, Tg9, T90; | |
300 E TdX, Tgc, TiJ, T9Y, Tec, T4k, TgB, Tal, Tef, Tgy, TiT, Taz, Tel, T5d, Th0; | |
301 E Tbs, Tew, TgL, TiZ, T3K, Tgo, Tgt, TiO, T9P, Te6, T9E, Te9, T4L, Tgz, TgE; | |
302 E TiU, Tao, Ted, Tad, Teg, T5I, TgM, Th3, Tj0, Tbv, Tem, TaO, Tex, T7v, Thd; | |
303 E Thu, Tjb, TcE, TeF, TbX, TeQ, T68, Tj5, Tez, Teq, Tbj, Tbx, TgS, Th5, T6B; | |
304 E Tj6, TeA, Tet, Tb4, Tby, TgX, Th6, T7V, Tjg, TeS, TeJ, Tcs, TcG, Thj, Thw; | |
305 E T84, T83, T85, Tc7, T8k, Tc3, T86, T89, T8b; | |
306 { | |
307 E T3w, T3A, T4H, T4E, T8e, T8i, T5j, T5n, T4U, T4S, T4V, Tau, T5b, Tbq, T4X; | |
308 E T50, T52; | |
309 { | |
310 E T72, Tcz, Tcv, T6Q, Tha, TbG, T6U, Tcx, T99, T9e; | |
311 { | |
312 E T1, Tkb, Tp, Tka, TR, TV, TE, T8s, TS, T8t; | |
313 { | |
314 E Tn, Tj, T8d, T8h, T5i, T5m; | |
315 T1 = ri[0]; | |
316 T8d = T1R * TL; | |
317 T8h = T1R * TP; | |
318 T3w = FMA(Th, TP, T3v); | |
319 T3A = FNMS(Th, TL, T3z); | |
320 Tn = FMA(Th, Te, Tm); | |
321 T4H = FNMS(Th, Te, Tm); | |
322 T4E = FMA(Th, Ti, Tf); | |
323 Tj = FNMS(Th, Ti, Tf); | |
324 T8e = FMA(T1V, TP, T8d); | |
325 T8i = FNMS(T1V, TL, T8h); | |
326 Tkb = ii[0]; | |
327 T5i = T4E * TL; | |
328 T5m = T4E * TP; | |
329 { | |
330 E Tk, To, Tl, Tk9; | |
331 Tk = ri[WS(rs, 32)]; | |
332 To = ii[WS(rs, 32)]; | |
333 T5j = FMA(T4H, TP, T5i); | |
334 T5n = FNMS(T4H, TL, T5m); | |
335 Tl = Tj * Tk; | |
336 Tk9 = Tj * To; | |
337 { | |
338 E Tz, TD, TA, T8r; | |
339 Tz = ri[WS(rs, 16)]; | |
340 TD = ii[WS(rs, 16)]; | |
341 Tp = FMA(Tn, To, Tl); | |
342 Tka = FNMS(Tn, Tk, Tk9); | |
343 TA = Ty * Tz; | |
344 T8r = Ty * TD; | |
345 TR = ri[WS(rs, 48)]; | |
346 TV = ii[WS(rs, 48)]; | |
347 TE = FMA(TC, TD, TA); | |
348 T8s = FNMS(TC, Tz, T8r); | |
349 TS = TQ * TR; | |
350 T8t = TQ * TV; | |
351 } | |
352 } | |
353 } | |
354 { | |
355 E T8q, Tq, Tl7, Tkc, TW, T8u; | |
356 T8q = T1 - Tp; | |
357 Tq = T1 + Tp; | |
358 Tl7 = Tkb - Tka; | |
359 Tkc = Tka + Tkb; | |
360 TW = FMA(TU, TV, TS); | |
361 T8u = FNMS(TU, TR, T8t); | |
362 { | |
363 E TX, Tl8, T8v, Tk8; | |
364 TX = TE + TW; | |
365 Tl8 = TE - TW; | |
366 T8v = T8s - T8u; | |
367 Tk8 = T8s + T8u; | |
368 Tl9 = Tl7 - Tl8; | |
369 TlD = Tl8 + Tl7; | |
370 TY = Tq + TX; | |
371 Tg4 = Tq - TX; | |
372 T8w = T8q - T8v; | |
373 TdS = T8q + T8v; | |
374 TkE = Tkc - Tk8; | |
375 Tkd = Tk8 + Tkc; | |
376 } | |
377 } | |
378 } | |
379 { | |
380 E T2f, T93, T2E, T9d, T2n, T95, T2s, T9b; | |
381 { | |
382 E T2a, T2e, T2i, T2m; | |
383 T2a = ri[WS(rs, 60)]; | |
384 T2e = ii[WS(rs, 60)]; | |
385 { | |
386 E T2z, T2D, T2b, T92, T2A, T9c; | |
387 T2z = ri[WS(rs, 44)]; | |
388 T2D = ii[WS(rs, 44)]; | |
389 T2b = T29 * T2a; | |
390 T92 = T29 * T2e; | |
391 T2A = T2y * T2z; | |
392 T9c = T2y * T2D; | |
393 T2f = FMA(T2d, T2e, T2b); | |
394 T93 = FNMS(T2d, T2a, T92); | |
395 T2E = FMA(T2C, T2D, T2A); | |
396 T9d = FNMS(T2C, T2z, T9c); | |
397 } | |
398 T2i = ri[WS(rs, 28)]; | |
399 T2m = ii[WS(rs, 28)]; | |
400 { | |
401 E T2p, T2r, T2j, T94, T2q, T9a; | |
402 T2p = ri[WS(rs, 12)]; | |
403 T2r = ii[WS(rs, 12)]; | |
404 T2j = T2h * T2i; | |
405 T94 = T2h * T2m; | |
406 T2q = TG * T2p; | |
407 T9a = TG * T2r; | |
408 T2n = FMA(T2l, T2m, T2j); | |
409 T95 = FNMS(T2l, T2i, T94); | |
410 T2s = FMA(TJ, T2r, T2q); | |
411 T9b = FNMS(TJ, T2p, T9a); | |
412 } | |
413 } | |
414 { | |
415 E T2o, Tgf, T96, T97, T2F, Tgg; | |
416 T99 = T2f - T2n; | |
417 T2o = T2f + T2n; | |
418 Tgf = T93 + T95; | |
419 T96 = T93 - T95; | |
420 T97 = T2s - T2E; | |
421 T2F = T2s + T2E; | |
422 Tgg = T9b + T9d; | |
423 T9e = T9b - T9d; | |
424 T2G = T2o + T2F; | |
425 Tge = T2o - T2F; | |
426 Tgh = Tgf - Tgg; | |
427 TiK = Tgf + Tgg; | |
428 Te1 = T96 - T97; | |
429 T98 = T96 + T97; | |
430 } | |
431 } | |
432 { | |
433 E T9K, T2T, T9G, T9n, Tgl, T9o, T38, T9I; | |
434 { | |
435 E T2M, T9k, T37, T2V, T2S, T2W, T2Y, T9m, T32, T33, T36, T2Z, T9H; | |
436 { | |
437 E T2J, T2L, T2K, T9j; | |
438 T2J = ri[WS(rs, 2)]; | |
439 T2L = ii[WS(rs, 2)]; | |
440 T32 = ri[WS(rs, 50)]; | |
441 Te0 = T99 + T9e; | |
442 T9f = T99 - T9e; | |
443 T2K = Tr * T2J; | |
444 T9j = Tr * T2L; | |
445 T33 = T31 * T32; | |
446 T36 = ii[WS(rs, 50)]; | |
447 T2M = FMA(Tt, T2L, T2K); | |
448 T9k = FNMS(Tt, T2J, T9j); | |
449 } | |
450 { | |
451 E T2O, T9J, T2R, T2P, T9l; | |
452 T2O = ri[WS(rs, 34)]; | |
453 T37 = FMA(T35, T36, T33); | |
454 T9J = T31 * T36; | |
455 T2R = ii[WS(rs, 34)]; | |
456 T2P = T2N * T2O; | |
457 T2V = ri[WS(rs, 18)]; | |
458 T9K = FNMS(T35, T32, T9J); | |
459 T9l = T2N * T2R; | |
460 T2S = FMA(T2Q, T2R, T2P); | |
461 T2W = T2U * T2V; | |
462 T2Y = ii[WS(rs, 18)]; | |
463 T9m = FNMS(T2Q, T2O, T9l); | |
464 } | |
465 T2T = T2M + T2S; | |
466 T9G = T2M - T2S; | |
467 T2Z = FMA(T2X, T2Y, T2W); | |
468 T9H = T2U * T2Y; | |
469 T9n = T9k - T9m; | |
470 Tgl = T9k + T9m; | |
471 T9o = T2Z - T37; | |
472 T38 = T2Z + T37; | |
473 T9I = FNMS(T2X, T2V, T9H); | |
474 } | |
475 { | |
476 E T6H, TbD, T6P, T6R, T6T, TbF, T6S, Tcw; | |
477 { | |
478 E T6X, T71, T6E, TbC, T6K, TbE; | |
479 { | |
480 E T6F, T6G, T9L, Tgm; | |
481 T6E = ri[WS(rs, 63)]; | |
482 Te5 = T9n - T9o; | |
483 T9p = T9n + T9o; | |
484 Tgq = T2T - T38; | |
485 T39 = T2T + T38; | |
486 T9L = T9I - T9K; | |
487 Tgm = T9I + T9K; | |
488 T6F = TL * T6E; | |
489 T6G = ii[WS(rs, 63)]; | |
490 Te8 = T9G + T9L; | |
491 T9M = T9G - T9L; | |
492 TiN = Tgl + Tgm; | |
493 Tgn = Tgl - Tgm; | |
494 TbC = TL * T6G; | |
495 T6H = FMA(TP, T6G, T6F); | |
496 } | |
497 T6X = ri[WS(rs, 47)]; | |
498 T71 = ii[WS(rs, 47)]; | |
499 TbD = FNMS(TP, T6E, TbC); | |
500 { | |
501 E T6O, T6L, T6Y, Tcy; | |
502 T6K = ri[WS(rs, 31)]; | |
503 T6Y = T6W * T6X; | |
504 Tcy = T6W * T71; | |
505 T6O = ii[WS(rs, 31)]; | |
506 T6L = T6J * T6K; | |
507 T72 = FMA(T70, T71, T6Y); | |
508 Tcz = FNMS(T70, T6X, Tcy); | |
509 TbE = T6J * T6O; | |
510 T6P = FMA(T6N, T6O, T6L); | |
511 } | |
512 T6R = ri[WS(rs, 15)]; | |
513 T6T = ii[WS(rs, 15)]; | |
514 TbF = FNMS(T6N, T6K, TbE); | |
515 } | |
516 Tcv = T6H - T6P; | |
517 T6Q = T6H + T6P; | |
518 T6S = TK * T6R; | |
519 Tcw = TK * T6T; | |
520 Tha = TbD + TbF; | |
521 TbG = TbD - TbF; | |
522 T6U = FMA(TO, T6T, T6S); | |
523 Tcx = FNMS(TO, T6R, Tcw); | |
524 } | |
525 } | |
526 { | |
527 E T1J, T1G, T1K, T8O, T25, T8Y, T1N, T1S, T1W; | |
528 { | |
529 E T1b, T16, T1c, T8y, T1z, T8I, T1f, T1m, T1q; | |
530 { | |
531 E T11, T12, T15, T1u, T1y, T8x, T1v, T8H; | |
532 T11 = ri[WS(rs, 8)]; | |
533 { | |
534 E TbH, T73, TcA, Thb; | |
535 TbH = T6U - T72; | |
536 T73 = T6U + T72; | |
537 TcA = Tcx - Tcz; | |
538 Thb = Tcx + Tcz; | |
539 TeE = TbG - TbH; | |
540 TbI = TbG + TbH; | |
541 Thr = T6Q - T73; | |
542 T74 = T6Q + T73; | |
543 TeP = Tcv + TcA; | |
544 TcB = Tcv - TcA; | |
545 Tja = Tha + Thb; | |
546 Thc = Tha - Thb; | |
547 T12 = T10 * T11; | |
548 } | |
549 T15 = ii[WS(rs, 8)]; | |
550 T1u = ri[WS(rs, 24)]; | |
551 T1y = ii[WS(rs, 24)]; | |
552 T1b = ri[WS(rs, 40)]; | |
553 T16 = FMA(T14, T15, T12); | |
554 T8x = T10 * T15; | |
555 T1v = T1t * T1u; | |
556 T8H = T1t * T1y; | |
557 T1c = T1a * T1b; | |
558 T8y = FNMS(T14, T11, T8x); | |
559 T1z = FMA(T1x, T1y, T1v); | |
560 T8I = FNMS(T1x, T1u, T8H); | |
561 T1f = ii[WS(rs, 40)]; | |
562 T1m = ri[WS(rs, 56)]; | |
563 T1q = ii[WS(rs, 56)]; | |
564 } | |
565 { | |
566 E T1D, T1E, T1F, T20, T24, T8N, T21, T8X; | |
567 { | |
568 E T1h, T8C, T8A, T1r, T8G, Tg5, T8B; | |
569 T1D = ri[WS(rs, 4)]; | |
570 { | |
571 E T1g, T8z, T1n, T8F; | |
572 T1g = FMA(T1e, T1f, T1c); | |
573 T8z = T1a * T1f; | |
574 T1n = T1l * T1m; | |
575 T8F = T1l * T1q; | |
576 T1h = T16 + T1g; | |
577 T8C = T16 - T1g; | |
578 T8A = FNMS(T1e, T1b, T8z); | |
579 T1r = FMA(T1p, T1q, T1n); | |
580 T8G = FNMS(T1p, T1m, T8F); | |
581 T1E = T7 * T1D; | |
582 } | |
583 Tg5 = T8y + T8A; | |
584 T8B = T8y - T8A; | |
585 { | |
586 E T1A, T8E, Tg6, T8J; | |
587 T1A = T1r + T1z; | |
588 T8E = T1r - T1z; | |
589 Tg6 = T8G + T8I; | |
590 T8J = T8G - T8I; | |
591 T8D = T8B - T8C; | |
592 TdT = T8C + T8B; | |
593 T1B = T1h + T1A; | |
594 TkD = T1A - T1h; | |
595 T8K = T8E + T8J; | |
596 TdU = T8E - T8J; | |
597 Tg7 = Tg5 - Tg6; | |
598 Tk7 = Tg5 + Tg6; | |
599 T1F = ii[WS(rs, 4)]; | |
600 } | |
601 } | |
602 T20 = ri[WS(rs, 52)]; | |
603 T24 = ii[WS(rs, 52)]; | |
604 T1J = ri[WS(rs, 36)]; | |
605 T1G = FMA(Tb, T1F, T1E); | |
606 T8N = T7 * T1F; | |
607 T21 = T1Z * T20; | |
608 T8X = T1Z * T24; | |
609 T1K = T1I * T1J; | |
610 T8O = FNMS(Tb, T1D, T8N); | |
611 T25 = FMA(T23, T24, T21); | |
612 T8Y = FNMS(T23, T20, T8X); | |
613 T1N = ii[WS(rs, 36)]; | |
614 T1S = ri[WS(rs, 20)]; | |
615 T1W = ii[WS(rs, 20)]; | |
616 } | |
617 } | |
618 { | |
619 E T3V, T3T, T3W, T9T, T4i, Taj, T3Y, T42, T45; | |
620 { | |
621 E T3O, T3P, T3S, T4d, T4h, T9S, T4e, Tai; | |
622 { | |
623 E T1P, T8U, T8Q, T1X, T8W, Tga, T8R; | |
624 T3O = ri[WS(rs, 62)]; | |
625 { | |
626 E T1O, T8P, T1T, T8V; | |
627 T1O = FMA(T1M, T1N, T1K); | |
628 T8P = T1I * T1N; | |
629 T1T = T1R * T1S; | |
630 T8V = T1R * T1W; | |
631 T1P = T1G + T1O; | |
632 T8U = T1G - T1O; | |
633 T8Q = FNMS(T1M, T1J, T8P); | |
634 T1X = FMA(T1V, T1W, T1T); | |
635 T8W = FNMS(T1V, T1S, T8V); | |
636 T3P = T3N * T3O; | |
637 } | |
638 Tga = T8O + T8Q; | |
639 T8R = T8O - T8Q; | |
640 { | |
641 E T26, T8S, Tgb, T8Z; | |
642 T26 = T1X + T25; | |
643 T8S = T1X - T25; | |
644 Tgb = T8W + T8Y; | |
645 T8Z = T8W - T8Y; | |
646 T8T = T8R + T8S; | |
647 TdY = T8R - T8S; | |
648 T27 = T1P + T26; | |
649 Tg9 = T1P - T26; | |
650 T90 = T8U - T8Z; | |
651 TdX = T8U + T8Z; | |
652 Tgc = Tga - Tgb; | |
653 TiJ = Tga + Tgb; | |
654 T3S = ii[WS(rs, 62)]; | |
655 } | |
656 } | |
657 T4d = ri[WS(rs, 46)]; | |
658 T4h = ii[WS(rs, 46)]; | |
659 T3V = ri[WS(rs, 30)]; | |
660 T3T = FMA(T3R, T3S, T3P); | |
661 T9S = T3N * T3S; | |
662 T4e = T4c * T4d; | |
663 Tai = T4c * T4h; | |
664 T3W = T3U * T3V; | |
665 T9T = FNMS(T3R, T3O, T9S); | |
666 T4i = FMA(T4g, T4h, T4e); | |
667 Taj = FNMS(T4g, T4d, Tai); | |
668 T3Y = ii[WS(rs, 30)]; | |
669 T42 = ri[WS(rs, 14)]; | |
670 T45 = ii[WS(rs, 14)]; | |
671 } | |
672 { | |
673 E T4P, T4Q, T4R, T56, T5a, Tat, T57, Tbp; | |
674 { | |
675 E T40, Taf, T9V, T46, Tah, Tgw, T9W; | |
676 T4P = ri[WS(rs, 1)]; | |
677 { | |
678 E T3Z, T9U, T43, Tag; | |
679 T3Z = FMA(T3X, T3Y, T3W); | |
680 T9U = T3U * T3Y; | |
681 T43 = T41 * T42; | |
682 Tag = T41 * T45; | |
683 T40 = T3T + T3Z; | |
684 Taf = T3T - T3Z; | |
685 T9V = FNMS(T3X, T3V, T9U); | |
686 T46 = FMA(T44, T45, T43); | |
687 Tah = FNMS(T44, T42, Tag); | |
688 T4Q = T2 * T4P; | |
689 } | |
690 Tgw = T9T + T9V; | |
691 T9W = T9T - T9V; | |
692 { | |
693 E T4j, T9X, Tgx, Tak; | |
694 T4j = T46 + T4i; | |
695 T9X = T46 - T4i; | |
696 Tgx = Tah + Taj; | |
697 Tak = Tah - Taj; | |
698 T9Y = T9W + T9X; | |
699 Tec = T9W - T9X; | |
700 T4k = T40 + T4j; | |
701 TgB = T40 - T4j; | |
702 Tal = Taf - Tak; | |
703 Tef = Taf + Tak; | |
704 Tgy = Tgw - Tgx; | |
705 TiT = Tgw + Tgx; | |
706 T4R = ii[WS(rs, 1)]; | |
707 } | |
708 } | |
709 T56 = ri[WS(rs, 49)]; | |
710 T5a = ii[WS(rs, 49)]; | |
711 T4U = ri[WS(rs, 33)]; | |
712 T4S = FMA(T5, T4R, T4Q); | |
713 Tat = T2 * T4R; | |
714 T57 = T55 * T56; | |
715 Tbp = T55 * T5a; | |
716 T4V = T4T * T4U; | |
717 Tau = FNMS(T5, T4P, Tat); | |
718 T5b = FMA(T59, T5a, T57); | |
719 Tbq = FNMS(T59, T56, Tbp); | |
720 T4X = ii[WS(rs, 33)]; | |
721 T50 = ri[WS(rs, 17)]; | |
722 T52 = ii[WS(rs, 17)]; | |
723 } | |
724 } | |
725 } | |
726 } | |
727 { | |
728 E T7a, T78, T7b, TbL, T7t, TbU, T7d, T7i, T7m; | |
729 { | |
730 E T4q, T4o, T4r, Ta1, T4J, Taa, T4t, T4y, T4C; | |
731 { | |
732 E T3o, T3f, T3p, T9s, T3I, T9B, T3s, T3x, T3B; | |
733 { | |
734 E T3b, T3c, T3e, T3E, T3H, T9r, T3F, T9A; | |
735 { | |
736 E T4Z, Tbm, Taw, T53, Tbo, TgJ, Tax; | |
737 T3b = ri[WS(rs, 10)]; | |
738 { | |
739 E T4Y, Tav, T51, Tbn; | |
740 T4Y = FMA(T4W, T4X, T4V); | |
741 Tav = T4T * T4X; | |
742 T51 = T48 * T50; | |
743 Tbn = T48 * T52; | |
744 T4Z = T4S + T4Y; | |
745 Tbm = T4S - T4Y; | |
746 Taw = FNMS(T4W, T4U, Tav); | |
747 T53 = FMA(T4b, T52, T51); | |
748 Tbo = FNMS(T4b, T50, Tbn); | |
749 T3c = T3a * T3b; | |
750 } | |
751 TgJ = Tau + Taw; | |
752 Tax = Tau - Taw; | |
753 { | |
754 E T5c, Tay, TgK, Tbr; | |
755 T5c = T53 + T5b; | |
756 Tay = T53 - T5b; | |
757 TgK = Tbo + Tbq; | |
758 Tbr = Tbo - Tbq; | |
759 Taz = Tax + Tay; | |
760 Tel = Tax - Tay; | |
761 T5d = T4Z + T5c; | |
762 Th0 = T4Z - T5c; | |
763 Tbs = Tbm - Tbr; | |
764 Tew = Tbm + Tbr; | |
765 TgL = TgJ - TgK; | |
766 TiZ = TgJ + TgK; | |
767 T3e = ii[WS(rs, 10)]; | |
768 } | |
769 } | |
770 T3E = ri[WS(rs, 26)]; | |
771 T3H = ii[WS(rs, 26)]; | |
772 T3o = ri[WS(rs, 42)]; | |
773 T3f = FMA(T3d, T3e, T3c); | |
774 T9r = T3a * T3e; | |
775 T3F = T3D * T3E; | |
776 T9A = T3D * T3H; | |
777 T3p = T3n * T3o; | |
778 T9s = FNMS(T3d, T3b, T9r); | |
779 T3I = FMA(T3G, T3H, T3F); | |
780 T9B = FNMS(T3G, T3E, T9A); | |
781 T3s = ii[WS(rs, 42)]; | |
782 T3x = ri[WS(rs, 58)]; | |
783 T3B = ii[WS(rs, 58)]; | |
784 } | |
785 { | |
786 E T4l, T4m, T4n, T4F, T4I, Ta0, T4G, Ta9; | |
787 { | |
788 E T3u, T9q, T9u, T3C, T9z, Tgr, T9v; | |
789 T4l = ri[WS(rs, 6)]; | |
790 { | |
791 E T3t, T9t, T3y, T9y; | |
792 T3t = FMA(T3r, T3s, T3p); | |
793 T9t = T3n * T3s; | |
794 T3y = T3w * T3x; | |
795 T9y = T3w * T3B; | |
796 T3u = T3f + T3t; | |
797 T9q = T3f - T3t; | |
798 T9u = FNMS(T3r, T3o, T9t); | |
799 T3C = FMA(T3A, T3B, T3y); | |
800 T9z = FNMS(T3A, T3x, T9y); | |
801 T4m = T3g * T4l; | |
802 } | |
803 Tgr = T9s + T9u; | |
804 T9v = T9s - T9u; | |
805 { | |
806 E T3J, T9x, Tgs, T9C; | |
807 T3J = T3C + T3I; | |
808 T9x = T3C - T3I; | |
809 Tgs = T9z + T9B; | |
810 T9C = T9z - T9B; | |
811 { | |
812 E T9w, T9O, T9D, T9N; | |
813 T9w = T9q + T9v; | |
814 T9O = T9v - T9q; | |
815 T3K = T3u + T3J; | |
816 Tgo = T3J - T3u; | |
817 T9D = T9x - T9C; | |
818 T9N = T9x + T9C; | |
819 Tgt = Tgr - Tgs; | |
820 TiO = Tgr + Tgs; | |
821 T9P = T9N - T9O; | |
822 Te6 = T9O + T9N; | |
823 T9E = T9w - T9D; | |
824 Te9 = T9w + T9D; | |
825 T4n = ii[WS(rs, 6)]; | |
826 } | |
827 } | |
828 } | |
829 T4F = ri[WS(rs, 22)]; | |
830 T4I = ii[WS(rs, 22)]; | |
831 T4q = ri[WS(rs, 38)]; | |
832 T4o = FMA(T3i, T4n, T4m); | |
833 Ta0 = T3g * T4n; | |
834 T4G = T4E * T4F; | |
835 Ta9 = T4E * T4I; | |
836 T4r = T4p * T4q; | |
837 Ta1 = FNMS(T3i, T4l, Ta0); | |
838 T4J = FMA(T4H, T4I, T4G); | |
839 Taa = FNMS(T4H, T4F, Ta9); | |
840 T4t = ii[WS(rs, 38)]; | |
841 T4y = ri[WS(rs, 54)]; | |
842 T4C = ii[WS(rs, 54)]; | |
843 } | |
844 } | |
845 { | |
846 E T5k, T5h, T5l, TaC, T5G, TaL, T5o, T5t, T5x; | |
847 { | |
848 E T5e, T5f, T5g, T5B, T5F, TaB, T5C, TaK; | |
849 { | |
850 E T4v, T9Z, Ta3, T4D, Ta8, TgC, Ta4; | |
851 T5e = ri[WS(rs, 9)]; | |
852 { | |
853 E T4u, Ta2, T4z, Ta7; | |
854 T4u = FMA(T4s, T4t, T4r); | |
855 Ta2 = T4p * T4t; | |
856 T4z = T4x * T4y; | |
857 Ta7 = T4x * T4C; | |
858 T4v = T4o + T4u; | |
859 T9Z = T4o - T4u; | |
860 Ta3 = FNMS(T4s, T4q, Ta2); | |
861 T4D = FMA(T4B, T4C, T4z); | |
862 Ta8 = FNMS(T4B, T4y, Ta7); | |
863 T5f = T8 * T5e; | |
864 } | |
865 TgC = Ta1 + Ta3; | |
866 Ta4 = Ta1 - Ta3; | |
867 { | |
868 E T4K, Ta6, TgD, Tab; | |
869 T4K = T4D + T4J; | |
870 Ta6 = T4D - T4J; | |
871 TgD = Ta8 + Taa; | |
872 Tab = Ta8 - Taa; | |
873 { | |
874 E Ta5, Tan, Tac, Tam; | |
875 Ta5 = T9Z + Ta4; | |
876 Tan = Ta4 - T9Z; | |
877 T4L = T4v + T4K; | |
878 Tgz = T4K - T4v; | |
879 Tac = Ta6 - Tab; | |
880 Tam = Ta6 + Tab; | |
881 TgE = TgC - TgD; | |
882 TiU = TgC + TgD; | |
883 Tao = Tam - Tan; | |
884 Ted = Tan + Tam; | |
885 Tad = Ta5 - Tac; | |
886 Teg = Ta5 + Tac; | |
887 T5g = ii[WS(rs, 9)]; | |
888 } | |
889 } | |
890 } | |
891 T5B = ri[WS(rs, 25)]; | |
892 T5F = ii[WS(rs, 25)]; | |
893 T5k = ri[WS(rs, 41)]; | |
894 T5h = FMA(Tc, T5g, T5f); | |
895 TaB = T8 * T5g; | |
896 T5C = T5A * T5B; | |
897 TaK = T5A * T5F; | |
898 T5l = T5j * T5k; | |
899 TaC = FNMS(Tc, T5e, TaB); | |
900 T5G = FMA(T5E, T5F, T5C); | |
901 TaL = FNMS(T5E, T5B, TaK); | |
902 T5o = ii[WS(rs, 41)]; | |
903 T5t = ri[WS(rs, 57)]; | |
904 T5x = ii[WS(rs, 57)]; | |
905 } | |
906 { | |
907 E T75, T76, T77, T7p, T7s, TbK, T7q, TbT; | |
908 { | |
909 E T5q, TaA, TaE, T5y, TaJ, Th1, TaF; | |
910 T75 = ri[WS(rs, 7)]; | |
911 { | |
912 E T5p, TaD, T5u, TaI; | |
913 T5p = FMA(T5n, T5o, T5l); | |
914 TaD = T5j * T5o; | |
915 T5u = T5s * T5t; | |
916 TaI = T5s * T5x; | |
917 T5q = T5h + T5p; | |
918 TaA = T5h - T5p; | |
919 TaE = FNMS(T5n, T5k, TaD); | |
920 T5y = FMA(T5w, T5x, T5u); | |
921 TaJ = FNMS(T5w, T5t, TaI); | |
922 T76 = T1i * T75; | |
923 } | |
924 Th1 = TaC + TaE; | |
925 TaF = TaC - TaE; | |
926 { | |
927 E T5H, TaH, Th2, TaM; | |
928 T5H = T5y + T5G; | |
929 TaH = T5y - T5G; | |
930 Th2 = TaJ + TaL; | |
931 TaM = TaJ - TaL; | |
932 { | |
933 E TaG, Tbu, TaN, Tbt; | |
934 TaG = TaA + TaF; | |
935 Tbu = TaF - TaA; | |
936 T5I = T5q + T5H; | |
937 TgM = T5H - T5q; | |
938 TaN = TaH - TaM; | |
939 Tbt = TaH + TaM; | |
940 Th3 = Th1 - Th2; | |
941 Tj0 = Th1 + Th2; | |
942 Tbv = Tbt - Tbu; | |
943 Tem = Tbu + Tbt; | |
944 TaO = TaG - TaN; | |
945 Tex = TaG + TaN; | |
946 T77 = ii[WS(rs, 7)]; | |
947 } | |
948 } | |
949 } | |
950 T7p = ri[WS(rs, 23)]; | |
951 T7s = ii[WS(rs, 23)]; | |
952 T7a = ri[WS(rs, 39)]; | |
953 T78 = FMA(T1k, T77, T76); | |
954 TbK = T1i * T77; | |
955 T7q = T7o * T7p; | |
956 TbT = T7o * T7s; | |
957 T7b = T79 * T7a; | |
958 TbL = FNMS(T1k, T75, TbK); | |
959 T7t = FMA(T7r, T7s, T7q); | |
960 TbU = FNMS(T7r, T7p, TbT); | |
961 T7d = ii[WS(rs, 39)]; | |
962 T7i = ri[WS(rs, 55)]; | |
963 T7m = ii[WS(rs, 55)]; | |
964 } | |
965 } | |
966 } | |
967 { | |
968 E T6i, T6g, T6j, TaY, T6z, TaU, T6l, T6o, T6q; | |
969 { | |
970 E T5P, T5N, T5Q, Tbd, T66, Tb9, T5S, T5V, T5X; | |
971 { | |
972 E T5K, T5L, T5M, T61, T65, Tbc, T62, Tb8; | |
973 { | |
974 E T7f, TbJ, TbN, T7n, TbS, Ths, TbO; | |
975 T5K = ri[WS(rs, 5)]; | |
976 { | |
977 E T7e, TbM, T7j, TbR; | |
978 T7e = FMA(T7c, T7d, T7b); | |
979 TbM = T79 * T7d; | |
980 T7j = T7h * T7i; | |
981 TbR = T7h * T7m; | |
982 T7f = T78 + T7e; | |
983 TbJ = T78 - T7e; | |
984 TbN = FNMS(T7c, T7a, TbM); | |
985 T7n = FMA(T7l, T7m, T7j); | |
986 TbS = FNMS(T7l, T7i, TbR); | |
987 T5L = Td * T5K; | |
988 } | |
989 Ths = TbL + TbN; | |
990 TbO = TbL - TbN; | |
991 { | |
992 E T7u, TbQ, Tht, TbV; | |
993 T7u = T7n + T7t; | |
994 TbQ = T7n - T7t; | |
995 Tht = TbS + TbU; | |
996 TbV = TbS - TbU; | |
997 { | |
998 E TbP, TcD, TbW, TcC; | |
999 TbP = TbJ + TbO; | |
1000 TcD = TbO - TbJ; | |
1001 T7v = T7f + T7u; | |
1002 Thd = T7u - T7f; | |
1003 TbW = TbQ - TbV; | |
1004 TcC = TbQ + TbV; | |
1005 Thu = Ths - Tht; | |
1006 Tjb = Ths + Tht; | |
1007 TcE = TcC - TcD; | |
1008 TeF = TcD + TcC; | |
1009 TbX = TbP - TbW; | |
1010 TeQ = TbP + TbW; | |
1011 T5M = ii[WS(rs, 5)]; | |
1012 } | |
1013 } | |
1014 } | |
1015 T61 = ri[WS(rs, 53)]; | |
1016 T65 = ii[WS(rs, 53)]; | |
1017 T5P = ri[WS(rs, 37)]; | |
1018 T5N = FMA(Th, T5M, T5L); | |
1019 Tbc = Td * T5M; | |
1020 T62 = T60 * T61; | |
1021 Tb8 = T60 * T65; | |
1022 T5Q = T5O * T5P; | |
1023 Tbd = FNMS(Th, T5K, Tbc); | |
1024 T66 = FMA(T64, T65, T62); | |
1025 Tb9 = FNMS(T64, T61, Tb8); | |
1026 T5S = ii[WS(rs, 37)]; | |
1027 T5V = ri[WS(rs, 21)]; | |
1028 T5X = ii[WS(rs, 21)]; | |
1029 } | |
1030 { | |
1031 E T6b, T6c, T6f, T6u, T6y, TaX, T6v, TaT; | |
1032 { | |
1033 E T5U, Tb5, Tbf, T5Y, Tb7; | |
1034 T6b = ri[WS(rs, 61)]; | |
1035 { | |
1036 E T5T, Tbe, T5W, Tb6; | |
1037 T5T = FMA(T5R, T5S, T5Q); | |
1038 Tbe = T5O * T5S; | |
1039 T5W = T3j * T5V; | |
1040 Tb6 = T3j * T5X; | |
1041 T5U = T5N + T5T; | |
1042 Tb5 = T5N - T5T; | |
1043 Tbf = FNMS(T5R, T5P, Tbe); | |
1044 T5Y = FMA(T3m, T5X, T5W); | |
1045 Tb7 = FNMS(T3m, T5V, Tb6); | |
1046 T6c = T6a * T6b; | |
1047 } | |
1048 { | |
1049 E TgO, Tbg, T67, Tbh; | |
1050 TgO = Tbd + Tbf; | |
1051 Tbg = Tbd - Tbf; | |
1052 T67 = T5Y + T66; | |
1053 Tbh = T5Y - T66; | |
1054 { | |
1055 E TgP, Tba, Tbi, Teo; | |
1056 TgP = Tb7 + Tb9; | |
1057 Tba = Tb7 - Tb9; | |
1058 Tbi = Tbg + Tbh; | |
1059 Teo = Tbg - Tbh; | |
1060 { | |
1061 E TgR, Tbb, Tep, TgQ; | |
1062 TgR = T5U - T67; | |
1063 T68 = T5U + T67; | |
1064 Tbb = Tb5 - Tba; | |
1065 Tep = Tb5 + Tba; | |
1066 TgQ = TgO - TgP; | |
1067 Tj5 = TgO + TgP; | |
1068 Tez = FMA(KP414213562, Teo, Tep); | |
1069 Teq = FNMS(KP414213562, Tep, Teo); | |
1070 Tbj = FNMS(KP414213562, Tbi, Tbb); | |
1071 Tbx = FMA(KP414213562, Tbb, Tbi); | |
1072 TgS = TgQ - TgR; | |
1073 Th5 = TgR + TgQ; | |
1074 T6f = ii[WS(rs, 61)]; | |
1075 } | |
1076 } | |
1077 } | |
1078 } | |
1079 T6u = ri[WS(rs, 45)]; | |
1080 T6y = ii[WS(rs, 45)]; | |
1081 T6i = ri[WS(rs, 29)]; | |
1082 T6g = FMA(T6e, T6f, T6c); | |
1083 TaX = T6a * T6f; | |
1084 T6v = T6t * T6u; | |
1085 TaT = T6t * T6y; | |
1086 T6j = T6h * T6i; | |
1087 TaY = FNMS(T6e, T6b, TaX); | |
1088 T6z = FMA(T6x, T6y, T6v); | |
1089 TaU = FNMS(T6x, T6u, TaT); | |
1090 T6l = ii[WS(rs, 29)]; | |
1091 T6o = ri[WS(rs, 13)]; | |
1092 T6q = ii[WS(rs, 13)]; | |
1093 } | |
1094 } | |
1095 { | |
1096 E T7C, T7A, T7D, Tcm, T7T, Tci, T7F, T7I, T7K; | |
1097 { | |
1098 E T7x, T7y, T7z, T7O, T7S, Tcl, T7P, Tch; | |
1099 { | |
1100 E T6n, TaQ, Tb0, T6r, TaS; | |
1101 T7x = ri[WS(rs, 3)]; | |
1102 { | |
1103 E T6m, TaZ, T6p, TaR; | |
1104 T6m = FMA(T6k, T6l, T6j); | |
1105 TaZ = T6h * T6l; | |
1106 T6p = T17 * T6o; | |
1107 TaR = T17 * T6q; | |
1108 T6n = T6g + T6m; | |
1109 TaQ = T6g - T6m; | |
1110 Tb0 = FNMS(T6k, T6i, TaZ); | |
1111 T6r = FMA(T19, T6q, T6p); | |
1112 TaS = FNMS(T19, T6o, TaR); | |
1113 T7y = T3 * T7x; | |
1114 } | |
1115 { | |
1116 E TgU, Tb1, T6A, Tb2; | |
1117 TgU = TaY + Tb0; | |
1118 Tb1 = TaY - Tb0; | |
1119 T6A = T6r + T6z; | |
1120 Tb2 = T6r - T6z; | |
1121 { | |
1122 E TgV, TaV, Tb3, Ter; | |
1123 TgV = TaS + TaU; | |
1124 TaV = TaS - TaU; | |
1125 Tb3 = Tb1 + Tb2; | |
1126 Ter = Tb1 - Tb2; | |
1127 { | |
1128 E TgT, TaW, Tes, TgW; | |
1129 TgT = T6n - T6A; | |
1130 T6B = T6n + T6A; | |
1131 TaW = TaQ - TaV; | |
1132 Tes = TaQ + TaV; | |
1133 TgW = TgU - TgV; | |
1134 Tj6 = TgU + TgV; | |
1135 TeA = FNMS(KP414213562, Ter, Tes); | |
1136 Tet = FMA(KP414213562, Tes, Ter); | |
1137 Tb4 = FMA(KP414213562, Tb3, TaW); | |
1138 Tby = FNMS(KP414213562, TaW, Tb3); | |
1139 TgX = TgT + TgW; | |
1140 Th6 = TgT - TgW; | |
1141 T7z = ii[WS(rs, 3)]; | |
1142 } | |
1143 } | |
1144 } | |
1145 } | |
1146 T7O = ri[WS(rs, 51)]; | |
1147 T7S = ii[WS(rs, 51)]; | |
1148 T7C = ri[WS(rs, 35)]; | |
1149 T7A = FMA(T6, T7z, T7y); | |
1150 Tcl = T3 * T7z; | |
1151 T7P = T7N * T7O; | |
1152 Tch = T7N * T7S; | |
1153 T7D = T7B * T7C; | |
1154 Tcm = FNMS(T6, T7x, Tcl); | |
1155 T7T = FMA(T7R, T7S, T7P); | |
1156 Tci = FNMS(T7R, T7O, Tch); | |
1157 T7F = ii[WS(rs, 35)]; | |
1158 T7I = ri[WS(rs, 19)]; | |
1159 T7K = ii[WS(rs, 19)]; | |
1160 } | |
1161 { | |
1162 E T7Y, T7Z, T82, T8f, T8j, Tc6, T8g, Tc2; | |
1163 { | |
1164 E T7H, Tce, Tco, T7L, Tcg; | |
1165 T7Y = ri[WS(rs, 59)]; | |
1166 { | |
1167 E T7G, Tcn, T7J, Tcf; | |
1168 T7G = FMA(T7E, T7F, T7D); | |
1169 Tcn = T7B * T7F; | |
1170 T7J = T2u * T7I; | |
1171 Tcf = T2u * T7K; | |
1172 T7H = T7A + T7G; | |
1173 Tce = T7A - T7G; | |
1174 Tco = FNMS(T7E, T7C, Tcn); | |
1175 T7L = FMA(T2x, T7K, T7J); | |
1176 Tcg = FNMS(T2x, T7I, Tcf); | |
1177 T7Z = T7X * T7Y; | |
1178 } | |
1179 { | |
1180 E Thf, Tcp, T7U, Tcq; | |
1181 Thf = Tcm + Tco; | |
1182 Tcp = Tcm - Tco; | |
1183 T7U = T7L + T7T; | |
1184 Tcq = T7L - T7T; | |
1185 { | |
1186 E Thg, Tcj, Tcr, TeH; | |
1187 Thg = Tcg + Tci; | |
1188 Tcj = Tcg - Tci; | |
1189 Tcr = Tcp + Tcq; | |
1190 TeH = Tcp - Tcq; | |
1191 { | |
1192 E Thi, Tck, TeI, Thh; | |
1193 Thi = T7H - T7U; | |
1194 T7V = T7H + T7U; | |
1195 Tck = Tce - Tcj; | |
1196 TeI = Tce + Tcj; | |
1197 Thh = Thf - Thg; | |
1198 Tjg = Thf + Thg; | |
1199 TeS = FMA(KP414213562, TeH, TeI); | |
1200 TeJ = FNMS(KP414213562, TeI, TeH); | |
1201 Tcs = FNMS(KP414213562, Tcr, Tck); | |
1202 TcG = FMA(KP414213562, Tck, Tcr); | |
1203 Thj = Thh - Thi; | |
1204 Thw = Thi + Thh; | |
1205 T82 = ii[WS(rs, 59)]; | |
1206 } | |
1207 } | |
1208 } | |
1209 } | |
1210 T8f = ri[WS(rs, 43)]; | |
1211 T8j = ii[WS(rs, 43)]; | |
1212 T84 = ri[WS(rs, 27)]; | |
1213 T83 = FMA(T81, T82, T7Z); | |
1214 Tc6 = T7X * T82; | |
1215 T8g = T8e * T8f; | |
1216 Tc2 = T8e * T8j; | |
1217 T85 = Te * T84; | |
1218 Tc7 = FNMS(T81, T7Y, Tc6); | |
1219 T8k = FMA(T8i, T8j, T8g); | |
1220 Tc3 = FNMS(T8i, T8f, Tc2); | |
1221 T86 = ii[WS(rs, 27)]; | |
1222 T89 = ri[WS(rs, 11)]; | |
1223 T8b = ii[WS(rs, 11)]; | |
1224 } | |
1225 } | |
1226 } | |
1227 } | |
1228 } | |
1229 { | |
1230 E TeT, TeM, Tcd, TcH, Tho, Thx, Tkw, Tkv, Tl6, Tl5; | |
1231 { | |
1232 E TiI, Tkp, TiQ, TiS, TiL, Tkq, TiP, TiV, Tjf, Tjd, Tjc, Tji, Tj4, Tj2, Tj1; | |
1233 E Tj7, Tkh, Tki; | |
1234 { | |
1235 E TjG, T2I, Tkj, T4N, Tkk, Tkf, Tk5, TjJ, T8o, Tk2, TjL, T6D, TjY, TjU, Tk1; | |
1236 E TjO; | |
1237 { | |
1238 E T8m, Tjh, T3L, T4M, Tk6, Tke, TjH, TjI; | |
1239 { | |
1240 E T1C, T88, TbZ, Tc9, T8c, Tc1, T2H; | |
1241 T1C = TY + T1B; | |
1242 TiI = TY - T1B; | |
1243 { | |
1244 E T87, Tc8, T8a, Tc0; | |
1245 T87 = FMA(Ti, T86, T85); | |
1246 Tc8 = Te * T86; | |
1247 T8a = Tu * T89; | |
1248 Tc0 = Tu * T8b; | |
1249 T88 = T83 + T87; | |
1250 TbZ = T83 - T87; | |
1251 Tc9 = FNMS(Ti, T84, Tc8); | |
1252 T8c = FMA(Tx, T8b, T8a); | |
1253 Tc1 = FNMS(Tx, T89, Tc0); | |
1254 T2H = T27 + T2G; | |
1255 Tkp = T2G - T27; | |
1256 } | |
1257 { | |
1258 E Thl, Tca, T8l, Tcb; | |
1259 Thl = Tc7 + Tc9; | |
1260 Tca = Tc7 - Tc9; | |
1261 T8l = T8c + T8k; | |
1262 Tcb = T8c - T8k; | |
1263 { | |
1264 E Thm, Tc4, Tcc, TeK; | |
1265 Thm = Tc1 + Tc3; | |
1266 Tc4 = Tc1 - Tc3; | |
1267 Tcc = Tca + Tcb; | |
1268 TeK = Tca - Tcb; | |
1269 { | |
1270 E Thk, Tc5, TeL, Thn; | |
1271 Thk = T88 - T8l; | |
1272 T8m = T88 + T8l; | |
1273 Tc5 = TbZ - Tc4; | |
1274 TeL = TbZ + Tc4; | |
1275 Thn = Thl - Thm; | |
1276 Tjh = Thl + Thm; | |
1277 TeT = FNMS(KP414213562, TeK, TeL); | |
1278 TeM = FMA(KP414213562, TeL, TeK); | |
1279 Tcd = FMA(KP414213562, Tcc, Tc5); | |
1280 TcH = FNMS(KP414213562, Tc5, Tcc); | |
1281 Tho = Thk + Thn; | |
1282 Thx = Thk - Thn; | |
1283 TjG = T1C - T2H; | |
1284 T2I = T1C + T2H; | |
1285 } | |
1286 } | |
1287 } | |
1288 } | |
1289 TiQ = T39 - T3K; | |
1290 T3L = T39 + T3K; | |
1291 T4M = T4k + T4L; | |
1292 TiS = T4k - T4L; | |
1293 TiL = TiJ - TiK; | |
1294 Tk6 = TiJ + TiK; | |
1295 Tke = Tk7 + Tkd; | |
1296 Tkq = Tkd - Tk7; | |
1297 TiP = TiN - TiO; | |
1298 TjH = TiN + TiO; | |
1299 Tkj = T4M - T3L; | |
1300 T4N = T3L + T4M; | |
1301 Tkk = Tke - Tk6; | |
1302 Tkf = Tk6 + Tke; | |
1303 TjI = TiT + TiU; | |
1304 TiV = TiT - TiU; | |
1305 { | |
1306 E TjR, TjQ, TjS, T7w, T8n; | |
1307 Tjf = T74 - T7v; | |
1308 T7w = T74 + T7v; | |
1309 T8n = T7V + T8m; | |
1310 Tjd = T8m - T7V; | |
1311 Tjc = Tja - Tjb; | |
1312 TjR = Tja + Tjb; | |
1313 Tk5 = TjH + TjI; | |
1314 TjJ = TjH - TjI; | |
1315 TjQ = T7w - T8n; | |
1316 T8o = T7w + T8n; | |
1317 Tji = Tjg - Tjh; | |
1318 TjS = Tjg + Tjh; | |
1319 { | |
1320 E TjM, TjN, T5J, T6C, TjT; | |
1321 Tj4 = T5d - T5I; | |
1322 T5J = T5d + T5I; | |
1323 T6C = T68 + T6B; | |
1324 Tj2 = T6B - T68; | |
1325 TjT = TjR - TjS; | |
1326 Tk2 = TjR + TjS; | |
1327 Tj1 = TiZ - Tj0; | |
1328 TjM = TiZ + Tj0; | |
1329 TjL = T5J - T6C; | |
1330 T6D = T5J + T6C; | |
1331 Tj7 = Tj5 - Tj6; | |
1332 TjN = Tj5 + Tj6; | |
1333 TjY = TjQ + TjT; | |
1334 TjU = TjQ - TjT; | |
1335 Tk1 = TjM + TjN; | |
1336 TjO = TjM - TjN; | |
1337 } | |
1338 } | |
1339 } | |
1340 { | |
1341 E Tk0, Tk3, TjW, Tko, Tkn, Tkl, Tkm, TjZ; | |
1342 { | |
1343 E TjP, TjX, Tk4, Tkg, T4O, T8p, TjK, TjV; | |
1344 Tk0 = T2I - T4N; | |
1345 T4O = T2I + T4N; | |
1346 T8p = T6D + T8o; | |
1347 Tkh = T8o - T6D; | |
1348 TjP = TjL + TjO; | |
1349 TjX = TjO - TjL; | |
1350 Tk3 = Tk1 - Tk2; | |
1351 Tk4 = Tk1 + Tk2; | |
1352 ri[0] = T4O + T8p; | |
1353 ri[WS(rs, 32)] = T4O - T8p; | |
1354 Tkg = Tk5 + Tkf; | |
1355 Tki = Tkf - Tk5; | |
1356 TjW = TjG - TjJ; | |
1357 TjK = TjG + TjJ; | |
1358 TjV = TjP + TjU; | |
1359 Tko = TjU - TjP; | |
1360 Tkn = Tkk - Tkj; | |
1361 Tkl = Tkj + Tkk; | |
1362 ii[WS(rs, 32)] = Tkg - Tk4; | |
1363 ii[0] = Tk4 + Tkg; | |
1364 ri[WS(rs, 8)] = FMA(KP707106781, TjV, TjK); | |
1365 ri[WS(rs, 40)] = FNMS(KP707106781, TjV, TjK); | |
1366 Tkm = TjX + TjY; | |
1367 TjZ = TjX - TjY; | |
1368 } | |
1369 ii[WS(rs, 40)] = FNMS(KP707106781, Tkm, Tkl); | |
1370 ii[WS(rs, 8)] = FMA(KP707106781, Tkm, Tkl); | |
1371 ri[WS(rs, 24)] = FMA(KP707106781, TjZ, TjW); | |
1372 ri[WS(rs, 56)] = FNMS(KP707106781, TjZ, TjW); | |
1373 ii[WS(rs, 56)] = FNMS(KP707106781, Tko, Tkn); | |
1374 ii[WS(rs, 24)] = FMA(KP707106781, Tko, Tkn); | |
1375 ri[WS(rs, 16)] = Tk0 + Tk3; | |
1376 ri[WS(rs, 48)] = Tk0 - Tk3; | |
1377 } | |
1378 } | |
1379 { | |
1380 E Tjq, TiM, Tkx, Tkr, Tjt, Tky, Tks, TiX, Tjz, Tje, Tjx, TjD, Tjn, Tj9, Tjr; | |
1381 E TiR; | |
1382 ii[WS(rs, 48)] = Tki - Tkh; | |
1383 ii[WS(rs, 16)] = Tkh + Tki; | |
1384 Tjq = TiI + TiL; | |
1385 TiM = TiI - TiL; | |
1386 Tkx = Tkq - Tkp; | |
1387 Tkr = Tkp + Tkq; | |
1388 Tjr = TiQ + TiP; | |
1389 TiR = TiP - TiQ; | |
1390 { | |
1391 E Tjw, Tj3, Tjs, TiW, Tjv, Tj8; | |
1392 Tjs = TiS - TiV; | |
1393 TiW = TiS + TiV; | |
1394 Tjw = Tj1 + Tj2; | |
1395 Tj3 = Tj1 - Tj2; | |
1396 Tjt = Tjr + Tjs; | |
1397 Tky = Tjs - Tjr; | |
1398 Tks = TiR + TiW; | |
1399 TiX = TiR - TiW; | |
1400 Tjv = Tj4 + Tj7; | |
1401 Tj8 = Tj4 - Tj7; | |
1402 Tjz = Tjc + Tjd; | |
1403 Tje = Tjc - Tjd; | |
1404 Tjx = FMA(KP414213562, Tjw, Tjv); | |
1405 TjD = FNMS(KP414213562, Tjv, Tjw); | |
1406 Tjn = FNMS(KP414213562, Tj3, Tj8); | |
1407 Tj9 = FMA(KP414213562, Tj8, Tj3); | |
1408 } | |
1409 { | |
1410 E Tjm, TiY, Tkz, TkB, Tjy, Tjj; | |
1411 Tjm = FNMS(KP707106781, TiX, TiM); | |
1412 TiY = FMA(KP707106781, TiX, TiM); | |
1413 Tkz = FMA(KP707106781, Tky, Tkx); | |
1414 TkB = FNMS(KP707106781, Tky, Tkx); | |
1415 Tjy = Tjf + Tji; | |
1416 Tjj = Tjf - Tji; | |
1417 { | |
1418 E TjC, Tkt, Tku, TjF; | |
1419 { | |
1420 E Tju, TjE, Tjo, Tjk, TjB, TjA; | |
1421 TjC = FNMS(KP707106781, Tjt, Tjq); | |
1422 Tju = FMA(KP707106781, Tjt, Tjq); | |
1423 TjA = FNMS(KP414213562, Tjz, Tjy); | |
1424 TjE = FMA(KP414213562, Tjy, Tjz); | |
1425 Tjo = FMA(KP414213562, Tje, Tjj); | |
1426 Tjk = FNMS(KP414213562, Tjj, Tje); | |
1427 TjB = Tjx + TjA; | |
1428 Tkw = TjA - Tjx; | |
1429 Tkv = FNMS(KP707106781, Tks, Tkr); | |
1430 Tkt = FMA(KP707106781, Tks, Tkr); | |
1431 { | |
1432 E Tjp, TkA, TkC, Tjl; | |
1433 Tjp = Tjn + Tjo; | |
1434 TkA = Tjo - Tjn; | |
1435 TkC = Tj9 + Tjk; | |
1436 Tjl = Tj9 - Tjk; | |
1437 ri[WS(rs, 4)] = FMA(KP923879532, TjB, Tju); | |
1438 ri[WS(rs, 36)] = FNMS(KP923879532, TjB, Tju); | |
1439 ri[WS(rs, 60)] = FMA(KP923879532, Tjp, Tjm); | |
1440 ri[WS(rs, 28)] = FNMS(KP923879532, Tjp, Tjm); | |
1441 ii[WS(rs, 44)] = FNMS(KP923879532, TkA, Tkz); | |
1442 ii[WS(rs, 12)] = FMA(KP923879532, TkA, Tkz); | |
1443 ii[WS(rs, 60)] = FMA(KP923879532, TkC, TkB); | |
1444 ii[WS(rs, 28)] = FNMS(KP923879532, TkC, TkB); | |
1445 ri[WS(rs, 12)] = FMA(KP923879532, Tjl, TiY); | |
1446 ri[WS(rs, 44)] = FNMS(KP923879532, Tjl, TiY); | |
1447 Tku = TjD + TjE; | |
1448 TjF = TjD - TjE; | |
1449 } | |
1450 } | |
1451 ii[WS(rs, 36)] = FNMS(KP923879532, Tku, Tkt); | |
1452 ii[WS(rs, 4)] = FMA(KP923879532, Tku, Tkt); | |
1453 ri[WS(rs, 20)] = FMA(KP923879532, TjF, TjC); | |
1454 ri[WS(rs, 52)] = FNMS(KP923879532, TjF, TjC); | |
1455 } | |
1456 } | |
1457 } | |
1458 } | |
1459 { | |
1460 E TkV, Tl1, ThG, Tgk, TkH, TkN, Tis, Ti0, Thv, ThJ, TkO, TkI, TgH, Thy, TiC; | |
1461 E TiG, Tiq, Tim, ThN, ThT, ThD, Th9, TkW, Tiv, Tl2, Ti7, ThP, Thq, Tiz, TiF; | |
1462 E Tip, Tif; | |
1463 { | |
1464 E Ti1, Ti2, Ti4, Ti5, Thp, The, Tij, TiB, Tii, Tik; | |
1465 { | |
1466 E ThW, Tg8, TkT, TkF, ThX, ThY, TkU, Tgj, Tgd, Tgi; | |
1467 ThW = Tg4 - Tg7; | |
1468 Tg8 = Tg4 + Tg7; | |
1469 TkT = TkE - TkD; | |
1470 TkF = TkD + TkE; | |
1471 ThX = Tgc - Tg9; | |
1472 Tgd = Tg9 + Tgc; | |
1473 ii[WS(rs, 52)] = FNMS(KP923879532, Tkw, Tkv); | |
1474 ii[WS(rs, 20)] = FMA(KP923879532, Tkw, Tkv); | |
1475 Tgi = Tge - Tgh; | |
1476 ThY = Tge + Tgh; | |
1477 TkU = Tgi - Tgd; | |
1478 Tgj = Tgd + Tgi; | |
1479 { | |
1480 E TgA, ThH, Tgv, TgF; | |
1481 { | |
1482 E Tgp, TkG, ThZ, Tgu; | |
1483 Ti1 = Tgn - Tgo; | |
1484 Tgp = Tgn + Tgo; | |
1485 TkV = FMA(KP707106781, TkU, TkT); | |
1486 Tl1 = FNMS(KP707106781, TkU, TkT); | |
1487 ThG = FMA(KP707106781, Tgj, Tg8); | |
1488 Tgk = FNMS(KP707106781, Tgj, Tg8); | |
1489 TkG = ThX + ThY; | |
1490 ThZ = ThX - ThY; | |
1491 Tgu = Tgq + Tgt; | |
1492 Ti2 = Tgq - Tgt; | |
1493 Ti4 = Tgy - Tgz; | |
1494 TgA = Tgy + Tgz; | |
1495 TkH = FMA(KP707106781, TkG, TkF); | |
1496 TkN = FNMS(KP707106781, TkG, TkF); | |
1497 Tis = FNMS(KP707106781, ThZ, ThW); | |
1498 Ti0 = FMA(KP707106781, ThZ, ThW); | |
1499 ThH = FMA(KP414213562, Tgp, Tgu); | |
1500 Tgv = FNMS(KP414213562, Tgu, Tgp); | |
1501 TgF = TgB + TgE; | |
1502 Ti5 = TgB - TgE; | |
1503 } | |
1504 { | |
1505 E Tig, Tih, ThI, TgG; | |
1506 Thv = Thr + Thu; | |
1507 Tig = Thr - Thu; | |
1508 Tih = Tho - Thj; | |
1509 Thp = Thj + Tho; | |
1510 The = Thc + Thd; | |
1511 Tij = Thc - Thd; | |
1512 ThI = FNMS(KP414213562, TgA, TgF); | |
1513 TgG = FMA(KP414213562, TgF, TgA); | |
1514 TiB = FMA(KP707106781, Tih, Tig); | |
1515 Tii = FNMS(KP707106781, Tih, Tig); | |
1516 ThJ = ThH + ThI; | |
1517 TkO = ThI - ThH; | |
1518 TkI = Tgv + TgG; | |
1519 TgH = Tgv - TgG; | |
1520 Tik = Thw - Thx; | |
1521 Thy = Thw + Thx; | |
1522 } | |
1523 } | |
1524 } | |
1525 { | |
1526 E Tic, Tia, Ti9, Tid, Tit, Ti3; | |
1527 { | |
1528 E Th4, ThM, TgZ, Th7, ThL, Th8; | |
1529 { | |
1530 E TgN, TgY, TiA, Til; | |
1531 Tic = TgL - TgM; | |
1532 TgN = TgL + TgM; | |
1533 TgY = TgS + TgX; | |
1534 Tia = TgX - TgS; | |
1535 Ti9 = Th0 - Th3; | |
1536 Th4 = Th0 + Th3; | |
1537 TiA = FMA(KP707106781, Tik, Tij); | |
1538 Til = FNMS(KP707106781, Tik, Tij); | |
1539 ThM = FMA(KP707106781, TgY, TgN); | |
1540 TgZ = FNMS(KP707106781, TgY, TgN); | |
1541 TiC = FNMS(KP198912367, TiB, TiA); | |
1542 TiG = FMA(KP198912367, TiA, TiB); | |
1543 Tiq = FMA(KP668178637, Tii, Til); | |
1544 Tim = FNMS(KP668178637, Til, Tii); | |
1545 Th7 = Th5 + Th6; | |
1546 Tid = Th5 - Th6; | |
1547 } | |
1548 ThL = FMA(KP707106781, Th7, Th4); | |
1549 Th8 = FNMS(KP707106781, Th7, Th4); | |
1550 Tit = FNMS(KP414213562, Ti1, Ti2); | |
1551 Ti3 = FMA(KP414213562, Ti2, Ti1); | |
1552 ThN = FMA(KP198912367, ThM, ThL); | |
1553 ThT = FNMS(KP198912367, ThL, ThM); | |
1554 ThD = FNMS(KP668178637, TgZ, Th8); | |
1555 Th9 = FMA(KP668178637, Th8, TgZ); | |
1556 } | |
1557 { | |
1558 E Tiy, Tib, Tiu, Ti6, Tix, Tie; | |
1559 Tiu = FMA(KP414213562, Ti4, Ti5); | |
1560 Ti6 = FNMS(KP414213562, Ti5, Ti4); | |
1561 Tiy = FMA(KP707106781, Tia, Ti9); | |
1562 Tib = FNMS(KP707106781, Tia, Ti9); | |
1563 TkW = Tiu - Tit; | |
1564 Tiv = Tit + Tiu; | |
1565 Tl2 = Ti3 + Ti6; | |
1566 Ti7 = Ti3 - Ti6; | |
1567 Tix = FMA(KP707106781, Tid, Tic); | |
1568 Tie = FNMS(KP707106781, Tid, Tic); | |
1569 ThP = FMA(KP707106781, Thp, The); | |
1570 Thq = FNMS(KP707106781, Thp, The); | |
1571 Tiz = FMA(KP198912367, Tiy, Tix); | |
1572 TiF = FNMS(KP198912367, Tix, Tiy); | |
1573 Tip = FNMS(KP668178637, Tib, Tie); | |
1574 Tif = FMA(KP668178637, Tie, Tib); | |
1575 } | |
1576 } | |
1577 } | |
1578 { | |
1579 E TkM, TkL, Tl0, TkZ; | |
1580 { | |
1581 E ThC, TgI, TkP, TkR, ThO, Thz; | |
1582 ThC = FNMS(KP923879532, TgH, Tgk); | |
1583 TgI = FMA(KP923879532, TgH, Tgk); | |
1584 TkP = FMA(KP923879532, TkO, TkN); | |
1585 TkR = FNMS(KP923879532, TkO, TkN); | |
1586 ThO = FMA(KP707106781, Thy, Thv); | |
1587 Thz = FNMS(KP707106781, Thy, Thv); | |
1588 { | |
1589 E ThS, TkJ, TkK, ThV; | |
1590 { | |
1591 E ThK, ThU, ThE, ThA, ThR, ThQ; | |
1592 ThS = FNMS(KP923879532, ThJ, ThG); | |
1593 ThK = FMA(KP923879532, ThJ, ThG); | |
1594 ThQ = FNMS(KP198912367, ThP, ThO); | |
1595 ThU = FMA(KP198912367, ThO, ThP); | |
1596 ThE = FMA(KP668178637, Thq, Thz); | |
1597 ThA = FNMS(KP668178637, Thz, Thq); | |
1598 ThR = ThN + ThQ; | |
1599 TkM = ThQ - ThN; | |
1600 TkL = FNMS(KP923879532, TkI, TkH); | |
1601 TkJ = FMA(KP923879532, TkI, TkH); | |
1602 { | |
1603 E ThF, TkQ, TkS, ThB; | |
1604 ThF = ThD + ThE; | |
1605 TkQ = ThE - ThD; | |
1606 TkS = Th9 + ThA; | |
1607 ThB = Th9 - ThA; | |
1608 ri[WS(rs, 2)] = FMA(KP980785280, ThR, ThK); | |
1609 ri[WS(rs, 34)] = FNMS(KP980785280, ThR, ThK); | |
1610 ri[WS(rs, 58)] = FMA(KP831469612, ThF, ThC); | |
1611 ri[WS(rs, 26)] = FNMS(KP831469612, ThF, ThC); | |
1612 ii[WS(rs, 42)] = FNMS(KP831469612, TkQ, TkP); | |
1613 ii[WS(rs, 10)] = FMA(KP831469612, TkQ, TkP); | |
1614 ii[WS(rs, 58)] = FMA(KP831469612, TkS, TkR); | |
1615 ii[WS(rs, 26)] = FNMS(KP831469612, TkS, TkR); | |
1616 ri[WS(rs, 10)] = FMA(KP831469612, ThB, TgI); | |
1617 ri[WS(rs, 42)] = FNMS(KP831469612, ThB, TgI); | |
1618 TkK = ThT + ThU; | |
1619 ThV = ThT - ThU; | |
1620 } | |
1621 } | |
1622 ii[WS(rs, 34)] = FNMS(KP980785280, TkK, TkJ); | |
1623 ii[WS(rs, 2)] = FMA(KP980785280, TkK, TkJ); | |
1624 ri[WS(rs, 18)] = FMA(KP980785280, ThV, ThS); | |
1625 ri[WS(rs, 50)] = FNMS(KP980785280, ThV, ThS); | |
1626 } | |
1627 } | |
1628 { | |
1629 E Tio, TkX, TkY, Tir, Ti8, Tin; | |
1630 Tio = FNMS(KP923879532, Ti7, Ti0); | |
1631 Ti8 = FMA(KP923879532, Ti7, Ti0); | |
1632 Tin = Tif + Tim; | |
1633 Tl0 = Tim - Tif; | |
1634 TkZ = FNMS(KP923879532, TkW, TkV); | |
1635 TkX = FMA(KP923879532, TkW, TkV); | |
1636 ii[WS(rs, 50)] = FNMS(KP980785280, TkM, TkL); | |
1637 ii[WS(rs, 18)] = FMA(KP980785280, TkM, TkL); | |
1638 ri[WS(rs, 6)] = FMA(KP831469612, Tin, Ti8); | |
1639 ri[WS(rs, 38)] = FNMS(KP831469612, Tin, Ti8); | |
1640 TkY = Tip + Tiq; | |
1641 Tir = Tip - Tiq; | |
1642 ii[WS(rs, 38)] = FNMS(KP831469612, TkY, TkX); | |
1643 ii[WS(rs, 6)] = FMA(KP831469612, TkY, TkX); | |
1644 ri[WS(rs, 22)] = FMA(KP831469612, Tir, Tio); | |
1645 ri[WS(rs, 54)] = FNMS(KP831469612, Tir, Tio); | |
1646 } | |
1647 { | |
1648 E TiE, Tl3, Tl4, TiH, Tiw, TiD; | |
1649 TiE = FMA(KP923879532, Tiv, Tis); | |
1650 Tiw = FNMS(KP923879532, Tiv, Tis); | |
1651 TiD = Tiz - TiC; | |
1652 Tl6 = Tiz + TiC; | |
1653 Tl5 = FMA(KP923879532, Tl2, Tl1); | |
1654 Tl3 = FNMS(KP923879532, Tl2, Tl1); | |
1655 ii[WS(rs, 54)] = FNMS(KP831469612, Tl0, TkZ); | |
1656 ii[WS(rs, 22)] = FMA(KP831469612, Tl0, TkZ); | |
1657 ri[WS(rs, 14)] = FMA(KP980785280, TiD, Tiw); | |
1658 ri[WS(rs, 46)] = FNMS(KP980785280, TiD, Tiw); | |
1659 Tl4 = TiG - TiF; | |
1660 TiH = TiF + TiG; | |
1661 ii[WS(rs, 46)] = FNMS(KP980785280, Tl4, Tl3); | |
1662 ii[WS(rs, 14)] = FMA(KP980785280, Tl4, Tl3); | |
1663 ri[WS(rs, 62)] = FMA(KP980785280, TiH, TiE); | |
1664 ri[WS(rs, 30)] = FNMS(KP980785280, TiH, TiE); | |
1665 } | |
1666 } | |
1667 } | |
1668 { | |
1669 E Tla, TdV, TdO, Tm6, Tm5, TdR; | |
1670 { | |
1671 E TcT, TlO, TlI, Tar, TcX, Td3, TcN, TbB, TdM, TdQ, TdA, Tdw, TdJ, TdP, Tdz; | |
1672 E Tdp, TlW, TdF, Tm2, Tdh, Td7, T91, Td6, T8M, TlT, TlF, Td0, Td4, TcO, TcK; | |
1673 E T9g, Td8; | |
1674 { | |
1675 E Tdb, Tdc, Tde, Tdf, Tdm, Tdk, Tdj, Tdn, TcF, Tct, TbY, Tdt, TdL, Tds, Tdu; | |
1676 E TcI, TdD, Tdd; | |
1677 { | |
1678 E Tae, TcR, T9R, Tap, T9F, T9Q; | |
1679 Tdb = FMA(KP707106781, T9E, T9p); | |
1680 T9F = FNMS(KP707106781, T9E, T9p); | |
1681 T9Q = FNMS(KP707106781, T9P, T9M); | |
1682 Tdc = FMA(KP707106781, T9P, T9M); | |
1683 Tde = FMA(KP707106781, Tad, T9Y); | |
1684 Tae = FNMS(KP707106781, Tad, T9Y); | |
1685 ii[WS(rs, 62)] = FMA(KP980785280, Tl6, Tl5); | |
1686 ii[WS(rs, 30)] = FNMS(KP980785280, Tl6, Tl5); | |
1687 TcR = FMA(KP668178637, T9F, T9Q); | |
1688 T9R = FNMS(KP668178637, T9Q, T9F); | |
1689 Tap = FNMS(KP707106781, Tao, Tal); | |
1690 Tdf = FMA(KP707106781, Tao, Tal); | |
1691 { | |
1692 E Tbw, TcW, Tbl, Tbz; | |
1693 { | |
1694 E TaP, Tbk, TcS, Taq; | |
1695 Tdm = FMA(KP707106781, TaO, Taz); | |
1696 TaP = FNMS(KP707106781, TaO, Taz); | |
1697 Tbk = Tb4 - Tbj; | |
1698 Tdk = Tbj + Tb4; | |
1699 Tdj = FMA(KP707106781, Tbv, Tbs); | |
1700 Tbw = FNMS(KP707106781, Tbv, Tbs); | |
1701 TcS = FNMS(KP668178637, Tae, Tap); | |
1702 Taq = FMA(KP668178637, Tap, Tae); | |
1703 TcW = FMA(KP923879532, Tbk, TaP); | |
1704 Tbl = FNMS(KP923879532, Tbk, TaP); | |
1705 TcT = TcR + TcS; | |
1706 TlO = TcS - TcR; | |
1707 TlI = T9R + Taq; | |
1708 Tar = T9R - Taq; | |
1709 Tbz = Tbx - Tby; | |
1710 Tdn = Tbx + Tby; | |
1711 } | |
1712 { | |
1713 E Tdq, Tdr, TcV, TbA; | |
1714 TcF = FNMS(KP707106781, TcE, TcB); | |
1715 Tdq = FMA(KP707106781, TcE, TcB); | |
1716 Tdr = Tcs + Tcd; | |
1717 Tct = Tcd - Tcs; | |
1718 TbY = FNMS(KP707106781, TbX, TbI); | |
1719 Tdt = FMA(KP707106781, TbX, TbI); | |
1720 TcV = FMA(KP923879532, Tbz, Tbw); | |
1721 TbA = FNMS(KP923879532, Tbz, Tbw); | |
1722 TdL = FMA(KP923879532, Tdr, Tdq); | |
1723 Tds = FNMS(KP923879532, Tdr, Tdq); | |
1724 TcX = FMA(KP303346683, TcW, TcV); | |
1725 Td3 = FNMS(KP303346683, TcV, TcW); | |
1726 TcN = FNMS(KP534511135, Tbl, TbA); | |
1727 TbB = FMA(KP534511135, TbA, Tbl); | |
1728 Tdu = TcG + TcH; | |
1729 TcI = TcG - TcH; | |
1730 } | |
1731 } | |
1732 } | |
1733 { | |
1734 E TdI, Tdl, TdK, Tdv, TdH, Tdo; | |
1735 TdK = FMA(KP923879532, Tdu, Tdt); | |
1736 Tdv = FNMS(KP923879532, Tdu, Tdt); | |
1737 TdI = FMA(KP923879532, Tdk, Tdj); | |
1738 Tdl = FNMS(KP923879532, Tdk, Tdj); | |
1739 TdM = FNMS(KP098491403, TdL, TdK); | |
1740 TdQ = FMA(KP098491403, TdK, TdL); | |
1741 TdA = FMA(KP820678790, Tds, Tdv); | |
1742 Tdw = FNMS(KP820678790, Tdv, Tds); | |
1743 TdH = FMA(KP923879532, Tdn, Tdm); | |
1744 Tdo = FNMS(KP923879532, Tdn, Tdm); | |
1745 TdD = FNMS(KP198912367, Tdb, Tdc); | |
1746 Tdd = FMA(KP198912367, Tdc, Tdb); | |
1747 TdJ = FMA(KP098491403, TdI, TdH); | |
1748 TdP = FNMS(KP098491403, TdH, TdI); | |
1749 Tdz = FNMS(KP820678790, Tdl, Tdo); | |
1750 Tdp = FMA(KP820678790, Tdo, Tdl); | |
1751 } | |
1752 { | |
1753 E TcZ, Tcu, TdE, Tdg; | |
1754 TdE = FMA(KP198912367, Tde, Tdf); | |
1755 Tdg = FNMS(KP198912367, Tdf, Tde); | |
1756 TcZ = FMA(KP923879532, Tct, TbY); | |
1757 Tcu = FNMS(KP923879532, Tct, TbY); | |
1758 TlW = TdE - TdD; | |
1759 TdF = TdD + TdE; | |
1760 Tm2 = Tdd + Tdg; | |
1761 Tdh = Tdd - Tdg; | |
1762 { | |
1763 E T8L, TlE, TcY, TcJ; | |
1764 Tla = T8D + T8K; | |
1765 T8L = T8D - T8K; | |
1766 TlE = TdU - TdT; | |
1767 TdV = TdT + TdU; | |
1768 Td7 = FNMS(KP414213562, T8T, T90); | |
1769 T91 = FMA(KP414213562, T90, T8T); | |
1770 TcY = FMA(KP923879532, TcI, TcF); | |
1771 TcJ = FNMS(KP923879532, TcI, TcF); | |
1772 Td6 = FNMS(KP707106781, T8L, T8w); | |
1773 T8M = FMA(KP707106781, T8L, T8w); | |
1774 TlT = FNMS(KP707106781, TlE, TlD); | |
1775 TlF = FMA(KP707106781, TlE, TlD); | |
1776 Td0 = FNMS(KP303346683, TcZ, TcY); | |
1777 Td4 = FMA(KP303346683, TcY, TcZ); | |
1778 TcO = FMA(KP534511135, Tcu, TcJ); | |
1779 TcK = FNMS(KP534511135, TcJ, Tcu); | |
1780 T9g = FNMS(KP414213562, T9f, T98); | |
1781 Td8 = FMA(KP414213562, T98, T9f); | |
1782 } | |
1783 } | |
1784 } | |
1785 { | |
1786 E Tm1, TlV, TdC, Tda, Td2, TlM, TlL, Td5; | |
1787 { | |
1788 E TlS, TcQ, TlH, TcM, TlR, TcP; | |
1789 { | |
1790 E TcL, Tas, TlP, TlQ, TlN; | |
1791 TlS = TbB + TcK; | |
1792 TcL = TbB - TcK; | |
1793 { | |
1794 E TlU, T9h, TlG, Td9, T9i; | |
1795 TlU = T91 + T9g; | |
1796 T9h = T91 - T9g; | |
1797 TlG = Td8 - Td7; | |
1798 Td9 = Td7 + Td8; | |
1799 Tm1 = FMA(KP923879532, TlU, TlT); | |
1800 TlV = FNMS(KP923879532, TlU, TlT); | |
1801 TcQ = FMA(KP923879532, T9h, T8M); | |
1802 T9i = FNMS(KP923879532, T9h, T8M); | |
1803 TlN = FNMS(KP923879532, TlG, TlF); | |
1804 TlH = FMA(KP923879532, TlG, TlF); | |
1805 TdC = FMA(KP923879532, Td9, Td6); | |
1806 Tda = FNMS(KP923879532, Td9, Td6); | |
1807 Tas = FMA(KP831469612, Tar, T9i); | |
1808 TcM = FNMS(KP831469612, Tar, T9i); | |
1809 } | |
1810 TlR = FNMS(KP831469612, TlO, TlN); | |
1811 TlP = FMA(KP831469612, TlO, TlN); | |
1812 TlQ = TcO - TcN; | |
1813 TcP = TcN + TcO; | |
1814 ri[WS(rs, 11)] = FMA(KP881921264, TcL, Tas); | |
1815 ri[WS(rs, 43)] = FNMS(KP881921264, TcL, Tas); | |
1816 ii[WS(rs, 43)] = FNMS(KP881921264, TlQ, TlP); | |
1817 ii[WS(rs, 11)] = FMA(KP881921264, TlQ, TlP); | |
1818 } | |
1819 { | |
1820 E TcU, Td1, TlJ, TlK; | |
1821 Td2 = FNMS(KP831469612, TcT, TcQ); | |
1822 TcU = FMA(KP831469612, TcT, TcQ); | |
1823 ri[WS(rs, 59)] = FMA(KP881921264, TcP, TcM); | |
1824 ri[WS(rs, 27)] = FNMS(KP881921264, TcP, TcM); | |
1825 ii[WS(rs, 59)] = FMA(KP881921264, TlS, TlR); | |
1826 ii[WS(rs, 27)] = FNMS(KP881921264, TlS, TlR); | |
1827 Td1 = TcX + Td0; | |
1828 TlM = Td0 - TcX; | |
1829 TlL = FNMS(KP831469612, TlI, TlH); | |
1830 TlJ = FMA(KP831469612, TlI, TlH); | |
1831 TlK = Td3 + Td4; | |
1832 Td5 = Td3 - Td4; | |
1833 ri[WS(rs, 3)] = FMA(KP956940335, Td1, TcU); | |
1834 ri[WS(rs, 35)] = FNMS(KP956940335, Td1, TcU); | |
1835 ii[WS(rs, 35)] = FNMS(KP956940335, TlK, TlJ); | |
1836 ii[WS(rs, 3)] = FMA(KP956940335, TlK, TlJ); | |
1837 } | |
1838 } | |
1839 { | |
1840 E Tdy, Tm0, TlZ, TdB; | |
1841 { | |
1842 E Tdi, Tdx, TlX, TlY; | |
1843 Tdy = FNMS(KP980785280, Tdh, Tda); | |
1844 Tdi = FMA(KP980785280, Tdh, Tda); | |
1845 ri[WS(rs, 19)] = FMA(KP956940335, Td5, Td2); | |
1846 ri[WS(rs, 51)] = FNMS(KP956940335, Td5, Td2); | |
1847 ii[WS(rs, 51)] = FNMS(KP956940335, TlM, TlL); | |
1848 ii[WS(rs, 19)] = FMA(KP956940335, TlM, TlL); | |
1849 Tdx = Tdp + Tdw; | |
1850 Tm0 = Tdw - Tdp; | |
1851 TlZ = FNMS(KP980785280, TlW, TlV); | |
1852 TlX = FMA(KP980785280, TlW, TlV); | |
1853 TlY = Tdz + TdA; | |
1854 TdB = Tdz - TdA; | |
1855 ri[WS(rs, 7)] = FMA(KP773010453, Tdx, Tdi); | |
1856 ri[WS(rs, 39)] = FNMS(KP773010453, Tdx, Tdi); | |
1857 ii[WS(rs, 39)] = FNMS(KP773010453, TlY, TlX); | |
1858 ii[WS(rs, 7)] = FMA(KP773010453, TlY, TlX); | |
1859 } | |
1860 { | |
1861 E TdG, TdN, Tm3, Tm4; | |
1862 TdO = FMA(KP980785280, TdF, TdC); | |
1863 TdG = FNMS(KP980785280, TdF, TdC); | |
1864 ri[WS(rs, 23)] = FMA(KP773010453, TdB, Tdy); | |
1865 ri[WS(rs, 55)] = FNMS(KP773010453, TdB, Tdy); | |
1866 ii[WS(rs, 55)] = FNMS(KP773010453, Tm0, TlZ); | |
1867 ii[WS(rs, 23)] = FMA(KP773010453, Tm0, TlZ); | |
1868 TdN = TdJ - TdM; | |
1869 Tm6 = TdJ + TdM; | |
1870 Tm5 = FMA(KP980785280, Tm2, Tm1); | |
1871 Tm3 = FNMS(KP980785280, Tm2, Tm1); | |
1872 Tm4 = TdQ - TdP; | |
1873 TdR = TdP + TdQ; | |
1874 ri[WS(rs, 15)] = FMA(KP995184726, TdN, TdG); | |
1875 ri[WS(rs, 47)] = FNMS(KP995184726, TdN, TdG); | |
1876 ii[WS(rs, 47)] = FNMS(KP995184726, Tm4, Tm3); | |
1877 ii[WS(rs, 15)] = FMA(KP995184726, Tm4, Tm3); | |
1878 } | |
1879 } | |
1880 } | |
1881 } | |
1882 { | |
1883 E Tf5, Tlk, Tle, Tej, Tf9, Tff, TeZ, TeD, TfY, Tg2, TfM, TfI, TfV, Tg1, TfL; | |
1884 E TfB, Tls, TfR, Tly, Tft, Tfj, TdZ, Tfi, TdW, Tlp, Tlb, Tfc, Tfg, Tf0, TeW; | |
1885 E Te2, Tfk; | |
1886 { | |
1887 E Tfn, Tfo, Tfq, Tfr, Tfy, Tfw, Tfv, Tfz, TeR, TeN, TeG, TfF, TfX, TfE, TfG; | |
1888 E TeU, TfP, Tfp; | |
1889 { | |
1890 E Te7, Tea, Tee, Teh; | |
1891 Tfn = FNMS(KP707106781, Te6, Te5); | |
1892 Te7 = FMA(KP707106781, Te6, Te5); | |
1893 ri[WS(rs, 63)] = FMA(KP995184726, TdR, TdO); | |
1894 ri[WS(rs, 31)] = FNMS(KP995184726, TdR, TdO); | |
1895 ii[WS(rs, 63)] = FMA(KP995184726, Tm6, Tm5); | |
1896 ii[WS(rs, 31)] = FNMS(KP995184726, Tm6, Tm5); | |
1897 Tea = FMA(KP707106781, Te9, Te8); | |
1898 Tfo = FNMS(KP707106781, Te9, Te8); | |
1899 Tfq = FNMS(KP707106781, Ted, Tec); | |
1900 Tee = FMA(KP707106781, Ted, Tec); | |
1901 Teh = FMA(KP707106781, Teg, Tef); | |
1902 Tfr = FNMS(KP707106781, Teg, Tef); | |
1903 { | |
1904 E Tey, Tf8, Tev, TeB; | |
1905 { | |
1906 E Ten, Tf3, Teb, Tf4, Tei, Teu; | |
1907 Tfy = FNMS(KP707106781, Tem, Tel); | |
1908 Ten = FMA(KP707106781, Tem, Tel); | |
1909 Tf3 = FMA(KP198912367, Te7, Tea); | |
1910 Teb = FNMS(KP198912367, Tea, Te7); | |
1911 Tf4 = FNMS(KP198912367, Tee, Teh); | |
1912 Tei = FMA(KP198912367, Teh, Tee); | |
1913 Teu = Teq + Tet; | |
1914 Tfw = Tet - Teq; | |
1915 Tfv = FNMS(KP707106781, Tex, Tew); | |
1916 Tey = FMA(KP707106781, Tex, Tew); | |
1917 Tf5 = Tf3 + Tf4; | |
1918 Tlk = Tf4 - Tf3; | |
1919 Tle = Teb + Tei; | |
1920 Tej = Teb - Tei; | |
1921 Tf8 = FMA(KP923879532, Teu, Ten); | |
1922 Tev = FNMS(KP923879532, Teu, Ten); | |
1923 TeB = Tez + TeA; | |
1924 Tfz = Tez - TeA; | |
1925 } | |
1926 { | |
1927 E TfC, TfD, Tf7, TeC; | |
1928 TeR = FMA(KP707106781, TeQ, TeP); | |
1929 TfC = FNMS(KP707106781, TeQ, TeP); | |
1930 TfD = TeM - TeJ; | |
1931 TeN = TeJ + TeM; | |
1932 TeG = FMA(KP707106781, TeF, TeE); | |
1933 TfF = FNMS(KP707106781, TeF, TeE); | |
1934 Tf7 = FMA(KP923879532, TeB, Tey); | |
1935 TeC = FNMS(KP923879532, TeB, Tey); | |
1936 TfX = FMA(KP923879532, TfD, TfC); | |
1937 TfE = FNMS(KP923879532, TfD, TfC); | |
1938 Tf9 = FMA(KP098491403, Tf8, Tf7); | |
1939 Tff = FNMS(KP098491403, Tf7, Tf8); | |
1940 TeZ = FNMS(KP820678790, Tev, TeC); | |
1941 TeD = FMA(KP820678790, TeC, Tev); | |
1942 TfG = TeS - TeT; | |
1943 TeU = TeS + TeT; | |
1944 } | |
1945 } | |
1946 } | |
1947 { | |
1948 E TfU, Tfx, TfW, TfH, TfT, TfA; | |
1949 TfW = FMA(KP923879532, TfG, TfF); | |
1950 TfH = FNMS(KP923879532, TfG, TfF); | |
1951 TfU = FMA(KP923879532, Tfw, Tfv); | |
1952 Tfx = FNMS(KP923879532, Tfw, Tfv); | |
1953 TfY = FNMS(KP303346683, TfX, TfW); | |
1954 Tg2 = FMA(KP303346683, TfW, TfX); | |
1955 TfM = FMA(KP534511135, TfE, TfH); | |
1956 TfI = FNMS(KP534511135, TfH, TfE); | |
1957 TfT = FMA(KP923879532, Tfz, Tfy); | |
1958 TfA = FNMS(KP923879532, Tfz, Tfy); | |
1959 TfP = FNMS(KP668178637, Tfn, Tfo); | |
1960 Tfp = FMA(KP668178637, Tfo, Tfn); | |
1961 TfV = FMA(KP303346683, TfU, TfT); | |
1962 Tg1 = FNMS(KP303346683, TfT, TfU); | |
1963 TfL = FNMS(KP534511135, Tfx, TfA); | |
1964 TfB = FMA(KP534511135, TfA, Tfx); | |
1965 } | |
1966 { | |
1967 E Tfb, TeO, TfQ, Tfs, Tfa, TeV; | |
1968 TfQ = FMA(KP668178637, Tfq, Tfr); | |
1969 Tfs = FNMS(KP668178637, Tfr, Tfq); | |
1970 Tfb = FMA(KP923879532, TeN, TeG); | |
1971 TeO = FNMS(KP923879532, TeN, TeG); | |
1972 Tls = TfQ - TfP; | |
1973 TfR = TfP + TfQ; | |
1974 Tly = Tfp + Tfs; | |
1975 Tft = Tfp - Tfs; | |
1976 Tfj = FNMS(KP414213562, TdX, TdY); | |
1977 TdZ = FMA(KP414213562, TdY, TdX); | |
1978 Tfa = FMA(KP923879532, TeU, TeR); | |
1979 TeV = FNMS(KP923879532, TeU, TeR); | |
1980 Tfi = FNMS(KP707106781, TdV, TdS); | |
1981 TdW = FMA(KP707106781, TdV, TdS); | |
1982 Tlp = FNMS(KP707106781, Tla, Tl9); | |
1983 Tlb = FMA(KP707106781, Tla, Tl9); | |
1984 Tfc = FNMS(KP098491403, Tfb, Tfa); | |
1985 Tfg = FMA(KP098491403, Tfa, Tfb); | |
1986 Tf0 = FMA(KP820678790, TeO, TeV); | |
1987 TeW = FNMS(KP820678790, TeV, TeO); | |
1988 Te2 = FNMS(KP414213562, Te1, Te0); | |
1989 Tfk = FMA(KP414213562, Te0, Te1); | |
1990 } | |
1991 } | |
1992 { | |
1993 E Tlx, Tlr, TfO, Tfm, Tfe, Tli, Tlh, Tfh; | |
1994 { | |
1995 E Tlo, Tf2, Tld, TeY, Tln, Tf1; | |
1996 { | |
1997 E TeX, Tek, Tll, Tlm, Tlj; | |
1998 Tlo = TeD + TeW; | |
1999 TeX = TeD - TeW; | |
2000 { | |
2001 E Tlq, Te3, Tlc, Tfl, Te4; | |
2002 Tlq = Te2 - TdZ; | |
2003 Te3 = TdZ + Te2; | |
2004 Tlc = Tfj + Tfk; | |
2005 Tfl = Tfj - Tfk; | |
2006 Tlx = FNMS(KP923879532, Tlq, Tlp); | |
2007 Tlr = FMA(KP923879532, Tlq, Tlp); | |
2008 Tf2 = FMA(KP923879532, Te3, TdW); | |
2009 Te4 = FNMS(KP923879532, Te3, TdW); | |
2010 Tlj = FNMS(KP923879532, Tlc, Tlb); | |
2011 Tld = FMA(KP923879532, Tlc, Tlb); | |
2012 TfO = FNMS(KP923879532, Tfl, Tfi); | |
2013 Tfm = FMA(KP923879532, Tfl, Tfi); | |
2014 Tek = FMA(KP980785280, Tej, Te4); | |
2015 TeY = FNMS(KP980785280, Tej, Te4); | |
2016 } | |
2017 Tln = FNMS(KP980785280, Tlk, Tlj); | |
2018 Tll = FMA(KP980785280, Tlk, Tlj); | |
2019 Tlm = Tf0 - TeZ; | |
2020 Tf1 = TeZ + Tf0; | |
2021 ri[WS(rs, 9)] = FMA(KP773010453, TeX, Tek); | |
2022 ri[WS(rs, 41)] = FNMS(KP773010453, TeX, Tek); | |
2023 ii[WS(rs, 41)] = FNMS(KP773010453, Tlm, Tll); | |
2024 ii[WS(rs, 9)] = FMA(KP773010453, Tlm, Tll); | |
2025 } | |
2026 { | |
2027 E Tf6, Tfd, Tlf, Tlg; | |
2028 Tfe = FNMS(KP980785280, Tf5, Tf2); | |
2029 Tf6 = FMA(KP980785280, Tf5, Tf2); | |
2030 ri[WS(rs, 57)] = FMA(KP773010453, Tf1, TeY); | |
2031 ri[WS(rs, 25)] = FNMS(KP773010453, Tf1, TeY); | |
2032 ii[WS(rs, 57)] = FMA(KP773010453, Tlo, Tln); | |
2033 ii[WS(rs, 25)] = FNMS(KP773010453, Tlo, Tln); | |
2034 Tfd = Tf9 + Tfc; | |
2035 Tli = Tfc - Tf9; | |
2036 Tlh = FNMS(KP980785280, Tle, Tld); | |
2037 Tlf = FMA(KP980785280, Tle, Tld); | |
2038 Tlg = Tff + Tfg; | |
2039 Tfh = Tff - Tfg; | |
2040 ri[WS(rs, 1)] = FMA(KP995184726, Tfd, Tf6); | |
2041 ri[WS(rs, 33)] = FNMS(KP995184726, Tfd, Tf6); | |
2042 ii[WS(rs, 33)] = FNMS(KP995184726, Tlg, Tlf); | |
2043 ii[WS(rs, 1)] = FMA(KP995184726, Tlg, Tlf); | |
2044 } | |
2045 } | |
2046 { | |
2047 E TfK, Tlw, Tlv, TfN; | |
2048 { | |
2049 E Tfu, TfJ, Tlt, Tlu; | |
2050 TfK = FNMS(KP831469612, Tft, Tfm); | |
2051 Tfu = FMA(KP831469612, Tft, Tfm); | |
2052 ri[WS(rs, 17)] = FMA(KP995184726, Tfh, Tfe); | |
2053 ri[WS(rs, 49)] = FNMS(KP995184726, Tfh, Tfe); | |
2054 ii[WS(rs, 49)] = FNMS(KP995184726, Tli, Tlh); | |
2055 ii[WS(rs, 17)] = FMA(KP995184726, Tli, Tlh); | |
2056 TfJ = TfB + TfI; | |
2057 Tlw = TfI - TfB; | |
2058 Tlv = FNMS(KP831469612, Tls, Tlr); | |
2059 Tlt = FMA(KP831469612, Tls, Tlr); | |
2060 Tlu = TfL + TfM; | |
2061 TfN = TfL - TfM; | |
2062 ri[WS(rs, 5)] = FMA(KP881921264, TfJ, Tfu); | |
2063 ri[WS(rs, 37)] = FNMS(KP881921264, TfJ, Tfu); | |
2064 ii[WS(rs, 37)] = FNMS(KP881921264, Tlu, Tlt); | |
2065 ii[WS(rs, 5)] = FMA(KP881921264, Tlu, Tlt); | |
2066 } | |
2067 { | |
2068 E TfS, TfZ, Tlz, TlA; | |
2069 Tg0 = FMA(KP831469612, TfR, TfO); | |
2070 TfS = FNMS(KP831469612, TfR, TfO); | |
2071 ri[WS(rs, 21)] = FMA(KP881921264, TfN, TfK); | |
2072 ri[WS(rs, 53)] = FNMS(KP881921264, TfN, TfK); | |
2073 ii[WS(rs, 53)] = FNMS(KP881921264, Tlw, Tlv); | |
2074 ii[WS(rs, 21)] = FMA(KP881921264, Tlw, Tlv); | |
2075 TfZ = TfV - TfY; | |
2076 TlC = TfV + TfY; | |
2077 TlB = FMA(KP831469612, Tly, Tlx); | |
2078 Tlz = FNMS(KP831469612, Tly, Tlx); | |
2079 TlA = Tg2 - Tg1; | |
2080 Tg3 = Tg1 + Tg2; | |
2081 ri[WS(rs, 13)] = FMA(KP956940335, TfZ, TfS); | |
2082 ri[WS(rs, 45)] = FNMS(KP956940335, TfZ, TfS); | |
2083 ii[WS(rs, 45)] = FNMS(KP956940335, TlA, Tlz); | |
2084 ii[WS(rs, 13)] = FMA(KP956940335, TlA, Tlz); | |
2085 } | |
2086 } | |
2087 } | |
2088 } | |
2089 } | |
2090 } | |
2091 } | |
2092 } | |
2093 ri[WS(rs, 61)] = FMA(KP956940335, Tg3, Tg0); | |
2094 ri[WS(rs, 29)] = FNMS(KP956940335, Tg3, Tg0); | |
2095 ii[WS(rs, 61)] = FMA(KP956940335, TlC, TlB); | |
2096 ii[WS(rs, 29)] = FNMS(KP956940335, TlC, TlB); | |
2097 } | |
2098 } | |
2099 } | |
2100 | |
2101 static const tw_instr twinstr[] = { | |
2102 {TW_CEXP, 0, 1}, | |
2103 {TW_CEXP, 0, 3}, | |
2104 {TW_CEXP, 0, 9}, | |
2105 {TW_CEXP, 0, 27}, | |
2106 {TW_CEXP, 0, 63}, | |
2107 {TW_NEXT, 1, 0} | |
2108 }; | |
2109 | |
2110 static const ct_desc desc = { 64, "t2_64", twinstr, &GENUS, {520, 206, 634, 0}, 0, 0, 0 }; | |
2111 | |
2112 void X(codelet_t2_64) (planner *p) { | |
2113 X(kdft_dit_register) (p, t2_64, &desc); | |
2114 } | |
2115 #else /* HAVE_FMA */ | |
2116 | |
2117 /* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 64 -name t2_64 -include t.h */ | |
2118 | |
2119 /* | |
2120 * This function contains 1154 FP additions, 660 FP multiplications, | |
2121 * (or, 880 additions, 386 multiplications, 274 fused multiply/add), | |
2122 * 302 stack variables, 15 constants, and 256 memory accesses | |
2123 */ | |
2124 #include "t.h" | |
2125 | |
2126 static void t2_64(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
2127 { | |
2128 DK(KP471396736, +0.471396736825997648556387625905254377657460319); | |
2129 DK(KP881921264, +0.881921264348355029712756863660388349508442621); | |
2130 DK(KP290284677, +0.290284677254462367636192375817395274691476278); | |
2131 DK(KP956940335, +0.956940335732208864935797886980269969482849206); | |
2132 DK(KP634393284, +0.634393284163645498215171613225493370675687095); | |
2133 DK(KP773010453, +0.773010453362736960810906609758469800971041293); | |
2134 DK(KP098017140, +0.098017140329560601994195563888641845861136673); | |
2135 DK(KP995184726, +0.995184726672196886244836953109479921575474869); | |
2136 DK(KP555570233, +0.555570233019602224742830813948532874374937191); | |
2137 DK(KP831469612, +0.831469612302545237078788377617905756738560812); | |
2138 DK(KP980785280, +0.980785280403230449126182236134239036973933731); | |
2139 DK(KP195090322, +0.195090322016128267848284868477022240927691618); | |
2140 DK(KP923879532, +0.923879532511286756128183189396788286822416626); | |
2141 DK(KP382683432, +0.382683432365089771728459984030398866761344562); | |
2142 DK(KP707106781, +0.707106781186547524400844362104849039284835938); | |
2143 { | |
2144 INT m; | |
2145 for (m = mb, W = W + (mb * 10); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 10, MAKE_VOLATILE_STRIDE(128, rs)) { | |
2146 E T2, T5, T3, T6, Te, T9, TP, T3e, T1e, T39, T3c, TT, T1a, T37, T8; | |
2147 E Tw, Td, Ty, Tm, Th, T1C, T3K, T1V, T3x, T3I, T1G, T1R, T3v, T2m, T2q; | |
2148 E T5Y, T6u, T53, T5B, T62, T6w, T57, T5D, T2V, T2X, Tg, TE, T3Y, T3V, T3j; | |
2149 E Tl, TA, T3g, T1j, T1t, TV, T2C, T2z, T1u, TZ, T1h, To, T1p, T6j, T6H; | |
2150 E Ts, T1l, T6l, T6F, T2P, T4b, T4x, T5i, T2R, T49, T4z, T5g, TG, T4k, T4m; | |
2151 E TK, T21, T3O, T3Q, T25, TW, T10, T11, T79, T6X, T5M, T6b, T1v, T30, T69; | |
2152 E T77, T13, T2F, T2D, T6p, T6O, T1x, T2a, T2f, T6V, T28, T6r, T2h, T6Q, T32; | |
2153 E T5K, T5w, T4G, T4Q, T3m, T4h, T4I, T5y, T3k, T4f, T41, T4S, T4Y, T3q, T3D; | |
2154 E T3F, T5r, T3s, T4W, T3Z, T5p; | |
2155 { | |
2156 E Ta, Tj, Tx, TC, Tf, Tk, Tz, TD, T1B, T1E, T2o, T2l, T1T, T1Q, T1A; | |
2157 E T1F, T2p, T2k, T1U, T1P; | |
2158 { | |
2159 E T4, T1d, T19, Tb, T1c, T7, Tc, T18, TR, TO, TS, TN; | |
2160 T2 = W[0]; | |
2161 T5 = W[1]; | |
2162 T3 = W[2]; | |
2163 T6 = W[3]; | |
2164 Te = W[5]; | |
2165 T9 = W[4]; | |
2166 T4 = T2 * T3; | |
2167 T1d = T5 * T9; | |
2168 T19 = T5 * Te; | |
2169 Tb = T2 * T6; | |
2170 T1c = T2 * Te; | |
2171 T7 = T5 * T6; | |
2172 Tc = T5 * T3; | |
2173 T18 = T2 * T9; | |
2174 TR = T3 * Te; | |
2175 TO = T6 * Te; | |
2176 TS = T6 * T9; | |
2177 TN = T3 * T9; | |
2178 TP = TN - TO; | |
2179 T3e = TR - TS; | |
2180 T1e = T1c - T1d; | |
2181 T39 = T1c + T1d; | |
2182 T3c = TN + TO; | |
2183 TT = TR + TS; | |
2184 T1a = T18 + T19; | |
2185 T37 = T18 - T19; | |
2186 T8 = T4 - T7; | |
2187 Ta = T8 * T9; | |
2188 Tj = T8 * Te; | |
2189 Tw = T4 + T7; | |
2190 Tx = Tw * T9; | |
2191 TC = Tw * Te; | |
2192 Td = Tb + Tc; | |
2193 Tf = Td * Te; | |
2194 Tk = Td * T9; | |
2195 Ty = Tb - Tc; | |
2196 Tz = Ty * Te; | |
2197 TD = Ty * T9; | |
2198 Tm = W[7]; | |
2199 T1B = T6 * Tm; | |
2200 T1E = T3 * Tm; | |
2201 T2o = T2 * Tm; | |
2202 T2l = T5 * Tm; | |
2203 T1T = T9 * Tm; | |
2204 T1Q = Te * Tm; | |
2205 Th = W[6]; | |
2206 T1A = T3 * Th; | |
2207 T1F = T6 * Th; | |
2208 T2p = T5 * Th; | |
2209 T2k = T2 * Th; | |
2210 T1U = Te * Th; | |
2211 T1P = T9 * Th; | |
2212 } | |
2213 T1C = T1A + T1B; | |
2214 T3K = T1E + T1F; | |
2215 T1V = T1T + T1U; | |
2216 T3x = T2o - T2p; | |
2217 T3I = T1A - T1B; | |
2218 T1G = T1E - T1F; | |
2219 T1R = T1P - T1Q; | |
2220 { | |
2221 E T5W, T5X, T55, T56; | |
2222 T3v = T2k + T2l; | |
2223 T2m = T2k - T2l; | |
2224 T2q = T2o + T2p; | |
2225 T5W = T8 * Th; | |
2226 T5X = Td * Tm; | |
2227 T5Y = T5W - T5X; | |
2228 T6u = T5W + T5X; | |
2229 { | |
2230 E T51, T52, T60, T61; | |
2231 T51 = Tw * Th; | |
2232 T52 = Ty * Tm; | |
2233 T53 = T51 + T52; | |
2234 T5B = T51 - T52; | |
2235 T60 = T8 * Tm; | |
2236 T61 = Td * Th; | |
2237 T62 = T60 + T61; | |
2238 T6w = T60 - T61; | |
2239 } | |
2240 T55 = Tw * Tm; | |
2241 T56 = Ty * Th; | |
2242 T57 = T55 - T56; | |
2243 T5D = T55 + T56; | |
2244 { | |
2245 E Ti, Tq, TF, TJ, T3W, T3X, T3T, T3U, T3h, T3i, Tn, Tr, TB, TI, T3d; | |
2246 E T3f, T1k, T1o, T1Z, T23, TQ, TU, T2A, T2B, T2x, T2y, T20, T24, TX, TY; | |
2247 E T1i, T1n; | |
2248 T2V = T1P + T1Q; | |
2249 T2X = T1T - T1U; | |
2250 Tg = Ta + Tf; | |
2251 Ti = Tg * Th; | |
2252 Tq = Tg * Tm; | |
2253 TE = TC + TD; | |
2254 TF = TE * Tm; | |
2255 TJ = TE * Th; | |
2256 T3W = T37 * Tm; | |
2257 T3X = T39 * Th; | |
2258 T3Y = T3W - T3X; | |
2259 T3T = T37 * Th; | |
2260 T3U = T39 * Tm; | |
2261 T3V = T3T + T3U; | |
2262 T3h = T3c * Tm; | |
2263 T3i = T3e * Th; | |
2264 T3j = T3h - T3i; | |
2265 Tl = Tj - Tk; | |
2266 Tn = Tl * Tm; | |
2267 Tr = Tl * Th; | |
2268 TA = Tx - Tz; | |
2269 TB = TA * Th; | |
2270 TI = TA * Tm; | |
2271 T3d = T3c * Th; | |
2272 T3f = T3e * Tm; | |
2273 T3g = T3d + T3f; | |
2274 T1j = Tj + Tk; | |
2275 T1k = T1j * Tm; | |
2276 T1o = T1j * Th; | |
2277 T1t = Tx + Tz; | |
2278 T1Z = T1t * Th; | |
2279 T23 = T1t * Tm; | |
2280 TQ = TP * Th; | |
2281 TU = TT * Tm; | |
2282 TV = TQ + TU; | |
2283 T2A = T1a * Tm; | |
2284 T2B = T1e * Th; | |
2285 T2C = T2A - T2B; | |
2286 T2x = T1a * Th; | |
2287 T2y = T1e * Tm; | |
2288 T2z = T2x + T2y; | |
2289 T1u = TC - TD; | |
2290 T20 = T1u * Tm; | |
2291 T24 = T1u * Th; | |
2292 TX = TP * Tm; | |
2293 TY = TT * Th; | |
2294 TZ = TX - TY; | |
2295 T1h = Ta - Tf; | |
2296 T1i = T1h * Th; | |
2297 T1n = T1h * Tm; | |
2298 To = Ti - Tn; | |
2299 T1p = T1n + T1o; | |
2300 T6j = TQ - TU; | |
2301 T6H = T2A + T2B; | |
2302 Ts = Tq + Tr; | |
2303 T1l = T1i - T1k; | |
2304 T6l = TX + TY; | |
2305 T6F = T2x - T2y; | |
2306 T2P = T1Z - T20; | |
2307 T4b = TI + TJ; | |
2308 T4x = T3d - T3f; | |
2309 T5i = T3W + T3X; | |
2310 T2R = T23 + T24; | |
2311 T49 = TB - TF; | |
2312 T4z = T3h + T3i; | |
2313 T5g = T3T - T3U; | |
2314 TG = TB + TF; | |
2315 T4k = Ti + Tn; | |
2316 T4m = Tq - Tr; | |
2317 TK = TI - TJ; | |
2318 T21 = T1Z + T20; | |
2319 T3O = T1i + T1k; | |
2320 T3Q = T1n - T1o; | |
2321 T25 = T23 - T24; | |
2322 TW = W[8]; | |
2323 T10 = W[9]; | |
2324 T11 = FMA(TV, TW, TZ * T10); | |
2325 T79 = FNMS(T25, TW, T21 * T10); | |
2326 T6X = FNMS(Td, TW, T8 * T10); | |
2327 T5M = FNMS(T2X, TW, T2V * T10); | |
2328 T6b = FNMS(TK, TW, TG * T10); | |
2329 T1v = FMA(T1t, TW, T1u * T10); | |
2330 T30 = FMA(T1h, TW, T1j * T10); | |
2331 T69 = FMA(TG, TW, TK * T10); | |
2332 T77 = FMA(T21, TW, T25 * T10); | |
2333 T13 = FNMS(TZ, TW, TV * T10); | |
2334 T2F = FNMS(T2C, TW, T2z * T10); | |
2335 T2D = FMA(T2z, TW, T2C * T10); | |
2336 T6p = FMA(T1a, TW, T1e * T10); | |
2337 T6O = FMA(TP, TW, TT * T10); | |
2338 T1x = FNMS(T1u, TW, T1t * T10); | |
2339 T2a = FNMS(TE, TW, TA * T10); | |
2340 T2f = FMA(T3, TW, T6 * T10); | |
2341 T6V = FMA(T8, TW, Td * T10); | |
2342 T28 = FMA(TA, TW, TE * T10); | |
2343 T6r = FNMS(T1e, TW, T1a * T10); | |
2344 T2h = FNMS(T6, TW, T3 * T10); | |
2345 T6Q = FNMS(TT, TW, TP * T10); | |
2346 T32 = FNMS(T1j, TW, T1h * T10); | |
2347 T5K = FMA(T2V, TW, T2X * T10); | |
2348 T5w = FMA(Tw, TW, Ty * T10); | |
2349 T4G = FMA(T3O, TW, T3Q * T10); | |
2350 T4Q = FMA(T4k, TW, T4m * T10); | |
2351 T3m = FNMS(T3j, TW, T3g * T10); | |
2352 T4h = FNMS(Te, TW, T9 * T10); | |
2353 T4I = FNMS(T3Q, TW, T3O * T10); | |
2354 T5y = FNMS(Ty, TW, Tw * T10); | |
2355 T3k = FMA(T3g, TW, T3j * T10); | |
2356 T4f = FMA(T9, TW, Te * T10); | |
2357 T41 = FNMS(T3Y, TW, T3V * T10); | |
2358 T4S = FNMS(T4m, TW, T4k * T10); | |
2359 T4Y = FNMS(T3e, TW, T3c * T10); | |
2360 T3q = FMA(Tg, TW, Tl * T10); | |
2361 T3D = FMA(T2, TW, T5 * T10); | |
2362 T3F = FNMS(T5, TW, T2 * T10); | |
2363 T5r = FNMS(T39, TW, T37 * T10); | |
2364 T3s = FNMS(Tl, TW, Tg * T10); | |
2365 T4W = FMA(T3c, TW, T3e * T10); | |
2366 T3Z = FMA(T3V, TW, T3Y * T10); | |
2367 T5p = FMA(T37, TW, T39 * T10); | |
2368 } | |
2369 } | |
2370 } | |
2371 { | |
2372 E T17, TdV, Tj3, Tjx, T7l, TbJ, Ti3, Tix, T1K, Tiw, TdY, ThY, T7w, Tj0, TbM; | |
2373 E Tjw, T2e, TgA, T7I, TaY, TbQ, Tda, Te4, TfO, T2J, TgB, T7T, TaZ, TbT, Tdb; | |
2374 E Te9, TfP, T36, T3B, TgH, TgE, TgF, TgG, T80, TbW, Tel, TfT, T8b, Tc0, T8k; | |
2375 E TbX, Teg, TfS, T8h, TbZ, T45, T4q, TgJ, TgK, TgL, TgM, T8r, Tc6, Tew, TfW; | |
2376 E T8C, Tc4, T8L, Tc7, Ter, TfV, T8I, Tc3, T6B, Th1, Tfm, Tga, Th8, ThI, T9N; | |
2377 E Tcv, T9Y, TcH, Tav, Tcw, Tf5, Tg7, Tas, TcG, T5c, TgV, TeV, Tg0, TgS, ThD; | |
2378 E T8U, Tcc, T95, Tco, T9C, Tcd, TeE, Tg3, T9z, Tcn, T5R, TgT, TeO, TeW, TgY; | |
2379 E ThE, T9h, T9F, T9s, T9E, Tck, Tcq, TeJ, TeX, Tch, Tcr, T7e, Th9, Tff, Tfn; | |
2380 E Th4, ThJ, Taa, Tay, Tal, Tax, TcD, TcJ, Tfa, Tfo, TcA, TcK; | |
2381 { | |
2382 E T1, Ti1, Tu, Ti0, TM, T7i, T15, T7j, Tp, Tt; | |
2383 T1 = ri[0]; | |
2384 Ti1 = ii[0]; | |
2385 Tp = ri[WS(rs, 32)]; | |
2386 Tt = ii[WS(rs, 32)]; | |
2387 Tu = FMA(To, Tp, Ts * Tt); | |
2388 Ti0 = FNMS(Ts, Tp, To * Tt); | |
2389 { | |
2390 E TH, TL, T12, T14; | |
2391 TH = ri[WS(rs, 16)]; | |
2392 TL = ii[WS(rs, 16)]; | |
2393 TM = FMA(TG, TH, TK * TL); | |
2394 T7i = FNMS(TK, TH, TG * TL); | |
2395 T12 = ri[WS(rs, 48)]; | |
2396 T14 = ii[WS(rs, 48)]; | |
2397 T15 = FMA(T11, T12, T13 * T14); | |
2398 T7j = FNMS(T13, T12, T11 * T14); | |
2399 } | |
2400 { | |
2401 E Tv, T16, Tj1, Tj2; | |
2402 Tv = T1 + Tu; | |
2403 T16 = TM + T15; | |
2404 T17 = Tv + T16; | |
2405 TdV = Tv - T16; | |
2406 Tj1 = Ti1 - Ti0; | |
2407 Tj2 = TM - T15; | |
2408 Tj3 = Tj1 - Tj2; | |
2409 Tjx = Tj2 + Tj1; | |
2410 } | |
2411 { | |
2412 E T7h, T7k, ThZ, Ti2; | |
2413 T7h = T1 - Tu; | |
2414 T7k = T7i - T7j; | |
2415 T7l = T7h - T7k; | |
2416 TbJ = T7h + T7k; | |
2417 ThZ = T7i + T7j; | |
2418 Ti2 = Ti0 + Ti1; | |
2419 Ti3 = ThZ + Ti2; | |
2420 Tix = Ti2 - ThZ; | |
2421 } | |
2422 } | |
2423 { | |
2424 E T1g, T7m, T1r, T7n, T7o, T7p, T1z, T7s, T1I, T7t, T7r, T7u; | |
2425 { | |
2426 E T1b, T1f, T1m, T1q; | |
2427 T1b = ri[WS(rs, 8)]; | |
2428 T1f = ii[WS(rs, 8)]; | |
2429 T1g = FMA(T1a, T1b, T1e * T1f); | |
2430 T7m = FNMS(T1e, T1b, T1a * T1f); | |
2431 T1m = ri[WS(rs, 40)]; | |
2432 T1q = ii[WS(rs, 40)]; | |
2433 T1r = FMA(T1l, T1m, T1p * T1q); | |
2434 T7n = FNMS(T1p, T1m, T1l * T1q); | |
2435 } | |
2436 T7o = T7m - T7n; | |
2437 T7p = T1g - T1r; | |
2438 { | |
2439 E T1w, T1y, T1D, T1H; | |
2440 T1w = ri[WS(rs, 56)]; | |
2441 T1y = ii[WS(rs, 56)]; | |
2442 T1z = FMA(T1v, T1w, T1x * T1y); | |
2443 T7s = FNMS(T1x, T1w, T1v * T1y); | |
2444 T1D = ri[WS(rs, 24)]; | |
2445 T1H = ii[WS(rs, 24)]; | |
2446 T1I = FMA(T1C, T1D, T1G * T1H); | |
2447 T7t = FNMS(T1G, T1D, T1C * T1H); | |
2448 } | |
2449 T7r = T1z - T1I; | |
2450 T7u = T7s - T7t; | |
2451 { | |
2452 E T1s, T1J, TdW, TdX; | |
2453 T1s = T1g + T1r; | |
2454 T1J = T1z + T1I; | |
2455 T1K = T1s + T1J; | |
2456 Tiw = T1J - T1s; | |
2457 TdW = T7m + T7n; | |
2458 TdX = T7s + T7t; | |
2459 TdY = TdW - TdX; | |
2460 ThY = TdW + TdX; | |
2461 } | |
2462 { | |
2463 E T7q, T7v, TbK, TbL; | |
2464 T7q = T7o - T7p; | |
2465 T7v = T7r + T7u; | |
2466 T7w = KP707106781 * (T7q - T7v); | |
2467 Tj0 = KP707106781 * (T7q + T7v); | |
2468 TbK = T7p + T7o; | |
2469 TbL = T7r - T7u; | |
2470 TbM = KP707106781 * (TbK + TbL); | |
2471 Tjw = KP707106781 * (TbL - TbK); | |
2472 } | |
2473 } | |
2474 { | |
2475 E T1Y, Te0, T7A, T7D, T2d, Te1, T7B, T7G, T7C, T7H; | |
2476 { | |
2477 E T1O, T7y, T1X, T7z; | |
2478 { | |
2479 E T1M, T1N, T1S, T1W; | |
2480 T1M = ri[WS(rs, 4)]; | |
2481 T1N = ii[WS(rs, 4)]; | |
2482 T1O = FMA(T8, T1M, Td * T1N); | |
2483 T7y = FNMS(Td, T1M, T8 * T1N); | |
2484 T1S = ri[WS(rs, 36)]; | |
2485 T1W = ii[WS(rs, 36)]; | |
2486 T1X = FMA(T1R, T1S, T1V * T1W); | |
2487 T7z = FNMS(T1V, T1S, T1R * T1W); | |
2488 } | |
2489 T1Y = T1O + T1X; | |
2490 Te0 = T7y + T7z; | |
2491 T7A = T7y - T7z; | |
2492 T7D = T1O - T1X; | |
2493 } | |
2494 { | |
2495 E T27, T7E, T2c, T7F; | |
2496 { | |
2497 E T22, T26, T29, T2b; | |
2498 T22 = ri[WS(rs, 20)]; | |
2499 T26 = ii[WS(rs, 20)]; | |
2500 T27 = FMA(T21, T22, T25 * T26); | |
2501 T7E = FNMS(T25, T22, T21 * T26); | |
2502 T29 = ri[WS(rs, 52)]; | |
2503 T2b = ii[WS(rs, 52)]; | |
2504 T2c = FMA(T28, T29, T2a * T2b); | |
2505 T7F = FNMS(T2a, T29, T28 * T2b); | |
2506 } | |
2507 T2d = T27 + T2c; | |
2508 Te1 = T7E + T7F; | |
2509 T7B = T27 - T2c; | |
2510 T7G = T7E - T7F; | |
2511 } | |
2512 T2e = T1Y + T2d; | |
2513 TgA = Te0 + Te1; | |
2514 T7C = T7A + T7B; | |
2515 T7H = T7D - T7G; | |
2516 T7I = FNMS(KP923879532, T7H, KP382683432 * T7C); | |
2517 TaY = FMA(KP923879532, T7C, KP382683432 * T7H); | |
2518 { | |
2519 E TbO, TbP, Te2, Te3; | |
2520 TbO = T7A - T7B; | |
2521 TbP = T7D + T7G; | |
2522 TbQ = FNMS(KP382683432, TbP, KP923879532 * TbO); | |
2523 Tda = FMA(KP382683432, TbO, KP923879532 * TbP); | |
2524 Te2 = Te0 - Te1; | |
2525 Te3 = T1Y - T2d; | |
2526 Te4 = Te2 - Te3; | |
2527 TfO = Te3 + Te2; | |
2528 } | |
2529 } | |
2530 { | |
2531 E T2t, Te6, T7L, T7O, T2I, Te7, T7M, T7R, T7N, T7S; | |
2532 { | |
2533 E T2j, T7J, T2s, T7K; | |
2534 { | |
2535 E T2g, T2i, T2n, T2r; | |
2536 T2g = ri[WS(rs, 60)]; | |
2537 T2i = ii[WS(rs, 60)]; | |
2538 T2j = FMA(T2f, T2g, T2h * T2i); | |
2539 T7J = FNMS(T2h, T2g, T2f * T2i); | |
2540 T2n = ri[WS(rs, 28)]; | |
2541 T2r = ii[WS(rs, 28)]; | |
2542 T2s = FMA(T2m, T2n, T2q * T2r); | |
2543 T7K = FNMS(T2q, T2n, T2m * T2r); | |
2544 } | |
2545 T2t = T2j + T2s; | |
2546 Te6 = T7J + T7K; | |
2547 T7L = T7J - T7K; | |
2548 T7O = T2j - T2s; | |
2549 } | |
2550 { | |
2551 E T2w, T7P, T2H, T7Q; | |
2552 { | |
2553 E T2u, T2v, T2E, T2G; | |
2554 T2u = ri[WS(rs, 12)]; | |
2555 T2v = ii[WS(rs, 12)]; | |
2556 T2w = FMA(TP, T2u, TT * T2v); | |
2557 T7P = FNMS(TT, T2u, TP * T2v); | |
2558 T2E = ri[WS(rs, 44)]; | |
2559 T2G = ii[WS(rs, 44)]; | |
2560 T2H = FMA(T2D, T2E, T2F * T2G); | |
2561 T7Q = FNMS(T2F, T2E, T2D * T2G); | |
2562 } | |
2563 T2I = T2w + T2H; | |
2564 Te7 = T7P + T7Q; | |
2565 T7M = T2w - T2H; | |
2566 T7R = T7P - T7Q; | |
2567 } | |
2568 T2J = T2t + T2I; | |
2569 TgB = Te6 + Te7; | |
2570 T7N = T7L + T7M; | |
2571 T7S = T7O - T7R; | |
2572 T7T = FMA(KP382683432, T7N, KP923879532 * T7S); | |
2573 TaZ = FNMS(KP923879532, T7N, KP382683432 * T7S); | |
2574 { | |
2575 E TbR, TbS, Te5, Te8; | |
2576 TbR = T7L - T7M; | |
2577 TbS = T7O + T7R; | |
2578 TbT = FMA(KP923879532, TbR, KP382683432 * TbS); | |
2579 Tdb = FNMS(KP382683432, TbR, KP923879532 * TbS); | |
2580 Te5 = T2t - T2I; | |
2581 Te8 = Te6 - Te7; | |
2582 Te9 = Te5 + Te8; | |
2583 TfP = Te5 - Te8; | |
2584 } | |
2585 } | |
2586 { | |
2587 E T2O, T7W, T2T, T7X, T2U, Tec, T2Z, T8e, T34, T8f, T35, Ted, T3p, Tei, T86; | |
2588 E T89, T3A, Tej, T81, T84; | |
2589 { | |
2590 E T2M, T2N, T2Q, T2S; | |
2591 T2M = ri[WS(rs, 2)]; | |
2592 T2N = ii[WS(rs, 2)]; | |
2593 T2O = FMA(Tw, T2M, Ty * T2N); | |
2594 T7W = FNMS(Ty, T2M, Tw * T2N); | |
2595 T2Q = ri[WS(rs, 34)]; | |
2596 T2S = ii[WS(rs, 34)]; | |
2597 T2T = FMA(T2P, T2Q, T2R * T2S); | |
2598 T7X = FNMS(T2R, T2Q, T2P * T2S); | |
2599 } | |
2600 T2U = T2O + T2T; | |
2601 Tec = T7W + T7X; | |
2602 { | |
2603 E T2W, T2Y, T31, T33; | |
2604 T2W = ri[WS(rs, 18)]; | |
2605 T2Y = ii[WS(rs, 18)]; | |
2606 T2Z = FMA(T2V, T2W, T2X * T2Y); | |
2607 T8e = FNMS(T2X, T2W, T2V * T2Y); | |
2608 T31 = ri[WS(rs, 50)]; | |
2609 T33 = ii[WS(rs, 50)]; | |
2610 T34 = FMA(T30, T31, T32 * T33); | |
2611 T8f = FNMS(T32, T31, T30 * T33); | |
2612 } | |
2613 T35 = T2Z + T34; | |
2614 Ted = T8e + T8f; | |
2615 { | |
2616 E T3b, T87, T3o, T88; | |
2617 { | |
2618 E T38, T3a, T3l, T3n; | |
2619 T38 = ri[WS(rs, 10)]; | |
2620 T3a = ii[WS(rs, 10)]; | |
2621 T3b = FMA(T37, T38, T39 * T3a); | |
2622 T87 = FNMS(T39, T38, T37 * T3a); | |
2623 T3l = ri[WS(rs, 42)]; | |
2624 T3n = ii[WS(rs, 42)]; | |
2625 T3o = FMA(T3k, T3l, T3m * T3n); | |
2626 T88 = FNMS(T3m, T3l, T3k * T3n); | |
2627 } | |
2628 T3p = T3b + T3o; | |
2629 Tei = T87 + T88; | |
2630 T86 = T3b - T3o; | |
2631 T89 = T87 - T88; | |
2632 } | |
2633 { | |
2634 E T3u, T82, T3z, T83; | |
2635 { | |
2636 E T3r, T3t, T3w, T3y; | |
2637 T3r = ri[WS(rs, 58)]; | |
2638 T3t = ii[WS(rs, 58)]; | |
2639 T3u = FMA(T3q, T3r, T3s * T3t); | |
2640 T82 = FNMS(T3s, T3r, T3q * T3t); | |
2641 T3w = ri[WS(rs, 26)]; | |
2642 T3y = ii[WS(rs, 26)]; | |
2643 T3z = FMA(T3v, T3w, T3x * T3y); | |
2644 T83 = FNMS(T3x, T3w, T3v * T3y); | |
2645 } | |
2646 T3A = T3u + T3z; | |
2647 Tej = T82 + T83; | |
2648 T81 = T3u - T3z; | |
2649 T84 = T82 - T83; | |
2650 } | |
2651 T36 = T2U + T35; | |
2652 T3B = T3p + T3A; | |
2653 TgH = T36 - T3B; | |
2654 TgE = Tec + Ted; | |
2655 TgF = Tei + Tej; | |
2656 TgG = TgE - TgF; | |
2657 { | |
2658 E T7Y, T7Z, Teh, Tek; | |
2659 T7Y = T7W - T7X; | |
2660 T7Z = T2Z - T34; | |
2661 T80 = T7Y + T7Z; | |
2662 TbW = T7Y - T7Z; | |
2663 Teh = T2U - T35; | |
2664 Tek = Tei - Tej; | |
2665 Tel = Teh - Tek; | |
2666 TfT = Teh + Tek; | |
2667 } | |
2668 { | |
2669 E T85, T8a, T8i, T8j; | |
2670 T85 = T81 - T84; | |
2671 T8a = T86 + T89; | |
2672 T8b = KP707106781 * (T85 - T8a); | |
2673 Tc0 = KP707106781 * (T8a + T85); | |
2674 T8i = T89 - T86; | |
2675 T8j = T81 + T84; | |
2676 T8k = KP707106781 * (T8i - T8j); | |
2677 TbX = KP707106781 * (T8i + T8j); | |
2678 } | |
2679 { | |
2680 E Tee, Tef, T8d, T8g; | |
2681 Tee = Tec - Ted; | |
2682 Tef = T3A - T3p; | |
2683 Teg = Tee - Tef; | |
2684 TfS = Tee + Tef; | |
2685 T8d = T2O - T2T; | |
2686 T8g = T8e - T8f; | |
2687 T8h = T8d - T8g; | |
2688 TbZ = T8d + T8g; | |
2689 } | |
2690 } | |
2691 { | |
2692 E T3H, T8n, T3M, T8o, T3N, Ten, T3S, T8F, T43, T8G, T44, Teo, T4e, Tet, T8x; | |
2693 E T8A, T4p, Teu, T8s, T8v; | |
2694 { | |
2695 E T3E, T3G, T3J, T3L; | |
2696 T3E = ri[WS(rs, 62)]; | |
2697 T3G = ii[WS(rs, 62)]; | |
2698 T3H = FMA(T3D, T3E, T3F * T3G); | |
2699 T8n = FNMS(T3F, T3E, T3D * T3G); | |
2700 T3J = ri[WS(rs, 30)]; | |
2701 T3L = ii[WS(rs, 30)]; | |
2702 T3M = FMA(T3I, T3J, T3K * T3L); | |
2703 T8o = FNMS(T3K, T3J, T3I * T3L); | |
2704 } | |
2705 T3N = T3H + T3M; | |
2706 Ten = T8n + T8o; | |
2707 { | |
2708 E T3P, T3R, T40, T42; | |
2709 T3P = ri[WS(rs, 14)]; | |
2710 T3R = ii[WS(rs, 14)]; | |
2711 T3S = FMA(T3O, T3P, T3Q * T3R); | |
2712 T8F = FNMS(T3Q, T3P, T3O * T3R); | |
2713 T40 = ri[WS(rs, 46)]; | |
2714 T42 = ii[WS(rs, 46)]; | |
2715 T43 = FMA(T3Z, T40, T41 * T42); | |
2716 T8G = FNMS(T41, T40, T3Z * T42); | |
2717 } | |
2718 T44 = T3S + T43; | |
2719 Teo = T8F + T8G; | |
2720 { | |
2721 E T48, T8y, T4d, T8z; | |
2722 { | |
2723 E T46, T47, T4a, T4c; | |
2724 T46 = ri[WS(rs, 6)]; | |
2725 T47 = ii[WS(rs, 6)]; | |
2726 T48 = FMA(T3c, T46, T3e * T47); | |
2727 T8y = FNMS(T3e, T46, T3c * T47); | |
2728 T4a = ri[WS(rs, 38)]; | |
2729 T4c = ii[WS(rs, 38)]; | |
2730 T4d = FMA(T49, T4a, T4b * T4c); | |
2731 T8z = FNMS(T4b, T4a, T49 * T4c); | |
2732 } | |
2733 T4e = T48 + T4d; | |
2734 Tet = T8y + T8z; | |
2735 T8x = T48 - T4d; | |
2736 T8A = T8y - T8z; | |
2737 } | |
2738 { | |
2739 E T4j, T8t, T4o, T8u; | |
2740 { | |
2741 E T4g, T4i, T4l, T4n; | |
2742 T4g = ri[WS(rs, 54)]; | |
2743 T4i = ii[WS(rs, 54)]; | |
2744 T4j = FMA(T4f, T4g, T4h * T4i); | |
2745 T8t = FNMS(T4h, T4g, T4f * T4i); | |
2746 T4l = ri[WS(rs, 22)]; | |
2747 T4n = ii[WS(rs, 22)]; | |
2748 T4o = FMA(T4k, T4l, T4m * T4n); | |
2749 T8u = FNMS(T4m, T4l, T4k * T4n); | |
2750 } | |
2751 T4p = T4j + T4o; | |
2752 Teu = T8t + T8u; | |
2753 T8s = T4j - T4o; | |
2754 T8v = T8t - T8u; | |
2755 } | |
2756 T45 = T3N + T44; | |
2757 T4q = T4e + T4p; | |
2758 TgJ = T45 - T4q; | |
2759 TgK = Ten + Teo; | |
2760 TgL = Tet + Teu; | |
2761 TgM = TgK - TgL; | |
2762 { | |
2763 E T8p, T8q, Tes, Tev; | |
2764 T8p = T8n - T8o; | |
2765 T8q = T3S - T43; | |
2766 T8r = T8p + T8q; | |
2767 Tc6 = T8p - T8q; | |
2768 Tes = T3N - T44; | |
2769 Tev = Tet - Teu; | |
2770 Tew = Tes - Tev; | |
2771 TfW = Tes + Tev; | |
2772 } | |
2773 { | |
2774 E T8w, T8B, T8J, T8K; | |
2775 T8w = T8s - T8v; | |
2776 T8B = T8x + T8A; | |
2777 T8C = KP707106781 * (T8w - T8B); | |
2778 Tc4 = KP707106781 * (T8B + T8w); | |
2779 T8J = T8A - T8x; | |
2780 T8K = T8s + T8v; | |
2781 T8L = KP707106781 * (T8J - T8K); | |
2782 Tc7 = KP707106781 * (T8J + T8K); | |
2783 } | |
2784 { | |
2785 E Tep, Teq, T8E, T8H; | |
2786 Tep = Ten - Teo; | |
2787 Teq = T4p - T4e; | |
2788 Ter = Tep - Teq; | |
2789 TfV = Tep + Teq; | |
2790 T8E = T3H - T3M; | |
2791 T8H = T8F - T8G; | |
2792 T8I = T8E - T8H; | |
2793 Tc3 = T8E + T8H; | |
2794 } | |
2795 } | |
2796 { | |
2797 E T5V, Tao, T64, Tap, T65, Tfi, T68, T9K, T6d, T9L, T6e, Tfj, T6o, Tf2, T9Q; | |
2798 E T9R, T6z, Tf3, T9T, T9W; | |
2799 { | |
2800 E T5T, T5U, T5Z, T63; | |
2801 T5T = ri[WS(rs, 63)]; | |
2802 T5U = ii[WS(rs, 63)]; | |
2803 T5V = FMA(TW, T5T, T10 * T5U); | |
2804 Tao = FNMS(T10, T5T, TW * T5U); | |
2805 T5Z = ri[WS(rs, 31)]; | |
2806 T63 = ii[WS(rs, 31)]; | |
2807 T64 = FMA(T5Y, T5Z, T62 * T63); | |
2808 Tap = FNMS(T62, T5Z, T5Y * T63); | |
2809 } | |
2810 T65 = T5V + T64; | |
2811 Tfi = Tao + Tap; | |
2812 { | |
2813 E T66, T67, T6a, T6c; | |
2814 T66 = ri[WS(rs, 15)]; | |
2815 T67 = ii[WS(rs, 15)]; | |
2816 T68 = FMA(TV, T66, TZ * T67); | |
2817 T9K = FNMS(TZ, T66, TV * T67); | |
2818 T6a = ri[WS(rs, 47)]; | |
2819 T6c = ii[WS(rs, 47)]; | |
2820 T6d = FMA(T69, T6a, T6b * T6c); | |
2821 T9L = FNMS(T6b, T6a, T69 * T6c); | |
2822 } | |
2823 T6e = T68 + T6d; | |
2824 Tfj = T9K + T9L; | |
2825 { | |
2826 E T6i, T9O, T6n, T9P; | |
2827 { | |
2828 E T6g, T6h, T6k, T6m; | |
2829 T6g = ri[WS(rs, 7)]; | |
2830 T6h = ii[WS(rs, 7)]; | |
2831 T6i = FMA(T1t, T6g, T1u * T6h); | |
2832 T9O = FNMS(T1u, T6g, T1t * T6h); | |
2833 T6k = ri[WS(rs, 39)]; | |
2834 T6m = ii[WS(rs, 39)]; | |
2835 T6n = FMA(T6j, T6k, T6l * T6m); | |
2836 T9P = FNMS(T6l, T6k, T6j * T6m); | |
2837 } | |
2838 T6o = T6i + T6n; | |
2839 Tf2 = T9O + T9P; | |
2840 T9Q = T9O - T9P; | |
2841 T9R = T6i - T6n; | |
2842 } | |
2843 { | |
2844 E T6t, T9U, T6y, T9V; | |
2845 { | |
2846 E T6q, T6s, T6v, T6x; | |
2847 T6q = ri[WS(rs, 55)]; | |
2848 T6s = ii[WS(rs, 55)]; | |
2849 T6t = FMA(T6p, T6q, T6r * T6s); | |
2850 T9U = FNMS(T6r, T6q, T6p * T6s); | |
2851 T6v = ri[WS(rs, 23)]; | |
2852 T6x = ii[WS(rs, 23)]; | |
2853 T6y = FMA(T6u, T6v, T6w * T6x); | |
2854 T9V = FNMS(T6w, T6v, T6u * T6x); | |
2855 } | |
2856 T6z = T6t + T6y; | |
2857 Tf3 = T9U + T9V; | |
2858 T9T = T6t - T6y; | |
2859 T9W = T9U - T9V; | |
2860 } | |
2861 { | |
2862 E T6f, T6A, Tfk, Tfl; | |
2863 T6f = T65 + T6e; | |
2864 T6A = T6o + T6z; | |
2865 T6B = T6f + T6A; | |
2866 Th1 = T6f - T6A; | |
2867 Tfk = Tfi - Tfj; | |
2868 Tfl = T6z - T6o; | |
2869 Tfm = Tfk - Tfl; | |
2870 Tga = Tfk + Tfl; | |
2871 } | |
2872 { | |
2873 E Th6, Th7, T9J, T9M; | |
2874 Th6 = Tfi + Tfj; | |
2875 Th7 = Tf2 + Tf3; | |
2876 Th8 = Th6 - Th7; | |
2877 ThI = Th6 + Th7; | |
2878 T9J = T5V - T64; | |
2879 T9M = T9K - T9L; | |
2880 T9N = T9J - T9M; | |
2881 Tcv = T9J + T9M; | |
2882 } | |
2883 { | |
2884 E T9S, T9X, Tat, Tau; | |
2885 T9S = T9Q - T9R; | |
2886 T9X = T9T + T9W; | |
2887 T9Y = KP707106781 * (T9S - T9X); | |
2888 TcH = KP707106781 * (T9S + T9X); | |
2889 Tat = T9T - T9W; | |
2890 Tau = T9R + T9Q; | |
2891 Tav = KP707106781 * (Tat - Tau); | |
2892 Tcw = KP707106781 * (Tau + Tat); | |
2893 } | |
2894 { | |
2895 E Tf1, Tf4, Taq, Tar; | |
2896 Tf1 = T65 - T6e; | |
2897 Tf4 = Tf2 - Tf3; | |
2898 Tf5 = Tf1 - Tf4; | |
2899 Tg7 = Tf1 + Tf4; | |
2900 Taq = Tao - Tap; | |
2901 Tar = T68 - T6d; | |
2902 Tas = Taq + Tar; | |
2903 TcG = Taq - Tar; | |
2904 } | |
2905 } | |
2906 { | |
2907 E T4w, T8Q, T4B, T8R, T4C, TeA, T4F, T9w, T4K, T9x, T4L, TeB, T4V, TeS, T90; | |
2908 E T93, T5a, TeT, T8V, T8Y; | |
2909 { | |
2910 E T4u, T4v, T4y, T4A; | |
2911 T4u = ri[WS(rs, 1)]; | |
2912 T4v = ii[WS(rs, 1)]; | |
2913 T4w = FMA(T2, T4u, T5 * T4v); | |
2914 T8Q = FNMS(T5, T4u, T2 * T4v); | |
2915 T4y = ri[WS(rs, 33)]; | |
2916 T4A = ii[WS(rs, 33)]; | |
2917 T4B = FMA(T4x, T4y, T4z * T4A); | |
2918 T8R = FNMS(T4z, T4y, T4x * T4A); | |
2919 } | |
2920 T4C = T4w + T4B; | |
2921 TeA = T8Q + T8R; | |
2922 { | |
2923 E T4D, T4E, T4H, T4J; | |
2924 T4D = ri[WS(rs, 17)]; | |
2925 T4E = ii[WS(rs, 17)]; | |
2926 T4F = FMA(T3V, T4D, T3Y * T4E); | |
2927 T9w = FNMS(T3Y, T4D, T3V * T4E); | |
2928 T4H = ri[WS(rs, 49)]; | |
2929 T4J = ii[WS(rs, 49)]; | |
2930 T4K = FMA(T4G, T4H, T4I * T4J); | |
2931 T9x = FNMS(T4I, T4H, T4G * T4J); | |
2932 } | |
2933 T4L = T4F + T4K; | |
2934 TeB = T9w + T9x; | |
2935 { | |
2936 E T4P, T91, T4U, T92; | |
2937 { | |
2938 E T4N, T4O, T4R, T4T; | |
2939 T4N = ri[WS(rs, 9)]; | |
2940 T4O = ii[WS(rs, 9)]; | |
2941 T4P = FMA(T9, T4N, Te * T4O); | |
2942 T91 = FNMS(Te, T4N, T9 * T4O); | |
2943 T4R = ri[WS(rs, 41)]; | |
2944 T4T = ii[WS(rs, 41)]; | |
2945 T4U = FMA(T4Q, T4R, T4S * T4T); | |
2946 T92 = FNMS(T4S, T4R, T4Q * T4T); | |
2947 } | |
2948 T4V = T4P + T4U; | |
2949 TeS = T91 + T92; | |
2950 T90 = T4P - T4U; | |
2951 T93 = T91 - T92; | |
2952 } | |
2953 { | |
2954 E T50, T8W, T59, T8X; | |
2955 { | |
2956 E T4X, T4Z, T54, T58; | |
2957 T4X = ri[WS(rs, 57)]; | |
2958 T4Z = ii[WS(rs, 57)]; | |
2959 T50 = FMA(T4W, T4X, T4Y * T4Z); | |
2960 T8W = FNMS(T4Y, T4X, T4W * T4Z); | |
2961 T54 = ri[WS(rs, 25)]; | |
2962 T58 = ii[WS(rs, 25)]; | |
2963 T59 = FMA(T53, T54, T57 * T58); | |
2964 T8X = FNMS(T57, T54, T53 * T58); | |
2965 } | |
2966 T5a = T50 + T59; | |
2967 TeT = T8W + T8X; | |
2968 T8V = T50 - T59; | |
2969 T8Y = T8W - T8X; | |
2970 } | |
2971 { | |
2972 E T4M, T5b, TeR, TeU; | |
2973 T4M = T4C + T4L; | |
2974 T5b = T4V + T5a; | |
2975 T5c = T4M + T5b; | |
2976 TgV = T4M - T5b; | |
2977 TeR = T4C - T4L; | |
2978 TeU = TeS - TeT; | |
2979 TeV = TeR - TeU; | |
2980 Tg0 = TeR + TeU; | |
2981 } | |
2982 { | |
2983 E TgQ, TgR, T8S, T8T; | |
2984 TgQ = TeA + TeB; | |
2985 TgR = TeS + TeT; | |
2986 TgS = TgQ - TgR; | |
2987 ThD = TgQ + TgR; | |
2988 T8S = T8Q - T8R; | |
2989 T8T = T4F - T4K; | |
2990 T8U = T8S + T8T; | |
2991 Tcc = T8S - T8T; | |
2992 } | |
2993 { | |
2994 E T8Z, T94, T9A, T9B; | |
2995 T8Z = T8V - T8Y; | |
2996 T94 = T90 + T93; | |
2997 T95 = KP707106781 * (T8Z - T94); | |
2998 Tco = KP707106781 * (T94 + T8Z); | |
2999 T9A = T93 - T90; | |
3000 T9B = T8V + T8Y; | |
3001 T9C = KP707106781 * (T9A - T9B); | |
3002 Tcd = KP707106781 * (T9A + T9B); | |
3003 } | |
3004 { | |
3005 E TeC, TeD, T9v, T9y; | |
3006 TeC = TeA - TeB; | |
3007 TeD = T5a - T4V; | |
3008 TeE = TeC - TeD; | |
3009 Tg3 = TeC + TeD; | |
3010 T9v = T4w - T4B; | |
3011 T9y = T9w - T9x; | |
3012 T9z = T9v - T9y; | |
3013 Tcn = T9v + T9y; | |
3014 } | |
3015 } | |
3016 { | |
3017 E T5l, TeL, T9k, T9n, T5P, TeH, T9a, T9f, T5u, TeM, T9l, T9q, T5G, TeG, T97; | |
3018 E T9e; | |
3019 { | |
3020 E T5f, T9i, T5k, T9j; | |
3021 { | |
3022 E T5d, T5e, T5h, T5j; | |
3023 T5d = ri[WS(rs, 5)]; | |
3024 T5e = ii[WS(rs, 5)]; | |
3025 T5f = FMA(Tg, T5d, Tl * T5e); | |
3026 T9i = FNMS(Tl, T5d, Tg * T5e); | |
3027 T5h = ri[WS(rs, 37)]; | |
3028 T5j = ii[WS(rs, 37)]; | |
3029 T5k = FMA(T5g, T5h, T5i * T5j); | |
3030 T9j = FNMS(T5i, T5h, T5g * T5j); | |
3031 } | |
3032 T5l = T5f + T5k; | |
3033 TeL = T9i + T9j; | |
3034 T9k = T9i - T9j; | |
3035 T9n = T5f - T5k; | |
3036 } | |
3037 { | |
3038 E T5J, T98, T5O, T99; | |
3039 { | |
3040 E T5H, T5I, T5L, T5N; | |
3041 T5H = ri[WS(rs, 13)]; | |
3042 T5I = ii[WS(rs, 13)]; | |
3043 T5J = FMA(T1h, T5H, T1j * T5I); | |
3044 T98 = FNMS(T1j, T5H, T1h * T5I); | |
3045 T5L = ri[WS(rs, 45)]; | |
3046 T5N = ii[WS(rs, 45)]; | |
3047 T5O = FMA(T5K, T5L, T5M * T5N); | |
3048 T99 = FNMS(T5M, T5L, T5K * T5N); | |
3049 } | |
3050 T5P = T5J + T5O; | |
3051 TeH = T98 + T99; | |
3052 T9a = T98 - T99; | |
3053 T9f = T5J - T5O; | |
3054 } | |
3055 { | |
3056 E T5o, T9o, T5t, T9p; | |
3057 { | |
3058 E T5m, T5n, T5q, T5s; | |
3059 T5m = ri[WS(rs, 21)]; | |
3060 T5n = ii[WS(rs, 21)]; | |
3061 T5o = FMA(T3g, T5m, T3j * T5n); | |
3062 T9o = FNMS(T3j, T5m, T3g * T5n); | |
3063 T5q = ri[WS(rs, 53)]; | |
3064 T5s = ii[WS(rs, 53)]; | |
3065 T5t = FMA(T5p, T5q, T5r * T5s); | |
3066 T9p = FNMS(T5r, T5q, T5p * T5s); | |
3067 } | |
3068 T5u = T5o + T5t; | |
3069 TeM = T9o + T9p; | |
3070 T9l = T5o - T5t; | |
3071 T9q = T9o - T9p; | |
3072 } | |
3073 { | |
3074 E T5A, T9c, T5F, T9d; | |
3075 { | |
3076 E T5x, T5z, T5C, T5E; | |
3077 T5x = ri[WS(rs, 61)]; | |
3078 T5z = ii[WS(rs, 61)]; | |
3079 T5A = FMA(T5w, T5x, T5y * T5z); | |
3080 T9c = FNMS(T5y, T5x, T5w * T5z); | |
3081 T5C = ri[WS(rs, 29)]; | |
3082 T5E = ii[WS(rs, 29)]; | |
3083 T5F = FMA(T5B, T5C, T5D * T5E); | |
3084 T9d = FNMS(T5D, T5C, T5B * T5E); | |
3085 } | |
3086 T5G = T5A + T5F; | |
3087 TeG = T9c + T9d; | |
3088 T97 = T5A - T5F; | |
3089 T9e = T9c - T9d; | |
3090 } | |
3091 { | |
3092 E T5v, T5Q, TeK, TeN; | |
3093 T5v = T5l + T5u; | |
3094 T5Q = T5G + T5P; | |
3095 T5R = T5v + T5Q; | |
3096 TgT = T5Q - T5v; | |
3097 TeK = T5l - T5u; | |
3098 TeN = TeL - TeM; | |
3099 TeO = TeK + TeN; | |
3100 TeW = TeN - TeK; | |
3101 } | |
3102 { | |
3103 E TgW, TgX, T9b, T9g; | |
3104 TgW = TeL + TeM; | |
3105 TgX = TeG + TeH; | |
3106 TgY = TgW - TgX; | |
3107 ThE = TgW + TgX; | |
3108 T9b = T97 - T9a; | |
3109 T9g = T9e + T9f; | |
3110 T9h = FNMS(KP923879532, T9g, KP382683432 * T9b); | |
3111 T9F = FMA(KP382683432, T9g, KP923879532 * T9b); | |
3112 } | |
3113 { | |
3114 E T9m, T9r, Tci, Tcj; | |
3115 T9m = T9k + T9l; | |
3116 T9r = T9n - T9q; | |
3117 T9s = FMA(KP923879532, T9m, KP382683432 * T9r); | |
3118 T9E = FNMS(KP923879532, T9r, KP382683432 * T9m); | |
3119 Tci = T9k - T9l; | |
3120 Tcj = T9n + T9q; | |
3121 Tck = FMA(KP382683432, Tci, KP923879532 * Tcj); | |
3122 Tcq = FNMS(KP382683432, Tcj, KP923879532 * Tci); | |
3123 } | |
3124 { | |
3125 E TeF, TeI, Tcf, Tcg; | |
3126 TeF = T5G - T5P; | |
3127 TeI = TeG - TeH; | |
3128 TeJ = TeF - TeI; | |
3129 TeX = TeF + TeI; | |
3130 Tcf = T97 + T9a; | |
3131 Tcg = T9e - T9f; | |
3132 Tch = FNMS(KP382683432, Tcg, KP923879532 * Tcf); | |
3133 Tcr = FMA(KP923879532, Tcg, KP382683432 * Tcf); | |
3134 } | |
3135 } | |
3136 { | |
3137 E T6K, Tf6, Ta2, Ta5, T7c, Tfd, Tae, Taj, T6T, Tf7, Ta3, Ta8, T73, Tfc, Tad; | |
3138 E Tag; | |
3139 { | |
3140 E T6E, Ta0, T6J, Ta1; | |
3141 { | |
3142 E T6C, T6D, T6G, T6I; | |
3143 T6C = ri[WS(rs, 3)]; | |
3144 T6D = ii[WS(rs, 3)]; | |
3145 T6E = FMA(T3, T6C, T6 * T6D); | |
3146 Ta0 = FNMS(T6, T6C, T3 * T6D); | |
3147 T6G = ri[WS(rs, 35)]; | |
3148 T6I = ii[WS(rs, 35)]; | |
3149 T6J = FMA(T6F, T6G, T6H * T6I); | |
3150 Ta1 = FNMS(T6H, T6G, T6F * T6I); | |
3151 } | |
3152 T6K = T6E + T6J; | |
3153 Tf6 = Ta0 + Ta1; | |
3154 Ta2 = Ta0 - Ta1; | |
3155 Ta5 = T6E - T6J; | |
3156 } | |
3157 { | |
3158 E T76, Tah, T7b, Tai; | |
3159 { | |
3160 E T74, T75, T78, T7a; | |
3161 T74 = ri[WS(rs, 11)]; | |
3162 T75 = ii[WS(rs, 11)]; | |
3163 T76 = FMA(TA, T74, TE * T75); | |
3164 Tah = FNMS(TE, T74, TA * T75); | |
3165 T78 = ri[WS(rs, 43)]; | |
3166 T7a = ii[WS(rs, 43)]; | |
3167 T7b = FMA(T77, T78, T79 * T7a); | |
3168 Tai = FNMS(T79, T78, T77 * T7a); | |
3169 } | |
3170 T7c = T76 + T7b; | |
3171 Tfd = Tah + Tai; | |
3172 Tae = T76 - T7b; | |
3173 Taj = Tah - Tai; | |
3174 } | |
3175 { | |
3176 E T6N, Ta6, T6S, Ta7; | |
3177 { | |
3178 E T6L, T6M, T6P, T6R; | |
3179 T6L = ri[WS(rs, 19)]; | |
3180 T6M = ii[WS(rs, 19)]; | |
3181 T6N = FMA(T2z, T6L, T2C * T6M); | |
3182 Ta6 = FNMS(T2C, T6L, T2z * T6M); | |
3183 T6P = ri[WS(rs, 51)]; | |
3184 T6R = ii[WS(rs, 51)]; | |
3185 T6S = FMA(T6O, T6P, T6Q * T6R); | |
3186 Ta7 = FNMS(T6Q, T6P, T6O * T6R); | |
3187 } | |
3188 T6T = T6N + T6S; | |
3189 Tf7 = Ta6 + Ta7; | |
3190 Ta3 = T6N - T6S; | |
3191 Ta8 = Ta6 - Ta7; | |
3192 } | |
3193 { | |
3194 E T6Z, Tab, T72, Tac; | |
3195 { | |
3196 E T6W, T6Y, T70, T71; | |
3197 T6W = ri[WS(rs, 59)]; | |
3198 T6Y = ii[WS(rs, 59)]; | |
3199 T6Z = FMA(T6V, T6W, T6X * T6Y); | |
3200 Tab = FNMS(T6X, T6W, T6V * T6Y); | |
3201 T70 = ri[WS(rs, 27)]; | |
3202 T71 = ii[WS(rs, 27)]; | |
3203 T72 = FMA(Th, T70, Tm * T71); | |
3204 Tac = FNMS(Tm, T70, Th * T71); | |
3205 } | |
3206 T73 = T6Z + T72; | |
3207 Tfc = Tab + Tac; | |
3208 Tad = Tab - Tac; | |
3209 Tag = T6Z - T72; | |
3210 } | |
3211 { | |
3212 E T6U, T7d, Tfb, Tfe; | |
3213 T6U = T6K + T6T; | |
3214 T7d = T73 + T7c; | |
3215 T7e = T6U + T7d; | |
3216 Th9 = T7d - T6U; | |
3217 Tfb = T73 - T7c; | |
3218 Tfe = Tfc - Tfd; | |
3219 Tff = Tfb + Tfe; | |
3220 Tfn = Tfb - Tfe; | |
3221 } | |
3222 { | |
3223 E Th2, Th3, Ta4, Ta9; | |
3224 Th2 = Tf6 + Tf7; | |
3225 Th3 = Tfc + Tfd; | |
3226 Th4 = Th2 - Th3; | |
3227 ThJ = Th2 + Th3; | |
3228 Ta4 = Ta2 + Ta3; | |
3229 Ta9 = Ta5 - Ta8; | |
3230 Taa = FNMS(KP923879532, Ta9, KP382683432 * Ta4); | |
3231 Tay = FMA(KP923879532, Ta4, KP382683432 * Ta9); | |
3232 } | |
3233 { | |
3234 E Taf, Tak, TcB, TcC; | |
3235 Taf = Tad + Tae; | |
3236 Tak = Tag - Taj; | |
3237 Tal = FMA(KP382683432, Taf, KP923879532 * Tak); | |
3238 Tax = FNMS(KP923879532, Taf, KP382683432 * Tak); | |
3239 TcB = Tad - Tae; | |
3240 TcC = Tag + Taj; | |
3241 TcD = FMA(KP923879532, TcB, KP382683432 * TcC); | |
3242 TcJ = FNMS(KP382683432, TcB, KP923879532 * TcC); | |
3243 } | |
3244 { | |
3245 E Tf8, Tf9, Tcy, Tcz; | |
3246 Tf8 = Tf6 - Tf7; | |
3247 Tf9 = T6K - T6T; | |
3248 Tfa = Tf8 - Tf9; | |
3249 Tfo = Tf9 + Tf8; | |
3250 Tcy = Ta2 - Ta3; | |
3251 Tcz = Ta5 + Ta8; | |
3252 TcA = FNMS(KP382683432, Tcz, KP923879532 * Tcy); | |
3253 TcK = FMA(KP382683432, Tcy, KP923879532 * Tcz); | |
3254 } | |
3255 } | |
3256 { | |
3257 E T2L, Thx, ThU, ThV, Ti5, Tib, T4s, Tia, T7g, Ti7, ThG, ThO, ThL, ThP, ThA; | |
3258 E ThW; | |
3259 { | |
3260 E T1L, T2K, ThS, ThT; | |
3261 T1L = T17 + T1K; | |
3262 T2K = T2e + T2J; | |
3263 T2L = T1L + T2K; | |
3264 Thx = T1L - T2K; | |
3265 ThS = ThD + ThE; | |
3266 ThT = ThI + ThJ; | |
3267 ThU = ThS - ThT; | |
3268 ThV = ThS + ThT; | |
3269 } | |
3270 { | |
3271 E ThX, Ti4, T3C, T4r; | |
3272 ThX = TgA + TgB; | |
3273 Ti4 = ThY + Ti3; | |
3274 Ti5 = ThX + Ti4; | |
3275 Tib = Ti4 - ThX; | |
3276 T3C = T36 + T3B; | |
3277 T4r = T45 + T4q; | |
3278 T4s = T3C + T4r; | |
3279 Tia = T4r - T3C; | |
3280 } | |
3281 { | |
3282 E T5S, T7f, ThC, ThF; | |
3283 T5S = T5c + T5R; | |
3284 T7f = T6B + T7e; | |
3285 T7g = T5S + T7f; | |
3286 Ti7 = T7f - T5S; | |
3287 ThC = T5c - T5R; | |
3288 ThF = ThD - ThE; | |
3289 ThG = ThC + ThF; | |
3290 ThO = ThF - ThC; | |
3291 } | |
3292 { | |
3293 E ThH, ThK, Thy, Thz; | |
3294 ThH = T6B - T7e; | |
3295 ThK = ThI - ThJ; | |
3296 ThL = ThH - ThK; | |
3297 ThP = ThH + ThK; | |
3298 Thy = TgE + TgF; | |
3299 Thz = TgK + TgL; | |
3300 ThA = Thy - Thz; | |
3301 ThW = Thy + Thz; | |
3302 } | |
3303 { | |
3304 E T4t, Ti6, ThR, Ti8; | |
3305 T4t = T2L + T4s; | |
3306 ri[WS(rs, 32)] = T4t - T7g; | |
3307 ri[0] = T4t + T7g; | |
3308 Ti6 = ThW + Ti5; | |
3309 ii[0] = ThV + Ti6; | |
3310 ii[WS(rs, 32)] = Ti6 - ThV; | |
3311 ThR = T2L - T4s; | |
3312 ri[WS(rs, 48)] = ThR - ThU; | |
3313 ri[WS(rs, 16)] = ThR + ThU; | |
3314 Ti8 = Ti5 - ThW; | |
3315 ii[WS(rs, 16)] = Ti7 + Ti8; | |
3316 ii[WS(rs, 48)] = Ti8 - Ti7; | |
3317 } | |
3318 { | |
3319 E ThB, ThM, Ti9, Tic; | |
3320 ThB = Thx + ThA; | |
3321 ThM = KP707106781 * (ThG + ThL); | |
3322 ri[WS(rs, 40)] = ThB - ThM; | |
3323 ri[WS(rs, 8)] = ThB + ThM; | |
3324 Ti9 = KP707106781 * (ThO + ThP); | |
3325 Tic = Tia + Tib; | |
3326 ii[WS(rs, 8)] = Ti9 + Tic; | |
3327 ii[WS(rs, 40)] = Tic - Ti9; | |
3328 } | |
3329 { | |
3330 E ThN, ThQ, Tid, Tie; | |
3331 ThN = Thx - ThA; | |
3332 ThQ = KP707106781 * (ThO - ThP); | |
3333 ri[WS(rs, 56)] = ThN - ThQ; | |
3334 ri[WS(rs, 24)] = ThN + ThQ; | |
3335 Tid = KP707106781 * (ThL - ThG); | |
3336 Tie = Tib - Tia; | |
3337 ii[WS(rs, 24)] = Tid + Tie; | |
3338 ii[WS(rs, 56)] = Tie - Tid; | |
3339 } | |
3340 } | |
3341 { | |
3342 E TgD, Thh, Thr, Thv, Tij, Tip, TgO, Tig, Th0, The, Thk, Tio, Tho, Thu, Thb; | |
3343 E Thf; | |
3344 { | |
3345 E Tgz, TgC, Thp, Thq; | |
3346 Tgz = T17 - T1K; | |
3347 TgC = TgA - TgB; | |
3348 TgD = Tgz - TgC; | |
3349 Thh = Tgz + TgC; | |
3350 Thp = Th1 + Th4; | |
3351 Thq = Th8 + Th9; | |
3352 Thr = FNMS(KP382683432, Thq, KP923879532 * Thp); | |
3353 Thv = FMA(KP923879532, Thq, KP382683432 * Thp); | |
3354 } | |
3355 { | |
3356 E Tih, Tii, TgI, TgN; | |
3357 Tih = T2J - T2e; | |
3358 Tii = Ti3 - ThY; | |
3359 Tij = Tih + Tii; | |
3360 Tip = Tii - Tih; | |
3361 TgI = TgG - TgH; | |
3362 TgN = TgJ + TgM; | |
3363 TgO = KP707106781 * (TgI - TgN); | |
3364 Tig = KP707106781 * (TgI + TgN); | |
3365 } | |
3366 { | |
3367 E TgU, TgZ, Thi, Thj; | |
3368 TgU = TgS - TgT; | |
3369 TgZ = TgV - TgY; | |
3370 Th0 = FMA(KP923879532, TgU, KP382683432 * TgZ); | |
3371 The = FNMS(KP923879532, TgZ, KP382683432 * TgU); | |
3372 Thi = TgH + TgG; | |
3373 Thj = TgJ - TgM; | |
3374 Thk = KP707106781 * (Thi + Thj); | |
3375 Tio = KP707106781 * (Thj - Thi); | |
3376 } | |
3377 { | |
3378 E Thm, Thn, Th5, Tha; | |
3379 Thm = TgS + TgT; | |
3380 Thn = TgV + TgY; | |
3381 Tho = FMA(KP382683432, Thm, KP923879532 * Thn); | |
3382 Thu = FNMS(KP382683432, Thn, KP923879532 * Thm); | |
3383 Th5 = Th1 - Th4; | |
3384 Tha = Th8 - Th9; | |
3385 Thb = FNMS(KP923879532, Tha, KP382683432 * Th5); | |
3386 Thf = FMA(KP382683432, Tha, KP923879532 * Th5); | |
3387 } | |
3388 { | |
3389 E TgP, Thc, Tin, Tiq; | |
3390 TgP = TgD + TgO; | |
3391 Thc = Th0 + Thb; | |
3392 ri[WS(rs, 44)] = TgP - Thc; | |
3393 ri[WS(rs, 12)] = TgP + Thc; | |
3394 Tin = The + Thf; | |
3395 Tiq = Tio + Tip; | |
3396 ii[WS(rs, 12)] = Tin + Tiq; | |
3397 ii[WS(rs, 44)] = Tiq - Tin; | |
3398 } | |
3399 { | |
3400 E Thd, Thg, Tir, Tis; | |
3401 Thd = TgD - TgO; | |
3402 Thg = The - Thf; | |
3403 ri[WS(rs, 60)] = Thd - Thg; | |
3404 ri[WS(rs, 28)] = Thd + Thg; | |
3405 Tir = Thb - Th0; | |
3406 Tis = Tip - Tio; | |
3407 ii[WS(rs, 28)] = Tir + Tis; | |
3408 ii[WS(rs, 60)] = Tis - Tir; | |
3409 } | |
3410 { | |
3411 E Thl, Ths, Tif, Tik; | |
3412 Thl = Thh + Thk; | |
3413 Ths = Tho + Thr; | |
3414 ri[WS(rs, 36)] = Thl - Ths; | |
3415 ri[WS(rs, 4)] = Thl + Ths; | |
3416 Tif = Thu + Thv; | |
3417 Tik = Tig + Tij; | |
3418 ii[WS(rs, 4)] = Tif + Tik; | |
3419 ii[WS(rs, 36)] = Tik - Tif; | |
3420 } | |
3421 { | |
3422 E Tht, Thw, Til, Tim; | |
3423 Tht = Thh - Thk; | |
3424 Thw = Thu - Thv; | |
3425 ri[WS(rs, 52)] = Tht - Thw; | |
3426 ri[WS(rs, 20)] = Tht + Thw; | |
3427 Til = Thr - Tho; | |
3428 Tim = Tij - Tig; | |
3429 ii[WS(rs, 20)] = Til + Tim; | |
3430 ii[WS(rs, 52)] = Tim - Til; | |
3431 } | |
3432 } | |
3433 { | |
3434 E Teb, Tfx, Tey, TiK, TiN, TiT, TfA, TiS, Tfr, TfL, Tfv, TfH, Tf0, TfK, Tfu; | |
3435 E TfE; | |
3436 { | |
3437 E TdZ, Tea, Tfy, Tfz; | |
3438 TdZ = TdV - TdY; | |
3439 Tea = KP707106781 * (Te4 - Te9); | |
3440 Teb = TdZ - Tea; | |
3441 Tfx = TdZ + Tea; | |
3442 { | |
3443 E Tem, Tex, TiL, TiM; | |
3444 Tem = FNMS(KP923879532, Tel, KP382683432 * Teg); | |
3445 Tex = FMA(KP382683432, Ter, KP923879532 * Tew); | |
3446 Tey = Tem - Tex; | |
3447 TiK = Tem + Tex; | |
3448 TiL = KP707106781 * (TfP - TfO); | |
3449 TiM = Tix - Tiw; | |
3450 TiN = TiL + TiM; | |
3451 TiT = TiM - TiL; | |
3452 } | |
3453 Tfy = FMA(KP923879532, Teg, KP382683432 * Tel); | |
3454 Tfz = FNMS(KP923879532, Ter, KP382683432 * Tew); | |
3455 TfA = Tfy + Tfz; | |
3456 TiS = Tfz - Tfy; | |
3457 { | |
3458 E Tfh, TfF, Tfq, TfG, Tfg, Tfp; | |
3459 Tfg = KP707106781 * (Tfa - Tff); | |
3460 Tfh = Tf5 - Tfg; | |
3461 TfF = Tf5 + Tfg; | |
3462 Tfp = KP707106781 * (Tfn - Tfo); | |
3463 Tfq = Tfm - Tfp; | |
3464 TfG = Tfm + Tfp; | |
3465 Tfr = FNMS(KP980785280, Tfq, KP195090322 * Tfh); | |
3466 TfL = FMA(KP831469612, TfG, KP555570233 * TfF); | |
3467 Tfv = FMA(KP195090322, Tfq, KP980785280 * Tfh); | |
3468 TfH = FNMS(KP555570233, TfG, KP831469612 * TfF); | |
3469 } | |
3470 { | |
3471 E TeQ, TfC, TeZ, TfD, TeP, TeY; | |
3472 TeP = KP707106781 * (TeJ - TeO); | |
3473 TeQ = TeE - TeP; | |
3474 TfC = TeE + TeP; | |
3475 TeY = KP707106781 * (TeW - TeX); | |
3476 TeZ = TeV - TeY; | |
3477 TfD = TeV + TeY; | |
3478 Tf0 = FMA(KP980785280, TeQ, KP195090322 * TeZ); | |
3479 TfK = FNMS(KP555570233, TfD, KP831469612 * TfC); | |
3480 Tfu = FNMS(KP980785280, TeZ, KP195090322 * TeQ); | |
3481 TfE = FMA(KP555570233, TfC, KP831469612 * TfD); | |
3482 } | |
3483 } | |
3484 { | |
3485 E Tez, Tfs, TiR, TiU; | |
3486 Tez = Teb + Tey; | |
3487 Tfs = Tf0 + Tfr; | |
3488 ri[WS(rs, 46)] = Tez - Tfs; | |
3489 ri[WS(rs, 14)] = Tez + Tfs; | |
3490 TiR = Tfu + Tfv; | |
3491 TiU = TiS + TiT; | |
3492 ii[WS(rs, 14)] = TiR + TiU; | |
3493 ii[WS(rs, 46)] = TiU - TiR; | |
3494 } | |
3495 { | |
3496 E Tft, Tfw, TiV, TiW; | |
3497 Tft = Teb - Tey; | |
3498 Tfw = Tfu - Tfv; | |
3499 ri[WS(rs, 62)] = Tft - Tfw; | |
3500 ri[WS(rs, 30)] = Tft + Tfw; | |
3501 TiV = Tfr - Tf0; | |
3502 TiW = TiT - TiS; | |
3503 ii[WS(rs, 30)] = TiV + TiW; | |
3504 ii[WS(rs, 62)] = TiW - TiV; | |
3505 } | |
3506 { | |
3507 E TfB, TfI, TiJ, TiO; | |
3508 TfB = Tfx + TfA; | |
3509 TfI = TfE + TfH; | |
3510 ri[WS(rs, 38)] = TfB - TfI; | |
3511 ri[WS(rs, 6)] = TfB + TfI; | |
3512 TiJ = TfK + TfL; | |
3513 TiO = TiK + TiN; | |
3514 ii[WS(rs, 6)] = TiJ + TiO; | |
3515 ii[WS(rs, 38)] = TiO - TiJ; | |
3516 } | |
3517 { | |
3518 E TfJ, TfM, TiP, TiQ; | |
3519 TfJ = Tfx - TfA; | |
3520 TfM = TfK - TfL; | |
3521 ri[WS(rs, 54)] = TfJ - TfM; | |
3522 ri[WS(rs, 22)] = TfJ + TfM; | |
3523 TiP = TfH - TfE; | |
3524 TiQ = TiN - TiK; | |
3525 ii[WS(rs, 22)] = TiP + TiQ; | |
3526 ii[WS(rs, 54)] = TiQ - TiP; | |
3527 } | |
3528 } | |
3529 { | |
3530 E TfR, Tgj, TfY, Tiu, Tiz, TiF, Tgm, TiE, Tgd, Tgx, Tgh, Tgt, Tg6, Tgw, Tgg; | |
3531 E Tgq; | |
3532 { | |
3533 E TfN, TfQ, Tgk, Tgl; | |
3534 TfN = TdV + TdY; | |
3535 TfQ = KP707106781 * (TfO + TfP); | |
3536 TfR = TfN - TfQ; | |
3537 Tgj = TfN + TfQ; | |
3538 { | |
3539 E TfU, TfX, Tiv, Tiy; | |
3540 TfU = FNMS(KP382683432, TfT, KP923879532 * TfS); | |
3541 TfX = FMA(KP923879532, TfV, KP382683432 * TfW); | |
3542 TfY = TfU - TfX; | |
3543 Tiu = TfU + TfX; | |
3544 Tiv = KP707106781 * (Te4 + Te9); | |
3545 Tiy = Tiw + Tix; | |
3546 Tiz = Tiv + Tiy; | |
3547 TiF = Tiy - Tiv; | |
3548 } | |
3549 Tgk = FMA(KP382683432, TfS, KP923879532 * TfT); | |
3550 Tgl = FNMS(KP382683432, TfV, KP923879532 * TfW); | |
3551 Tgm = Tgk + Tgl; | |
3552 TiE = Tgl - Tgk; | |
3553 { | |
3554 E Tg9, Tgr, Tgc, Tgs, Tg8, Tgb; | |
3555 Tg8 = KP707106781 * (Tfo + Tfn); | |
3556 Tg9 = Tg7 - Tg8; | |
3557 Tgr = Tg7 + Tg8; | |
3558 Tgb = KP707106781 * (Tfa + Tff); | |
3559 Tgc = Tga - Tgb; | |
3560 Tgs = Tga + Tgb; | |
3561 Tgd = FNMS(KP831469612, Tgc, KP555570233 * Tg9); | |
3562 Tgx = FMA(KP195090322, Tgr, KP980785280 * Tgs); | |
3563 Tgh = FMA(KP831469612, Tg9, KP555570233 * Tgc); | |
3564 Tgt = FNMS(KP195090322, Tgs, KP980785280 * Tgr); | |
3565 } | |
3566 { | |
3567 E Tg2, Tgo, Tg5, Tgp, Tg1, Tg4; | |
3568 Tg1 = KP707106781 * (TeO + TeJ); | |
3569 Tg2 = Tg0 - Tg1; | |
3570 Tgo = Tg0 + Tg1; | |
3571 Tg4 = KP707106781 * (TeW + TeX); | |
3572 Tg5 = Tg3 - Tg4; | |
3573 Tgp = Tg3 + Tg4; | |
3574 Tg6 = FMA(KP555570233, Tg2, KP831469612 * Tg5); | |
3575 Tgw = FNMS(KP195090322, Tgo, KP980785280 * Tgp); | |
3576 Tgg = FNMS(KP831469612, Tg2, KP555570233 * Tg5); | |
3577 Tgq = FMA(KP980785280, Tgo, KP195090322 * Tgp); | |
3578 } | |
3579 } | |
3580 { | |
3581 E TfZ, Tge, TiD, TiG; | |
3582 TfZ = TfR + TfY; | |
3583 Tge = Tg6 + Tgd; | |
3584 ri[WS(rs, 42)] = TfZ - Tge; | |
3585 ri[WS(rs, 10)] = TfZ + Tge; | |
3586 TiD = Tgg + Tgh; | |
3587 TiG = TiE + TiF; | |
3588 ii[WS(rs, 10)] = TiD + TiG; | |
3589 ii[WS(rs, 42)] = TiG - TiD; | |
3590 } | |
3591 { | |
3592 E Tgf, Tgi, TiH, TiI; | |
3593 Tgf = TfR - TfY; | |
3594 Tgi = Tgg - Tgh; | |
3595 ri[WS(rs, 58)] = Tgf - Tgi; | |
3596 ri[WS(rs, 26)] = Tgf + Tgi; | |
3597 TiH = Tgd - Tg6; | |
3598 TiI = TiF - TiE; | |
3599 ii[WS(rs, 26)] = TiH + TiI; | |
3600 ii[WS(rs, 58)] = TiI - TiH; | |
3601 } | |
3602 { | |
3603 E Tgn, Tgu, Tit, TiA; | |
3604 Tgn = Tgj + Tgm; | |
3605 Tgu = Tgq + Tgt; | |
3606 ri[WS(rs, 34)] = Tgn - Tgu; | |
3607 ri[WS(rs, 2)] = Tgn + Tgu; | |
3608 Tit = Tgw + Tgx; | |
3609 TiA = Tiu + Tiz; | |
3610 ii[WS(rs, 2)] = Tit + TiA; | |
3611 ii[WS(rs, 34)] = TiA - Tit; | |
3612 } | |
3613 { | |
3614 E Tgv, Tgy, TiB, TiC; | |
3615 Tgv = Tgj - Tgm; | |
3616 Tgy = Tgw - Tgx; | |
3617 ri[WS(rs, 50)] = Tgv - Tgy; | |
3618 ri[WS(rs, 18)] = Tgv + Tgy; | |
3619 TiB = Tgt - Tgq; | |
3620 TiC = Tiz - Tiu; | |
3621 ii[WS(rs, 18)] = TiB + TiC; | |
3622 ii[WS(rs, 50)] = TiC - TiB; | |
3623 } | |
3624 } | |
3625 { | |
3626 E T7V, TaH, TjN, TjT, T8O, TjS, TaK, TjK, T9I, TaU, TaE, TaO, TaB, TaV, TaF; | |
3627 E TaR; | |
3628 { | |
3629 E T7x, T7U, TjL, TjM; | |
3630 T7x = T7l - T7w; | |
3631 T7U = T7I - T7T; | |
3632 T7V = T7x - T7U; | |
3633 TaH = T7x + T7U; | |
3634 TjL = TaZ - TaY; | |
3635 TjM = Tjx - Tjw; | |
3636 TjN = TjL + TjM; | |
3637 TjT = TjM - TjL; | |
3638 } | |
3639 { | |
3640 E T8m, TaI, T8N, TaJ; | |
3641 { | |
3642 E T8c, T8l, T8D, T8M; | |
3643 T8c = T80 - T8b; | |
3644 T8l = T8h - T8k; | |
3645 T8m = FNMS(KP980785280, T8l, KP195090322 * T8c); | |
3646 TaI = FMA(KP980785280, T8c, KP195090322 * T8l); | |
3647 T8D = T8r - T8C; | |
3648 T8M = T8I - T8L; | |
3649 T8N = FMA(KP195090322, T8D, KP980785280 * T8M); | |
3650 TaJ = FNMS(KP980785280, T8D, KP195090322 * T8M); | |
3651 } | |
3652 T8O = T8m - T8N; | |
3653 TjS = TaJ - TaI; | |
3654 TaK = TaI + TaJ; | |
3655 TjK = T8m + T8N; | |
3656 } | |
3657 { | |
3658 E T9u, TaM, T9H, TaN; | |
3659 { | |
3660 E T96, T9t, T9D, T9G; | |
3661 T96 = T8U - T95; | |
3662 T9t = T9h - T9s; | |
3663 T9u = T96 - T9t; | |
3664 TaM = T96 + T9t; | |
3665 T9D = T9z - T9C; | |
3666 T9G = T9E - T9F; | |
3667 T9H = T9D - T9G; | |
3668 TaN = T9D + T9G; | |
3669 } | |
3670 T9I = FMA(KP995184726, T9u, KP098017140 * T9H); | |
3671 TaU = FNMS(KP634393284, TaN, KP773010453 * TaM); | |
3672 TaE = FNMS(KP995184726, T9H, KP098017140 * T9u); | |
3673 TaO = FMA(KP634393284, TaM, KP773010453 * TaN); | |
3674 } | |
3675 { | |
3676 E Tan, TaP, TaA, TaQ; | |
3677 { | |
3678 E T9Z, Tam, Taw, Taz; | |
3679 T9Z = T9N - T9Y; | |
3680 Tam = Taa - Tal; | |
3681 Tan = T9Z - Tam; | |
3682 TaP = T9Z + Tam; | |
3683 Taw = Tas - Tav; | |
3684 Taz = Tax - Tay; | |
3685 TaA = Taw - Taz; | |
3686 TaQ = Taw + Taz; | |
3687 } | |
3688 TaB = FNMS(KP995184726, TaA, KP098017140 * Tan); | |
3689 TaV = FMA(KP773010453, TaQ, KP634393284 * TaP); | |
3690 TaF = FMA(KP098017140, TaA, KP995184726 * Tan); | |
3691 TaR = FNMS(KP634393284, TaQ, KP773010453 * TaP); | |
3692 } | |
3693 { | |
3694 E T8P, TaC, TjR, TjU; | |
3695 T8P = T7V + T8O; | |
3696 TaC = T9I + TaB; | |
3697 ri[WS(rs, 47)] = T8P - TaC; | |
3698 ri[WS(rs, 15)] = T8P + TaC; | |
3699 TjR = TaE + TaF; | |
3700 TjU = TjS + TjT; | |
3701 ii[WS(rs, 15)] = TjR + TjU; | |
3702 ii[WS(rs, 47)] = TjU - TjR; | |
3703 } | |
3704 { | |
3705 E TaD, TaG, TjV, TjW; | |
3706 TaD = T7V - T8O; | |
3707 TaG = TaE - TaF; | |
3708 ri[WS(rs, 63)] = TaD - TaG; | |
3709 ri[WS(rs, 31)] = TaD + TaG; | |
3710 TjV = TaB - T9I; | |
3711 TjW = TjT - TjS; | |
3712 ii[WS(rs, 31)] = TjV + TjW; | |
3713 ii[WS(rs, 63)] = TjW - TjV; | |
3714 } | |
3715 { | |
3716 E TaL, TaS, TjJ, TjO; | |
3717 TaL = TaH + TaK; | |
3718 TaS = TaO + TaR; | |
3719 ri[WS(rs, 39)] = TaL - TaS; | |
3720 ri[WS(rs, 7)] = TaL + TaS; | |
3721 TjJ = TaU + TaV; | |
3722 TjO = TjK + TjN; | |
3723 ii[WS(rs, 7)] = TjJ + TjO; | |
3724 ii[WS(rs, 39)] = TjO - TjJ; | |
3725 } | |
3726 { | |
3727 E TaT, TaW, TjP, TjQ; | |
3728 TaT = TaH - TaK; | |
3729 TaW = TaU - TaV; | |
3730 ri[WS(rs, 55)] = TaT - TaW; | |
3731 ri[WS(rs, 23)] = TaT + TaW; | |
3732 TjP = TaR - TaO; | |
3733 TjQ = TjN - TjK; | |
3734 ii[WS(rs, 23)] = TjP + TjQ; | |
3735 ii[WS(rs, 55)] = TjQ - TjP; | |
3736 } | |
3737 } | |
3738 { | |
3739 E TbV, TcT, Tjj, Tjp, Tca, Tjo, TcW, Tjg, Tcu, Td6, TcQ, Td0, TcN, Td7, TcR; | |
3740 E Td3; | |
3741 { | |
3742 E TbN, TbU, Tjh, Tji; | |
3743 TbN = TbJ - TbM; | |
3744 TbU = TbQ - TbT; | |
3745 TbV = TbN - TbU; | |
3746 TcT = TbN + TbU; | |
3747 Tjh = Tdb - Tda; | |
3748 Tji = Tj3 - Tj0; | |
3749 Tjj = Tjh + Tji; | |
3750 Tjp = Tji - Tjh; | |
3751 } | |
3752 { | |
3753 E Tc2, TcU, Tc9, TcV; | |
3754 { | |
3755 E TbY, Tc1, Tc5, Tc8; | |
3756 TbY = TbW - TbX; | |
3757 Tc1 = TbZ - Tc0; | |
3758 Tc2 = FNMS(KP831469612, Tc1, KP555570233 * TbY); | |
3759 TcU = FMA(KP555570233, Tc1, KP831469612 * TbY); | |
3760 Tc5 = Tc3 - Tc4; | |
3761 Tc8 = Tc6 - Tc7; | |
3762 Tc9 = FMA(KP831469612, Tc5, KP555570233 * Tc8); | |
3763 TcV = FNMS(KP831469612, Tc8, KP555570233 * Tc5); | |
3764 } | |
3765 Tca = Tc2 - Tc9; | |
3766 Tjo = TcV - TcU; | |
3767 TcW = TcU + TcV; | |
3768 Tjg = Tc2 + Tc9; | |
3769 } | |
3770 { | |
3771 E Tcm, TcY, Tct, TcZ; | |
3772 { | |
3773 E Tce, Tcl, Tcp, Tcs; | |
3774 Tce = Tcc - Tcd; | |
3775 Tcl = Tch - Tck; | |
3776 Tcm = Tce - Tcl; | |
3777 TcY = Tce + Tcl; | |
3778 Tcp = Tcn - Tco; | |
3779 Tcs = Tcq - Tcr; | |
3780 Tct = Tcp - Tcs; | |
3781 TcZ = Tcp + Tcs; | |
3782 } | |
3783 Tcu = FMA(KP956940335, Tcm, KP290284677 * Tct); | |
3784 Td6 = FNMS(KP471396736, TcZ, KP881921264 * TcY); | |
3785 TcQ = FNMS(KP956940335, Tct, KP290284677 * Tcm); | |
3786 Td0 = FMA(KP471396736, TcY, KP881921264 * TcZ); | |
3787 } | |
3788 { | |
3789 E TcF, Td1, TcM, Td2; | |
3790 { | |
3791 E Tcx, TcE, TcI, TcL; | |
3792 Tcx = Tcv - Tcw; | |
3793 TcE = TcA - TcD; | |
3794 TcF = Tcx - TcE; | |
3795 Td1 = Tcx + TcE; | |
3796 TcI = TcG - TcH; | |
3797 TcL = TcJ - TcK; | |
3798 TcM = TcI - TcL; | |
3799 Td2 = TcI + TcL; | |
3800 } | |
3801 TcN = FNMS(KP956940335, TcM, KP290284677 * TcF); | |
3802 Td7 = FMA(KP881921264, Td2, KP471396736 * Td1); | |
3803 TcR = FMA(KP290284677, TcM, KP956940335 * TcF); | |
3804 Td3 = FNMS(KP471396736, Td2, KP881921264 * Td1); | |
3805 } | |
3806 { | |
3807 E Tcb, TcO, Tjn, Tjq; | |
3808 Tcb = TbV + Tca; | |
3809 TcO = Tcu + TcN; | |
3810 ri[WS(rs, 45)] = Tcb - TcO; | |
3811 ri[WS(rs, 13)] = Tcb + TcO; | |
3812 Tjn = TcQ + TcR; | |
3813 Tjq = Tjo + Tjp; | |
3814 ii[WS(rs, 13)] = Tjn + Tjq; | |
3815 ii[WS(rs, 45)] = Tjq - Tjn; | |
3816 } | |
3817 { | |
3818 E TcP, TcS, Tjr, Tjs; | |
3819 TcP = TbV - Tca; | |
3820 TcS = TcQ - TcR; | |
3821 ri[WS(rs, 61)] = TcP - TcS; | |
3822 ri[WS(rs, 29)] = TcP + TcS; | |
3823 Tjr = TcN - Tcu; | |
3824 Tjs = Tjp - Tjo; | |
3825 ii[WS(rs, 29)] = Tjr + Tjs; | |
3826 ii[WS(rs, 61)] = Tjs - Tjr; | |
3827 } | |
3828 { | |
3829 E TcX, Td4, Tjf, Tjk; | |
3830 TcX = TcT + TcW; | |
3831 Td4 = Td0 + Td3; | |
3832 ri[WS(rs, 37)] = TcX - Td4; | |
3833 ri[WS(rs, 5)] = TcX + Td4; | |
3834 Tjf = Td6 + Td7; | |
3835 Tjk = Tjg + Tjj; | |
3836 ii[WS(rs, 5)] = Tjf + Tjk; | |
3837 ii[WS(rs, 37)] = Tjk - Tjf; | |
3838 } | |
3839 { | |
3840 E Td5, Td8, Tjl, Tjm; | |
3841 Td5 = TcT - TcW; | |
3842 Td8 = Td6 - Td7; | |
3843 ri[WS(rs, 53)] = Td5 - Td8; | |
3844 ri[WS(rs, 21)] = Td5 + Td8; | |
3845 Tjl = Td3 - Td0; | |
3846 Tjm = Tjj - Tjg; | |
3847 ii[WS(rs, 21)] = Tjl + Tjm; | |
3848 ii[WS(rs, 53)] = Tjm - Tjl; | |
3849 } | |
3850 } | |
3851 { | |
3852 E Tdd, TdF, Tj5, Tjb, Tdk, Tja, TdI, TiY, Tds, TdS, TdC, TdM, Tdz, TdT, TdD; | |
3853 E TdP; | |
3854 { | |
3855 E Td9, Tdc, TiZ, Tj4; | |
3856 Td9 = TbJ + TbM; | |
3857 Tdc = Tda + Tdb; | |
3858 Tdd = Td9 - Tdc; | |
3859 TdF = Td9 + Tdc; | |
3860 TiZ = TbQ + TbT; | |
3861 Tj4 = Tj0 + Tj3; | |
3862 Tj5 = TiZ + Tj4; | |
3863 Tjb = Tj4 - TiZ; | |
3864 } | |
3865 { | |
3866 E Tdg, TdG, Tdj, TdH; | |
3867 { | |
3868 E Tde, Tdf, Tdh, Tdi; | |
3869 Tde = TbW + TbX; | |
3870 Tdf = TbZ + Tc0; | |
3871 Tdg = FNMS(KP195090322, Tdf, KP980785280 * Tde); | |
3872 TdG = FMA(KP980785280, Tdf, KP195090322 * Tde); | |
3873 Tdh = Tc3 + Tc4; | |
3874 Tdi = Tc6 + Tc7; | |
3875 Tdj = FMA(KP195090322, Tdh, KP980785280 * Tdi); | |
3876 TdH = FNMS(KP195090322, Tdi, KP980785280 * Tdh); | |
3877 } | |
3878 Tdk = Tdg - Tdj; | |
3879 Tja = TdH - TdG; | |
3880 TdI = TdG + TdH; | |
3881 TiY = Tdg + Tdj; | |
3882 } | |
3883 { | |
3884 E Tdo, TdK, Tdr, TdL; | |
3885 { | |
3886 E Tdm, Tdn, Tdp, Tdq; | |
3887 Tdm = Tcn + Tco; | |
3888 Tdn = Tck + Tch; | |
3889 Tdo = Tdm - Tdn; | |
3890 TdK = Tdm + Tdn; | |
3891 Tdp = Tcc + Tcd; | |
3892 Tdq = Tcq + Tcr; | |
3893 Tdr = Tdp - Tdq; | |
3894 TdL = Tdp + Tdq; | |
3895 } | |
3896 Tds = FMA(KP634393284, Tdo, KP773010453 * Tdr); | |
3897 TdS = FNMS(KP098017140, TdK, KP995184726 * TdL); | |
3898 TdC = FNMS(KP773010453, Tdo, KP634393284 * Tdr); | |
3899 TdM = FMA(KP995184726, TdK, KP098017140 * TdL); | |
3900 } | |
3901 { | |
3902 E Tdv, TdN, Tdy, TdO; | |
3903 { | |
3904 E Tdt, Tdu, Tdw, Tdx; | |
3905 Tdt = Tcv + Tcw; | |
3906 Tdu = TcK + TcJ; | |
3907 Tdv = Tdt - Tdu; | |
3908 TdN = Tdt + Tdu; | |
3909 Tdw = TcG + TcH; | |
3910 Tdx = TcA + TcD; | |
3911 Tdy = Tdw - Tdx; | |
3912 TdO = Tdw + Tdx; | |
3913 } | |
3914 Tdz = FNMS(KP773010453, Tdy, KP634393284 * Tdv); | |
3915 TdT = FMA(KP098017140, TdN, KP995184726 * TdO); | |
3916 TdD = FMA(KP773010453, Tdv, KP634393284 * Tdy); | |
3917 TdP = FNMS(KP098017140, TdO, KP995184726 * TdN); | |
3918 } | |
3919 { | |
3920 E Tdl, TdA, Tj9, Tjc; | |
3921 Tdl = Tdd + Tdk; | |
3922 TdA = Tds + Tdz; | |
3923 ri[WS(rs, 41)] = Tdl - TdA; | |
3924 ri[WS(rs, 9)] = Tdl + TdA; | |
3925 Tj9 = TdC + TdD; | |
3926 Tjc = Tja + Tjb; | |
3927 ii[WS(rs, 9)] = Tj9 + Tjc; | |
3928 ii[WS(rs, 41)] = Tjc - Tj9; | |
3929 } | |
3930 { | |
3931 E TdB, TdE, Tjd, Tje; | |
3932 TdB = Tdd - Tdk; | |
3933 TdE = TdC - TdD; | |
3934 ri[WS(rs, 57)] = TdB - TdE; | |
3935 ri[WS(rs, 25)] = TdB + TdE; | |
3936 Tjd = Tdz - Tds; | |
3937 Tje = Tjb - Tja; | |
3938 ii[WS(rs, 25)] = Tjd + Tje; | |
3939 ii[WS(rs, 57)] = Tje - Tjd; | |
3940 } | |
3941 { | |
3942 E TdJ, TdQ, TiX, Tj6; | |
3943 TdJ = TdF + TdI; | |
3944 TdQ = TdM + TdP; | |
3945 ri[WS(rs, 33)] = TdJ - TdQ; | |
3946 ri[WS(rs, 1)] = TdJ + TdQ; | |
3947 TiX = TdS + TdT; | |
3948 Tj6 = TiY + Tj5; | |
3949 ii[WS(rs, 1)] = TiX + Tj6; | |
3950 ii[WS(rs, 33)] = Tj6 - TiX; | |
3951 } | |
3952 { | |
3953 E TdR, TdU, Tj7, Tj8; | |
3954 TdR = TdF - TdI; | |
3955 TdU = TdS - TdT; | |
3956 ri[WS(rs, 49)] = TdR - TdU; | |
3957 ri[WS(rs, 17)] = TdR + TdU; | |
3958 Tj7 = TdP - TdM; | |
3959 Tj8 = Tj5 - TiY; | |
3960 ii[WS(rs, 17)] = Tj7 + Tj8; | |
3961 ii[WS(rs, 49)] = Tj8 - Tj7; | |
3962 } | |
3963 } | |
3964 { | |
3965 E Tb1, Tbt, Tjz, TjF, Tb8, TjE, Tbw, Tju, Tbg, TbG, Tbq, TbA, Tbn, TbH, Tbr; | |
3966 E TbD; | |
3967 { | |
3968 E TaX, Tb0, Tjv, Tjy; | |
3969 TaX = T7l + T7w; | |
3970 Tb0 = TaY + TaZ; | |
3971 Tb1 = TaX - Tb0; | |
3972 Tbt = TaX + Tb0; | |
3973 Tjv = T7I + T7T; | |
3974 Tjy = Tjw + Tjx; | |
3975 Tjz = Tjv + Tjy; | |
3976 TjF = Tjy - Tjv; | |
3977 } | |
3978 { | |
3979 E Tb4, Tbu, Tb7, Tbv; | |
3980 { | |
3981 E Tb2, Tb3, Tb5, Tb6; | |
3982 Tb2 = T80 + T8b; | |
3983 Tb3 = T8h + T8k; | |
3984 Tb4 = FNMS(KP555570233, Tb3, KP831469612 * Tb2); | |
3985 Tbu = FMA(KP555570233, Tb2, KP831469612 * Tb3); | |
3986 Tb5 = T8r + T8C; | |
3987 Tb6 = T8I + T8L; | |
3988 Tb7 = FMA(KP831469612, Tb5, KP555570233 * Tb6); | |
3989 Tbv = FNMS(KP555570233, Tb5, KP831469612 * Tb6); | |
3990 } | |
3991 Tb8 = Tb4 - Tb7; | |
3992 TjE = Tbv - Tbu; | |
3993 Tbw = Tbu + Tbv; | |
3994 Tju = Tb4 + Tb7; | |
3995 } | |
3996 { | |
3997 E Tbc, Tby, Tbf, Tbz; | |
3998 { | |
3999 E Tba, Tbb, Tbd, Tbe; | |
4000 Tba = T9z + T9C; | |
4001 Tbb = T9s + T9h; | |
4002 Tbc = Tba - Tbb; | |
4003 Tby = Tba + Tbb; | |
4004 Tbd = T8U + T95; | |
4005 Tbe = T9E + T9F; | |
4006 Tbf = Tbd - Tbe; | |
4007 Tbz = Tbd + Tbe; | |
4008 } | |
4009 Tbg = FMA(KP471396736, Tbc, KP881921264 * Tbf); | |
4010 TbG = FNMS(KP290284677, Tby, KP956940335 * Tbz); | |
4011 Tbq = FNMS(KP881921264, Tbc, KP471396736 * Tbf); | |
4012 TbA = FMA(KP956940335, Tby, KP290284677 * Tbz); | |
4013 } | |
4014 { | |
4015 E Tbj, TbB, Tbm, TbC; | |
4016 { | |
4017 E Tbh, Tbi, Tbk, Tbl; | |
4018 Tbh = T9N + T9Y; | |
4019 Tbi = Tay + Tax; | |
4020 Tbj = Tbh - Tbi; | |
4021 TbB = Tbh + Tbi; | |
4022 Tbk = Tas + Tav; | |
4023 Tbl = Taa + Tal; | |
4024 Tbm = Tbk - Tbl; | |
4025 TbC = Tbk + Tbl; | |
4026 } | |
4027 Tbn = FNMS(KP881921264, Tbm, KP471396736 * Tbj); | |
4028 TbH = FMA(KP290284677, TbB, KP956940335 * TbC); | |
4029 Tbr = FMA(KP881921264, Tbj, KP471396736 * Tbm); | |
4030 TbD = FNMS(KP290284677, TbC, KP956940335 * TbB); | |
4031 } | |
4032 { | |
4033 E Tb9, Tbo, TjD, TjG; | |
4034 Tb9 = Tb1 + Tb8; | |
4035 Tbo = Tbg + Tbn; | |
4036 ri[WS(rs, 43)] = Tb9 - Tbo; | |
4037 ri[WS(rs, 11)] = Tb9 + Tbo; | |
4038 TjD = Tbq + Tbr; | |
4039 TjG = TjE + TjF; | |
4040 ii[WS(rs, 11)] = TjD + TjG; | |
4041 ii[WS(rs, 43)] = TjG - TjD; | |
4042 } | |
4043 { | |
4044 E Tbp, Tbs, TjH, TjI; | |
4045 Tbp = Tb1 - Tb8; | |
4046 Tbs = Tbq - Tbr; | |
4047 ri[WS(rs, 59)] = Tbp - Tbs; | |
4048 ri[WS(rs, 27)] = Tbp + Tbs; | |
4049 TjH = Tbn - Tbg; | |
4050 TjI = TjF - TjE; | |
4051 ii[WS(rs, 27)] = TjH + TjI; | |
4052 ii[WS(rs, 59)] = TjI - TjH; | |
4053 } | |
4054 { | |
4055 E Tbx, TbE, Tjt, TjA; | |
4056 Tbx = Tbt + Tbw; | |
4057 TbE = TbA + TbD; | |
4058 ri[WS(rs, 35)] = Tbx - TbE; | |
4059 ri[WS(rs, 3)] = Tbx + TbE; | |
4060 Tjt = TbG + TbH; | |
4061 TjA = Tju + Tjz; | |
4062 ii[WS(rs, 3)] = Tjt + TjA; | |
4063 ii[WS(rs, 35)] = TjA - Tjt; | |
4064 } | |
4065 { | |
4066 E TbF, TbI, TjB, TjC; | |
4067 TbF = Tbt - Tbw; | |
4068 TbI = TbG - TbH; | |
4069 ri[WS(rs, 51)] = TbF - TbI; | |
4070 ri[WS(rs, 19)] = TbF + TbI; | |
4071 TjB = TbD - TbA; | |
4072 TjC = Tjz - Tju; | |
4073 ii[WS(rs, 19)] = TjB + TjC; | |
4074 ii[WS(rs, 51)] = TjC - TjB; | |
4075 } | |
4076 } | |
4077 } | |
4078 } | |
4079 } | |
4080 } | |
4081 | |
4082 static const tw_instr twinstr[] = { | |
4083 {TW_CEXP, 0, 1}, | |
4084 {TW_CEXP, 0, 3}, | |
4085 {TW_CEXP, 0, 9}, | |
4086 {TW_CEXP, 0, 27}, | |
4087 {TW_CEXP, 0, 63}, | |
4088 {TW_NEXT, 1, 0} | |
4089 }; | |
4090 | |
4091 static const ct_desc desc = { 64, "t2_64", twinstr, &GENUS, {880, 386, 274, 0}, 0, 0, 0 }; | |
4092 | |
4093 void X(codelet_t2_64) (planner *p) { | |
4094 X(kdft_dit_register) (p, t2_64, &desc); | |
4095 } | |
4096 #endif /* HAVE_FMA */ |