comparison src/fftw-3.3.3/dft/scalar/codelets/t2_25.c @ 95:89f5e221ed7b

Add FFTW3
author Chris Cannam <cannam@all-day-breakfast.com>
date Wed, 20 Mar 2013 15:35:50 +0000
parents
children
comparison
equal deleted inserted replaced
94:d278df1123f9 95:89f5e221ed7b
1 /*
2 * Copyright (c) 2003, 2007-11 Matteo Frigo
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 */
20
21 /* This file was automatically generated --- DO NOT EDIT */
22 /* Generated on Sun Nov 25 07:36:11 EST 2012 */
23
24 #include "codelet-dft.h"
25
26 #ifdef HAVE_FMA
27
28 /* Generated by: ../../../genfft/gen_twiddle.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 25 -name t2_25 -include t.h */
29
30 /*
31 * This function contains 440 FP additions, 434 FP multiplications,
32 * (or, 84 additions, 78 multiplications, 356 fused multiply/add),
33 * 215 stack variables, 47 constants, and 100 memory accesses
34 */
35 #include "t.h"
36
37 static void t2_25(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
38 {
39 DK(KP860541664, +0.860541664367944677098261680920518816412804187);
40 DK(KP681693190, +0.681693190061530575150324149145440022633095390);
41 DK(KP560319534, +0.560319534973832390111614715371676131169633784);
42 DK(KP949179823, +0.949179823508441261575555465843363271711583843);
43 DK(KP557913902, +0.557913902031834264187699648465567037992437152);
44 DK(KP249506682, +0.249506682107067890488084201715862638334226305);
45 DK(KP906616052, +0.906616052148196230441134447086066874408359177);
46 DK(KP968479752, +0.968479752739016373193524836781420152702090879);
47 DK(KP621716863, +0.621716863012209892444754556304102309693593202);
48 DK(KP614372930, +0.614372930789563808870829930444362096004872855);
49 DK(KP845997307, +0.845997307939530944175097360758058292389769300);
50 DK(KP998026728, +0.998026728428271561952336806863450553336905220);
51 DK(KP994076283, +0.994076283785401014123185814696322018529298887);
52 DK(KP734762448, +0.734762448793050413546343770063151342619912334);
53 DK(KP772036680, +0.772036680810363904029489473607579825330539880);
54 DK(KP062914667, +0.062914667253649757225485955897349402364686947);
55 DK(KP803003575, +0.803003575438660414833440593570376004635464850);
56 DK(KP943557151, +0.943557151597354104399655195398983005179443399);
57 DK(KP554608978, +0.554608978404018097464974850792216217022558774);
58 DK(KP248028675, +0.248028675328619457762448260696444630363259177);
59 DK(KP921177326, +0.921177326965143320250447435415066029359282231);
60 DK(KP833417178, +0.833417178328688677408962550243238843138996060);
61 DK(KP726211448, +0.726211448929902658173535992263577167607493062);
62 DK(KP525970792, +0.525970792408939708442463226536226366643874659);
63 DK(KP541454447, +0.541454447536312777046285590082819509052033189);
64 DK(KP242145790, +0.242145790282157779872542093866183953459003101);
65 DK(KP992114701, +0.992114701314477831049793042785778521453036709);
66 DK(KP559154169, +0.559154169276087864842202529084232643714075927);
67 DK(KP683113946, +0.683113946453479238701949862233725244439656928);
68 DK(KP851038619, +0.851038619207379630836264138867114231259902550);
69 DK(KP912575812, +0.912575812670962425556968549836277086778922727);
70 DK(KP912018591, +0.912018591466481957908415381764119056233607330);
71 DK(KP470564281, +0.470564281212251493087595091036643380879947982);
72 DK(KP968583161, +0.968583161128631119490168375464735813836012403);
73 DK(KP827271945, +0.827271945972475634034355757144307982555673741);
74 DK(KP126329378, +0.126329378446108174786050455341811215027378105);
75 DK(KP904730450, +0.904730450839922351881287709692877908104763647);
76 DK(KP831864738, +0.831864738706457140726048799369896829771167132);
77 DK(KP871714437, +0.871714437527667770979999223229522602943903653);
78 DK(KP549754652, +0.549754652192770074288023275540779861653779767);
79 DK(KP634619297, +0.634619297544148100711287640319130485732531031);
80 DK(KP939062505, +0.939062505817492352556001843133229685779824606);
81 DK(KP256756360, +0.256756360367726783319498520922669048172391148);
82 DK(KP951056516, +0.951056516295153572116439333379382143405698634);
83 DK(KP559016994, +0.559016994374947424102293417182819058860154590);
84 DK(KP250000000, +0.250000000000000000000000000000000000000000000);
85 DK(KP618033988, +0.618033988749894848204586834365638117720309180);
86 {
87 INT m;
88 for (m = mb, W = W + (mb * 8); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 8, MAKE_VOLATILE_STRIDE(50, rs)) {
89 E T8c, T7k, T7i, T8i, T8g, T8b, T7j, T7b, T8d, T8h;
90 {
91 E T2, T8, T3, T6, Tk, Tv, TS, T4, Ta, TD, T2L, T10, Tm, T5, Tc;
92 T2 = W[0];
93 T8 = W[4];
94 T3 = W[2];
95 T6 = W[3];
96 Tk = W[6];
97 Tv = T2 * T8;
98 TS = T3 * T8;
99 T4 = T2 * T3;
100 Ta = T2 * T6;
101 TD = T8 * Tk;
102 T2L = T2 * Tk;
103 T10 = T3 * Tk;
104 Tm = W[7];
105 T5 = W[1];
106 Tc = W[5];
107 {
108 E T7G, T86, T4s, T6a, T4g, TN, T4f, T7C, T7s, T7B, T5q, T6k, T3a, T5j, T6n;
109 E T6m, T5g, T4a, T5n, T6j, T6C, T4G, T6z, T4z, T1v, T3t, T6y, T4w, T6B, T4D;
110 E T6v, T4O, T6s, T4V, T21, T3H, T6r, T4S, T6u, T4L, T26, T3K, T5a, T2A, T3U;
111 E T53, T2c, T3M, T2k, T3O;
112 {
113 E T11, T1b, Tb, T19, T7, T2m, TT, T15, T2Q, TX, T2p, T1g, T2a, T2e, T2i;
114 E T27, T1c, T1O, T1K, T1q, T1m, T2x, T2t, T1W, T1S, T2G, T3Y, T2N, T5p, T38;
115 E T48, T5i, T2K, T40, T2S, T41;
116 {
117 E T2M, T1j, T1l, T2X, T2U, T35, T31, T7r, T7p, T7o, T2O, T2R;
118 {
119 E T1, Tj, T4j, TK, T4q, TC, T4o, Tt, T4l;
120 {
121 E TE, Tw, TI, TA, Th, Tr, Tn, Td, Te, Ti, T14, T2P, TH, Tx, TB;
122 T1 = ri[0];
123 T11 = FMA(T6, Tm, T10);
124 T14 = T3 * Tm;
125 T2P = T2 * Tm;
126 TH = T8 * Tm;
127 T2M = FMA(T5, Tm, T2L);
128 T1b = FNMS(T5, T3, Ta);
129 Tb = FMA(T5, T3, Ta);
130 T19 = FMA(T5, T6, T4);
131 T7 = FNMS(T5, T6, T4);
132 T2m = FNMS(T6, Tc, TS);
133 TT = FMA(T6, Tc, TS);
134 TE = FMA(Tc, Tm, TD);
135 T1j = FMA(T5, Tc, Tv);
136 Tw = FNMS(T5, Tc, Tv);
137 {
138 E TW, Tz, T1f, T2d;
139 TW = T3 * Tc;
140 Tz = T2 * Tc;
141 T15 = FNMS(T6, Tk, T14);
142 T2Q = FNMS(T5, Tk, T2P);
143 TI = FNMS(Tc, Tk, TH);
144 T1f = T19 * Tc;
145 T2d = T19 * Tk;
146 {
147 E T2h, T1a, Tg, Tq;
148 T2h = T19 * Tm;
149 T1a = T19 * T8;
150 Tg = T7 * Tc;
151 Tq = T7 * Tm;
152 {
153 E Tl, T9, T1p, T1k;
154 Tl = T7 * Tk;
155 T9 = T7 * T8;
156 T1p = T1j * Tm;
157 T1k = T1j * Tk;
158 {
159 E T34, T30, T1N, T1J;
160 T34 = TT * Tm;
161 T30 = TT * Tk;
162 T1N = Tw * Tm;
163 T1J = Tw * Tk;
164 TX = FNMS(T6, T8, TW);
165 T2p = FMA(T6, T8, TW);
166 TA = FMA(T5, T8, Tz);
167 T1l = FNMS(T5, T8, Tz);
168 T1g = FMA(T1b, T8, T1f);
169 T2a = FNMS(T1b, T8, T1f);
170 T2e = FMA(T1b, Tm, T2d);
171 T2i = FNMS(T1b, Tk, T2h);
172 T27 = FMA(T1b, Tc, T1a);
173 T1c = FNMS(T1b, Tc, T1a);
174 T2X = FMA(Tb, T8, Tg);
175 Th = FNMS(Tb, T8, Tg);
176 Tr = FNMS(Tb, Tk, Tq);
177 Tn = FMA(Tb, Tm, Tl);
178 Td = FMA(Tb, Tc, T9);
179 T2U = FNMS(Tb, Tc, T9);
180 T35 = FNMS(TX, Tk, T34);
181 T31 = FMA(TX, Tm, T30);
182 T1O = FNMS(TA, Tk, T1N);
183 T1K = FMA(TA, Tm, T1J);
184 T1q = FNMS(T1l, Tk, T1p);
185 T1m = FMA(T1l, Tm, T1k);
186 {
187 E T2w, T2s, T1V, T1R;
188 T2w = T27 * Tm;
189 T2s = T27 * Tk;
190 T1V = Td * Tm;
191 T1R = Td * Tk;
192 T2x = FNMS(T2a, Tk, T2w);
193 T2t = FMA(T2a, Tm, T2s);
194 T1W = FNMS(Th, Tk, T1V);
195 T1S = FMA(Th, Tm, T1R);
196 T7r = ii[0];
197 Te = ri[WS(rs, 5)];
198 Ti = ii[WS(rs, 5)];
199 }
200 }
201 }
202 }
203 }
204 {
205 E TF, TJ, Tf, T4i, TG, T4p;
206 TF = ri[WS(rs, 15)];
207 TJ = ii[WS(rs, 15)];
208 Tf = Td * Te;
209 T4i = Td * Ti;
210 TG = TE * TF;
211 T4p = TE * TJ;
212 Tj = FMA(Th, Ti, Tf);
213 T4j = FNMS(Th, Te, T4i);
214 TK = FMA(TI, TJ, TG);
215 T4q = FNMS(TI, TF, T4p);
216 }
217 Tx = ri[WS(rs, 10)];
218 TB = ii[WS(rs, 10)];
219 {
220 E To, Ts, Ty, T4n, Tp, T4k;
221 To = ri[WS(rs, 20)];
222 Ts = ii[WS(rs, 20)];
223 Ty = Tw * Tx;
224 T4n = Tw * TB;
225 Tp = Tn * To;
226 T4k = Tn * Ts;
227 TC = FMA(TA, TB, Ty);
228 T4o = FNMS(TA, Tx, T4n);
229 Tt = FMA(Tr, Ts, Tp);
230 T4l = FNMS(Tr, To, T4k);
231 }
232 }
233 {
234 E TL, T7F, T4r, Tu, T7E, T4m, TM;
235 TL = TC + TK;
236 T7F = TC - TK;
237 T4r = T4o - T4q;
238 T7p = T4o + T4q;
239 Tu = Tj + Tt;
240 T7E = Tj - Tt;
241 T4m = T4j - T4l;
242 T7o = T4j + T4l;
243 T7G = FMA(KP618033988, T7F, T7E);
244 T86 = FNMS(KP618033988, T7E, T7F);
245 T4s = FMA(KP618033988, T4r, T4m);
246 T6a = FNMS(KP618033988, T4m, T4r);
247 T4g = Tu - TL;
248 TM = Tu + TL;
249 TN = T1 + TM;
250 T4f = FNMS(KP250000000, TM, T1);
251 }
252 }
253 {
254 E T2D, T2F, T7q, T2E, T3X;
255 T2D = ri[WS(rs, 3)];
256 T2F = ii[WS(rs, 3)];
257 T7C = T7o - T7p;
258 T7q = T7o + T7p;
259 T2E = T3 * T2D;
260 T3X = T3 * T2F;
261 {
262 E T2V, T2W, T2Y, T32, T36;
263 T2V = ri[WS(rs, 13)];
264 T7s = T7q + T7r;
265 T7B = FNMS(KP250000000, T7q, T7r);
266 T2G = FMA(T6, T2F, T2E);
267 T3Y = FNMS(T6, T2D, T3X);
268 T2W = T2U * T2V;
269 T2Y = ii[WS(rs, 13)];
270 T32 = ri[WS(rs, 18)];
271 T36 = ii[WS(rs, 18)];
272 {
273 E T2H, T2I, T2J, T3Z;
274 {
275 E T2Z, T45, T37, T47, T44, T33, T46;
276 T2H = ri[WS(rs, 8)];
277 T2Z = FMA(T2X, T2Y, T2W);
278 T44 = T2U * T2Y;
279 T33 = T31 * T32;
280 T46 = T31 * T36;
281 T2I = T1j * T2H;
282 T45 = FNMS(T2X, T2V, T44);
283 T37 = FMA(T35, T36, T33);
284 T47 = FNMS(T35, T32, T46);
285 T2J = ii[WS(rs, 8)];
286 T2N = ri[WS(rs, 23)];
287 T5p = T2Z - T37;
288 T38 = T2Z + T37;
289 T48 = T45 + T47;
290 T5i = T47 - T45;
291 T3Z = T1j * T2J;
292 T2O = T2M * T2N;
293 T2R = ii[WS(rs, 23)];
294 }
295 T2K = FMA(T1l, T2J, T2I);
296 T40 = FNMS(T1l, T2H, T3Z);
297 }
298 }
299 }
300 T2S = FMA(T2Q, T2R, T2O);
301 T41 = T2M * T2R;
302 }
303 {
304 E TR, T3h, T1t, T4F, T3r, T4y, TZ, T3j, T17, T3l;
305 {
306 E T12, T16, T13, T3k;
307 {
308 E TO, TP, T5m, T5l, TQ;
309 {
310 E T2T, T5o, T42, T5f, T39;
311 TO = ri[WS(rs, 1)];
312 T2T = T2K + T2S;
313 T5o = T2K - T2S;
314 T42 = FNMS(T2Q, T2N, T41);
315 TP = T2 * TO;
316 T5q = FMA(KP618033988, T5p, T5o);
317 T6k = FNMS(KP618033988, T5o, T5p);
318 T5f = T38 - T2T;
319 T39 = T2T + T38;
320 {
321 E T43, T5h, T5e, T49;
322 T43 = T40 + T42;
323 T5h = T42 - T40;
324 T5e = FNMS(KP250000000, T39, T2G);
325 T3a = T2G + T39;
326 T5j = FMA(KP618033988, T5i, T5h);
327 T6n = FNMS(KP618033988, T5h, T5i);
328 T5m = T48 - T43;
329 T49 = T43 + T48;
330 T6m = FMA(KP559016994, T5f, T5e);
331 T5g = FNMS(KP559016994, T5f, T5e);
332 T5l = FNMS(KP250000000, T49, T3Y);
333 T4a = T3Y + T49;
334 TQ = ii[WS(rs, 1)];
335 }
336 }
337 {
338 E T1n, T1r, T1i, T1o, T3o, T3p;
339 {
340 E T1d, T1h, T1e, T3n, T3g;
341 T1d = ri[WS(rs, 11)];
342 T1h = ii[WS(rs, 11)];
343 T5n = FNMS(KP559016994, T5m, T5l);
344 T6j = FMA(KP559016994, T5m, T5l);
345 TR = FMA(T5, TQ, TP);
346 T3g = T2 * TQ;
347 T1e = T1c * T1d;
348 T3n = T1c * T1h;
349 T1n = ri[WS(rs, 16)];
350 T3h = FNMS(T5, TO, T3g);
351 T1r = ii[WS(rs, 16)];
352 T1i = FMA(T1g, T1h, T1e);
353 T1o = T1m * T1n;
354 T3o = FNMS(T1g, T1d, T3n);
355 T3p = T1m * T1r;
356 }
357 {
358 E TU, TY, TV, T3i, T3q, T1s;
359 TU = ri[WS(rs, 6)];
360 T1s = FMA(T1q, T1r, T1o);
361 TY = ii[WS(rs, 6)];
362 T3q = FNMS(T1q, T1n, T3p);
363 TV = TT * TU;
364 T1t = T1i + T1s;
365 T4F = T1s - T1i;
366 T3i = TT * TY;
367 T3r = T3o + T3q;
368 T4y = T3q - T3o;
369 T12 = ri[WS(rs, 21)];
370 T16 = ii[WS(rs, 21)];
371 TZ = FMA(TX, TY, TV);
372 T3j = FNMS(TX, TU, T3i);
373 T13 = T11 * T12;
374 T3k = T11 * T16;
375 }
376 }
377 }
378 T17 = FMA(T15, T16, T13);
379 T3l = FNMS(T15, T12, T3k);
380 }
381 {
382 E T1z, T3v, T4N, T1Z, T3F, T4U, T1D, T3x, T1H, T3z;
383 {
384 E T1E, T1G, T1F, T3y;
385 {
386 E T1w, T1y, T1x, T4v, T4C, T4u, T4B, T3u, T18, T4E;
387 T1w = ri[WS(rs, 4)];
388 T1y = ii[WS(rs, 4)];
389 T18 = TZ + T17;
390 T4E = T17 - TZ;
391 {
392 E T3m, T4x, T1u, T3s;
393 T3m = T3j + T3l;
394 T4x = T3j - T3l;
395 T1x = T7 * T1w;
396 T6C = FNMS(KP618033988, T4E, T4F);
397 T4G = FMA(KP618033988, T4F, T4E);
398 T1u = T18 + T1t;
399 T4v = T18 - T1t;
400 T6z = FMA(KP618033988, T4x, T4y);
401 T4z = FNMS(KP618033988, T4y, T4x);
402 T3s = T3m + T3r;
403 T4C = T3m - T3r;
404 T1v = TR + T1u;
405 T4u = FNMS(KP250000000, T1u, TR);
406 T3t = T3h + T3s;
407 T4B = FNMS(KP250000000, T3s, T3h);
408 T3u = T7 * T1y;
409 }
410 T6y = FNMS(KP559016994, T4v, T4u);
411 T4w = FMA(KP559016994, T4v, T4u);
412 T6B = FNMS(KP559016994, T4C, T4B);
413 T4D = FMA(KP559016994, T4C, T4B);
414 T1z = FMA(Tb, T1y, T1x);
415 T3v = FNMS(Tb, T1w, T3u);
416 }
417 {
418 E T1Q, T3C, T1Y, T3E;
419 {
420 E T1L, T1P, T1T, T1X, T1M, T3B, T1U, T3D;
421 T1L = ri[WS(rs, 14)];
422 T1P = ii[WS(rs, 14)];
423 T1T = ri[WS(rs, 19)];
424 T1X = ii[WS(rs, 19)];
425 T1M = T1K * T1L;
426 T3B = T1K * T1P;
427 T1U = T1S * T1T;
428 T3D = T1S * T1X;
429 T1Q = FMA(T1O, T1P, T1M);
430 T3C = FNMS(T1O, T1L, T3B);
431 T1Y = FMA(T1W, T1X, T1U);
432 T3E = FNMS(T1W, T1T, T3D);
433 }
434 {
435 E T1A, T1C, T1B, T3w;
436 T1A = ri[WS(rs, 9)];
437 T1C = ii[WS(rs, 9)];
438 T4N = T1Y - T1Q;
439 T1Z = T1Q + T1Y;
440 T3F = T3C + T3E;
441 T4U = T3E - T3C;
442 T1B = T8 * T1A;
443 T3w = T8 * T1C;
444 T1E = ri[WS(rs, 24)];
445 T1G = ii[WS(rs, 24)];
446 T1D = FMA(Tc, T1C, T1B);
447 T3x = FNMS(Tc, T1A, T3w);
448 T1F = Tk * T1E;
449 T3y = Tk * T1G;
450 }
451 }
452 T1H = FMA(Tm, T1G, T1F);
453 T3z = FNMS(Tm, T1E, T3y);
454 }
455 {
456 E T2f, T2j, T2g, T3N;
457 {
458 E T23, T25, T24, T4R, T4K, T4Q, T4J, T3J, T1I, T4M;
459 T23 = ri[WS(rs, 2)];
460 T25 = ii[WS(rs, 2)];
461 T1I = T1D + T1H;
462 T4M = T1H - T1D;
463 {
464 E T3A, T4T, T20, T3G;
465 T3A = T3x + T3z;
466 T4T = T3z - T3x;
467 T24 = T19 * T23;
468 T6v = FNMS(KP618033988, T4M, T4N);
469 T4O = FMA(KP618033988, T4N, T4M);
470 T20 = T1I + T1Z;
471 T4R = T1I - T1Z;
472 T6s = FNMS(KP618033988, T4T, T4U);
473 T4V = FMA(KP618033988, T4U, T4T);
474 T3G = T3A + T3F;
475 T4K = T3F - T3A;
476 T21 = T1z + T20;
477 T4Q = FNMS(KP250000000, T20, T1z);
478 T3H = T3v + T3G;
479 T4J = FNMS(KP250000000, T3G, T3v);
480 T3J = T19 * T25;
481 }
482 T6r = FNMS(KP559016994, T4R, T4Q);
483 T4S = FMA(KP559016994, T4R, T4Q);
484 T6u = FMA(KP559016994, T4K, T4J);
485 T4L = FNMS(KP559016994, T4K, T4J);
486 T26 = FMA(T1b, T25, T24);
487 T3K = FNMS(T1b, T23, T3J);
488 }
489 {
490 E T2r, T3R, T2z, T3T;
491 {
492 E T2n, T2q, T2u, T2y, T2o, T3Q, T2v, T3S;
493 T2n = ri[WS(rs, 12)];
494 T2q = ii[WS(rs, 12)];
495 T2u = ri[WS(rs, 17)];
496 T2y = ii[WS(rs, 17)];
497 T2o = T2m * T2n;
498 T3Q = T2m * T2q;
499 T2v = T2t * T2u;
500 T3S = T2t * T2y;
501 T2r = FMA(T2p, T2q, T2o);
502 T3R = FNMS(T2p, T2n, T3Q);
503 T2z = FMA(T2x, T2y, T2v);
504 T3T = FNMS(T2x, T2u, T3S);
505 }
506 {
507 E T28, T2b, T29, T3L;
508 T28 = ri[WS(rs, 7)];
509 T2b = ii[WS(rs, 7)];
510 T5a = T2z - T2r;
511 T2A = T2r + T2z;
512 T3U = T3R + T3T;
513 T53 = T3R - T3T;
514 T29 = T27 * T28;
515 T3L = T27 * T2b;
516 T2f = ri[WS(rs, 22)];
517 T2j = ii[WS(rs, 22)];
518 T2c = FMA(T2a, T2b, T29);
519 T3M = FNMS(T2a, T28, T3L);
520 T2g = T2e * T2f;
521 T3N = T2e * T2j;
522 }
523 }
524 T2k = FMA(T2i, T2j, T2g);
525 T3O = FNMS(T2i, T2f, T3N);
526 }
527 }
528 }
529 }
530 {
531 E T7l, T5b, T6d, T54, T6g, T51, T6f, T7m, T6c, T58, T4e, T4c, T7A, T7y, T4d;
532 E T3f;
533 {
534 E T7w, T22, T7x, T3b, T3I, T3c, T3e, T3d;
535 T7l = T3t + T3H;
536 T3I = T3t - T3H;
537 {
538 E T2l, T59, T3P, T52;
539 T2l = T2c + T2k;
540 T59 = T2k - T2c;
541 T3P = T3M + T3O;
542 T52 = T3O - T3M;
543 T5b = FMA(KP618033988, T5a, T59);
544 T6d = FNMS(KP618033988, T59, T5a);
545 {
546 E T50, T2B, T57, T3V;
547 T50 = T2A - T2l;
548 T2B = T2l + T2A;
549 T54 = FNMS(KP618033988, T53, T52);
550 T6g = FMA(KP618033988, T52, T53);
551 T57 = T3U - T3P;
552 T3V = T3P + T3U;
553 {
554 E T4Z, T2C, T56, T3W, T4b;
555 T4Z = FNMS(KP250000000, T2B, T26);
556 T2C = T26 + T2B;
557 T56 = FNMS(KP250000000, T3V, T3K);
558 T3W = T3K + T3V;
559 T7w = T1v - T21;
560 T22 = T1v + T21;
561 T51 = FNMS(KP559016994, T50, T4Z);
562 T6f = FMA(KP559016994, T50, T4Z);
563 T4b = T3W - T4a;
564 T7m = T3W + T4a;
565 T6c = FMA(KP559016994, T57, T56);
566 T58 = FNMS(KP559016994, T57, T56);
567 T7x = T2C - T3a;
568 T3b = T2C + T3a;
569 T4e = FNMS(KP618033988, T3I, T4b);
570 T4c = FMA(KP618033988, T4b, T3I);
571 }
572 }
573 }
574 T3c = T22 + T3b;
575 T3e = T22 - T3b;
576 ri[0] = TN + T3c;
577 T3d = FNMS(KP250000000, T3c, TN);
578 T7A = FNMS(KP618033988, T7w, T7x);
579 T7y = FMA(KP618033988, T7x, T7w);
580 T4d = FNMS(KP559016994, T3e, T3d);
581 T3f = FMA(KP559016994, T3e, T3d);
582 }
583 {
584 E T69, T85, T7Y, T68, T66, T84, T82, T7X, T67, T5Z;
585 {
586 E T4t, T5H, T5Q, T7T, T7H, T5P, T5M, T5L, T5A, T7O, T5D, T7P, T7K, T7M, T5u;
587 E T5w, T5K, T63, T61, T5U, T7D, T7z, T7v;
588 {
589 E T7u, T7t, T4h, T7n;
590 T69 = FNMS(KP559016994, T4g, T4f);
591 T4h = FMA(KP559016994, T4g, T4f);
592 T7u = T7l - T7m;
593 T7n = T7l + T7m;
594 ri[WS(rs, 5)] = FMA(KP951056516, T4c, T3f);
595 ri[WS(rs, 20)] = FNMS(KP951056516, T4c, T3f);
596 ri[WS(rs, 15)] = FMA(KP951056516, T4e, T4d);
597 ri[WS(rs, 10)] = FNMS(KP951056516, T4e, T4d);
598 ii[0] = T7n + T7s;
599 T7t = FNMS(KP250000000, T7n, T7s);
600 T4t = FMA(KP951056516, T4s, T4h);
601 T5H = FNMS(KP951056516, T4s, T4h);
602 T7D = FMA(KP559016994, T7C, T7B);
603 T85 = FNMS(KP559016994, T7C, T7B);
604 T7z = FNMS(KP559016994, T7u, T7t);
605 T7v = FMA(KP559016994, T7u, T7t);
606 }
607 {
608 E T5I, T5J, T5S, T4P, T5y, T4I, T5C, T5s, T4W, T5T, T55, T5c;
609 {
610 E T4A, T4H, T5k, T5r;
611 T5Q = FNMS(KP951056516, T4z, T4w);
612 T4A = FMA(KP951056516, T4z, T4w);
613 T7T = FMA(KP951056516, T7G, T7D);
614 T7H = FNMS(KP951056516, T7G, T7D);
615 ii[WS(rs, 20)] = FMA(KP951056516, T7y, T7v);
616 ii[WS(rs, 5)] = FNMS(KP951056516, T7y, T7v);
617 ii[WS(rs, 15)] = FNMS(KP951056516, T7A, T7z);
618 ii[WS(rs, 10)] = FMA(KP951056516, T7A, T7z);
619 T4H = FMA(KP951056516, T4G, T4D);
620 T5P = FNMS(KP951056516, T4G, T4D);
621 T5I = FMA(KP951056516, T5j, T5g);
622 T5k = FNMS(KP951056516, T5j, T5g);
623 T5r = FNMS(KP951056516, T5q, T5n);
624 T5J = FMA(KP951056516, T5q, T5n);
625 T5S = FNMS(KP951056516, T4O, T4L);
626 T4P = FMA(KP951056516, T4O, T4L);
627 T5y = FNMS(KP256756360, T4A, T4H);
628 T4I = FMA(KP256756360, T4H, T4A);
629 T5C = FNMS(KP939062505, T5k, T5r);
630 T5s = FMA(KP939062505, T5r, T5k);
631 T4W = FNMS(KP951056516, T4V, T4S);
632 T5T = FMA(KP951056516, T4V, T4S);
633 T5M = FMA(KP951056516, T54, T51);
634 T55 = FNMS(KP951056516, T54, T51);
635 T5c = FMA(KP951056516, T5b, T58);
636 T5L = FNMS(KP951056516, T5b, T58);
637 }
638 {
639 E T4Y, T5t, T5z, T4X;
640 T5z = FNMS(KP634619297, T4P, T4W);
641 T4X = FMA(KP634619297, T4W, T4P);
642 {
643 E T5B, T5d, T7I, T7J;
644 T5B = FNMS(KP549754652, T55, T5c);
645 T5d = FMA(KP549754652, T5c, T55);
646 T7I = FNMS(KP871714437, T5z, T5y);
647 T5A = FMA(KP871714437, T5z, T5y);
648 T4Y = FMA(KP871714437, T4X, T4I);
649 T7O = FNMS(KP871714437, T4X, T4I);
650 T7J = FMA(KP831864738, T5C, T5B);
651 T5D = FNMS(KP831864738, T5C, T5B);
652 T5t = FMA(KP831864738, T5s, T5d);
653 T7P = FNMS(KP831864738, T5s, T5d);
654 T7K = FMA(KP904730450, T7J, T7I);
655 T7M = FNMS(KP904730450, T7J, T7I);
656 }
657 T5u = FMA(KP904730450, T5t, T4Y);
658 T5w = FNMS(KP904730450, T5t, T4Y);
659 }
660 T5K = FNMS(KP126329378, T5J, T5I);
661 T63 = FMA(KP126329378, T5I, T5J);
662 T61 = FNMS(KP827271945, T5S, T5T);
663 T5U = FMA(KP827271945, T5T, T5S);
664 }
665 {
666 E T65, T81, T62, T80, T7W, T5W, T5Y;
667 {
668 E T5O, T5V, T64, T5N;
669 ri[WS(rs, 1)] = FMA(KP968583161, T5u, T4t);
670 T64 = FMA(KP470564281, T5L, T5M);
671 T5N = FNMS(KP470564281, T5M, T5L);
672 {
673 E T60, T5R, T7U, T7V;
674 T60 = FNMS(KP634619297, T5P, T5Q);
675 T5R = FMA(KP634619297, T5Q, T5P);
676 T7U = FMA(KP912018591, T64, T63);
677 T65 = FNMS(KP912018591, T64, T63);
678 T5O = FNMS(KP912018591, T5N, T5K);
679 T81 = FMA(KP912018591, T5N, T5K);
680 T7V = FNMS(KP912575812, T61, T60);
681 T62 = FMA(KP912575812, T61, T60);
682 T5V = FNMS(KP912575812, T5U, T5R);
683 T80 = FMA(KP912575812, T5U, T5R);
684 T7W = FMA(KP851038619, T7V, T7U);
685 T7Y = FNMS(KP851038619, T7V, T7U);
686 ii[WS(rs, 1)] = FMA(KP968583161, T7K, T7H);
687 }
688 T5W = FNMS(KP851038619, T5V, T5O);
689 T5Y = FMA(KP851038619, T5V, T5O);
690 }
691 {
692 E T5G, T5E, T7S, T7Q, T7L, T5F, T5x, T5v, T5X, T7R, T7N;
693 T5G = FNMS(KP683113946, T5A, T5D);
694 T5E = FMA(KP559154169, T5D, T5A);
695 ii[WS(rs, 4)] = FNMS(KP992114701, T7W, T7T);
696 ri[WS(rs, 4)] = FNMS(KP992114701, T5W, T5H);
697 T5v = FNMS(KP242145790, T5u, T4t);
698 T7S = FNMS(KP683113946, T7O, T7P);
699 T7Q = FMA(KP559154169, T7P, T7O);
700 T7L = FNMS(KP242145790, T7K, T7H);
701 T5F = FNMS(KP541454447, T5w, T5v);
702 T5x = FMA(KP541454447, T5w, T5v);
703 T68 = FMA(KP525970792, T62, T65);
704 T66 = FNMS(KP726211448, T65, T62);
705 ri[WS(rs, 11)] = FNMS(KP833417178, T5G, T5F);
706 ri[WS(rs, 16)] = FMA(KP833417178, T5G, T5F);
707 ri[WS(rs, 21)] = FNMS(KP921177326, T5E, T5x);
708 ri[WS(rs, 6)] = FMA(KP921177326, T5E, T5x);
709 T7R = FNMS(KP541454447, T7M, T7L);
710 T7N = FMA(KP541454447, T7M, T7L);
711 T5X = FMA(KP248028675, T5W, T5H);
712 ii[WS(rs, 11)] = FMA(KP833417178, T7S, T7R);
713 ii[WS(rs, 16)] = FNMS(KP833417178, T7S, T7R);
714 ii[WS(rs, 21)] = FMA(KP921177326, T7Q, T7N);
715 ii[WS(rs, 6)] = FNMS(KP921177326, T7Q, T7N);
716 T84 = FNMS(KP525970792, T80, T81);
717 T82 = FMA(KP726211448, T81, T80);
718 T7X = FMA(KP248028675, T7W, T7T);
719 T67 = FNMS(KP554608978, T5Y, T5X);
720 T5Z = FMA(KP554608978, T5Y, T5X);
721 }
722 }
723 }
724 {
725 E T6b, T6T, T8j, T87, T72, T71, T6P, T8r, T6M, T8q, T7f, T6W, T8m, T8o, T6I;
726 E T6G, T7d, T76, T7g, T6Z, T83, T7Z;
727 ri[WS(rs, 14)] = FNMS(KP943557151, T68, T67);
728 ri[WS(rs, 19)] = FMA(KP943557151, T68, T67);
729 ri[WS(rs, 24)] = FMA(KP803003575, T66, T5Z);
730 ri[WS(rs, 9)] = FNMS(KP803003575, T66, T5Z);
731 T83 = FNMS(KP554608978, T7Y, T7X);
732 T7Z = FMA(KP554608978, T7Y, T7X);
733 T6b = FMA(KP951056516, T6a, T69);
734 T6T = FNMS(KP951056516, T6a, T69);
735 ii[WS(rs, 14)] = FMA(KP943557151, T84, T83);
736 ii[WS(rs, 19)] = FNMS(KP943557151, T84, T83);
737 ii[WS(rs, 24)] = FMA(KP803003575, T82, T7Z);
738 ii[WS(rs, 9)] = FNMS(KP803003575, T82, T7Z);
739 {
740 E T6X, T6Y, T74, T6N, T6i, T75, T6U, T6V, T6t, T6L, T6E, T6O, T6p, T6w;
741 {
742 E T6A, T6D, T6e, T6h, T6l, T6o;
743 T6X = FNMS(KP951056516, T6d, T6c);
744 T6e = FMA(KP951056516, T6d, T6c);
745 T6h = FMA(KP951056516, T6g, T6f);
746 T6Y = FNMS(KP951056516, T6g, T6f);
747 T74 = FMA(KP951056516, T6z, T6y);
748 T6A = FNMS(KP951056516, T6z, T6y);
749 T8j = FNMS(KP951056516, T86, T85);
750 T87 = FMA(KP951056516, T86, T85);
751 T6N = FNMS(KP062914667, T6e, T6h);
752 T6i = FMA(KP062914667, T6h, T6e);
753 T6D = FMA(KP951056516, T6C, T6B);
754 T75 = FNMS(KP951056516, T6C, T6B);
755 T6U = FMA(KP951056516, T6k, T6j);
756 T6l = FNMS(KP951056516, T6k, T6j);
757 T6o = FNMS(KP951056516, T6n, T6m);
758 T6V = FMA(KP951056516, T6n, T6m);
759 T72 = FMA(KP951056516, T6s, T6r);
760 T6t = FNMS(KP951056516, T6s, T6r);
761 T6L = FNMS(KP939062505, T6A, T6D);
762 T6E = FMA(KP939062505, T6D, T6A);
763 T6O = FMA(KP827271945, T6l, T6o);
764 T6p = FNMS(KP827271945, T6o, T6l);
765 T6w = FMA(KP951056516, T6v, T6u);
766 T71 = FNMS(KP951056516, T6v, T6u);
767 }
768 {
769 E T8k, T6q, T6K, T6x, T8l, T6F;
770 T8k = FMA(KP772036680, T6O, T6N);
771 T6P = FNMS(KP772036680, T6O, T6N);
772 T6q = FMA(KP772036680, T6p, T6i);
773 T8r = FNMS(KP772036680, T6p, T6i);
774 T6K = FMA(KP126329378, T6t, T6w);
775 T6x = FNMS(KP126329378, T6w, T6t);
776 T8l = FNMS(KP734762448, T6L, T6K);
777 T6M = FMA(KP734762448, T6L, T6K);
778 T6F = FNMS(KP734762448, T6E, T6x);
779 T8q = FMA(KP734762448, T6E, T6x);
780 T7f = FNMS(KP062914667, T6U, T6V);
781 T6W = FMA(KP062914667, T6V, T6U);
782 T8m = FMA(KP994076283, T8l, T8k);
783 T8o = FNMS(KP994076283, T8l, T8k);
784 T6I = FMA(KP994076283, T6F, T6q);
785 T6G = FNMS(KP994076283, T6F, T6q);
786 }
787 T7d = FNMS(KP549754652, T74, T75);
788 T76 = FMA(KP549754652, T75, T74);
789 T7g = FNMS(KP634619297, T6X, T6Y);
790 T6Z = FMA(KP634619297, T6Y, T6X);
791 }
792 {
793 E T88, T7h, T70, T8f, T7c, T73;
794 ri[WS(rs, 3)] = FMA(KP998026728, T6G, T6b);
795 T88 = FMA(KP845997307, T7g, T7f);
796 T7h = FNMS(KP845997307, T7g, T7f);
797 T70 = FMA(KP845997307, T6Z, T6W);
798 T8f = FNMS(KP845997307, T6Z, T6W);
799 T7c = FMA(KP470564281, T71, T72);
800 T73 = FNMS(KP470564281, T72, T71);
801 ii[WS(rs, 3)] = FNMS(KP998026728, T8m, T8j);
802 {
803 E T7e, T8e, T8a, T78, T7a, T8u, T8s, T8t, T8p, T79;
804 {
805 E T6S, T6Q, T6H, T89, T77, T6J, T6R, T8n;
806 T6S = FMA(KP614372930, T6M, T6P);
807 T6Q = FNMS(KP621716863, T6P, T6M);
808 T89 = FNMS(KP968479752, T7d, T7c);
809 T7e = FMA(KP968479752, T7d, T7c);
810 T77 = FMA(KP968479752, T76, T73);
811 T8e = FNMS(KP968479752, T76, T73);
812 T8a = FMA(KP906616052, T89, T88);
813 T8c = FNMS(KP906616052, T89, T88);
814 T78 = FMA(KP906616052, T77, T70);
815 T7a = FNMS(KP906616052, T77, T70);
816 T6H = FNMS(KP249506682, T6G, T6b);
817 ii[WS(rs, 2)] = FNMS(KP998026728, T8a, T87);
818 ri[WS(rs, 2)] = FMA(KP998026728, T78, T6T);
819 T8u = FNMS(KP614372930, T8q, T8r);
820 T8s = FMA(KP621716863, T8r, T8q);
821 T6J = FNMS(KP557913902, T6I, T6H);
822 T6R = FMA(KP557913902, T6I, T6H);
823 T8n = FMA(KP249506682, T8m, T8j);
824 ri[WS(rs, 18)] = FNMS(KP949179823, T6S, T6R);
825 ri[WS(rs, 13)] = FMA(KP949179823, T6S, T6R);
826 ri[WS(rs, 8)] = FMA(KP943557151, T6Q, T6J);
827 ri[WS(rs, 23)] = FNMS(KP943557151, T6Q, T6J);
828 T8t = FNMS(KP557913902, T8o, T8n);
829 T8p = FMA(KP557913902, T8o, T8n);
830 }
831 T7k = FNMS(KP560319534, T7e, T7h);
832 T7i = FMA(KP681693190, T7h, T7e);
833 ii[WS(rs, 23)] = FMA(KP943557151, T8s, T8p);
834 ii[WS(rs, 8)] = FNMS(KP943557151, T8s, T8p);
835 ii[WS(rs, 13)] = FMA(KP949179823, T8u, T8t);
836 ii[WS(rs, 18)] = FNMS(KP949179823, T8u, T8t);
837 T79 = FNMS(KP249506682, T78, T6T);
838 T8i = FNMS(KP560319534, T8e, T8f);
839 T8g = FMA(KP681693190, T8f, T8e);
840 T8b = FMA(KP249506682, T8a, T87);
841 T7j = FMA(KP557913902, T7a, T79);
842 T7b = FNMS(KP557913902, T7a, T79);
843 }
844 }
845 }
846 }
847 }
848 }
849 }
850 ri[WS(rs, 12)] = FNMS(KP949179823, T7k, T7j);
851 ri[WS(rs, 17)] = FMA(KP949179823, T7k, T7j);
852 ri[WS(rs, 7)] = FMA(KP860541664, T7i, T7b);
853 ri[WS(rs, 22)] = FNMS(KP860541664, T7i, T7b);
854 T8d = FMA(KP557913902, T8c, T8b);
855 T8h = FNMS(KP557913902, T8c, T8b);
856 ii[WS(rs, 12)] = FNMS(KP949179823, T8i, T8h);
857 ii[WS(rs, 17)] = FMA(KP949179823, T8i, T8h);
858 ii[WS(rs, 22)] = FNMS(KP860541664, T8g, T8d);
859 ii[WS(rs, 7)] = FMA(KP860541664, T8g, T8d);
860 }
861 }
862 }
863
864 static const tw_instr twinstr[] = {
865 {TW_CEXP, 0, 1},
866 {TW_CEXP, 0, 3},
867 {TW_CEXP, 0, 9},
868 {TW_CEXP, 0, 24},
869 {TW_NEXT, 1, 0}
870 };
871
872 static const ct_desc desc = { 25, "t2_25", twinstr, &GENUS, {84, 78, 356, 0}, 0, 0, 0 };
873
874 void X(codelet_t2_25) (planner *p) {
875 X(kdft_dit_register) (p, t2_25, &desc);
876 }
877 #else /* HAVE_FMA */
878
879 /* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 25 -name t2_25 -include t.h */
880
881 /*
882 * This function contains 440 FP additions, 340 FP multiplications,
883 * (or, 280 additions, 180 multiplications, 160 fused multiply/add),
884 * 149 stack variables, 20 constants, and 100 memory accesses
885 */
886 #include "t.h"
887
888 static void t2_25(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
889 {
890 DK(KP998026728, +0.998026728428271561952336806863450553336905220);
891 DK(KP062790519, +0.062790519529313376076178224565631133122484832);
892 DK(KP425779291, +0.425779291565072648862502445744251703979973042);
893 DK(KP904827052, +0.904827052466019527713668647932697593970413911);
894 DK(KP992114701, +0.992114701314477831049793042785778521453036709);
895 DK(KP125333233, +0.125333233564304245373118759816508793942918247);
896 DK(KP637423989, +0.637423989748689710176712811676016195434917298);
897 DK(KP770513242, +0.770513242775789230803009636396177847271667672);
898 DK(KP684547105, +0.684547105928688673732283357621209269889519233);
899 DK(KP728968627, +0.728968627421411523146730319055259111372571664);
900 DK(KP481753674, +0.481753674101715274987191502872129653528542010);
901 DK(KP876306680, +0.876306680043863587308115903922062583399064238);
902 DK(KP844327925, +0.844327925502015078548558063966681505381659241);
903 DK(KP535826794, +0.535826794978996618271308767867639978063575346);
904 DK(KP248689887, +0.248689887164854788242283746006447968417567406);
905 DK(KP968583161, +0.968583161128631119490168375464735813836012403);
906 DK(KP587785252, +0.587785252292473129168705954639072768597652438);
907 DK(KP951056516, +0.951056516295153572116439333379382143405698634);
908 DK(KP250000000, +0.250000000000000000000000000000000000000000000);
909 DK(KP559016994, +0.559016994374947424102293417182819058860154590);
910 {
911 INT m;
912 for (m = mb, W = W + (mb * 8); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 8, MAKE_VOLATILE_STRIDE(50, rs)) {
913 E T2, T5, T3, T6, T8, Td, T16, T14, Te, T9, T21, T23, Tx, TR, T1g;
914 E TB, T1f, TV, T1Q, Tg, T1S, Tk, T18, T2s, T1c, T2q, Tn, To, Tp, Tr;
915 E T28, T2x, TY, T2k, T2m, T2v, TG, TE, T10, T1h, T1E, T26, T1B, T1G, T1V;
916 E T1X, T1z, T1j;
917 {
918 E Tw, TT, Tz, TQ, Tv, TU, TA, TP;
919 {
920 E T4, Tc, T7, Tb;
921 T2 = W[0];
922 T5 = W[1];
923 T3 = W[2];
924 T6 = W[3];
925 T4 = T2 * T3;
926 Tc = T5 * T3;
927 T7 = T5 * T6;
928 Tb = T2 * T6;
929 T8 = T4 - T7;
930 Td = Tb + Tc;
931 T16 = Tb - Tc;
932 T14 = T4 + T7;
933 Te = W[5];
934 Tw = T5 * Te;
935 TT = T3 * Te;
936 Tz = T2 * Te;
937 TQ = T6 * Te;
938 T9 = W[4];
939 Tv = T2 * T9;
940 TU = T6 * T9;
941 TA = T5 * T9;
942 TP = T3 * T9;
943 }
944 T21 = TP - TQ;
945 T23 = TT + TU;
946 {
947 E T15, T17, Ta, Tf, T1a, T1b, Ti, Tj;
948 Tx = Tv - Tw;
949 TR = TP + TQ;
950 T1g = Tz - TA;
951 TB = Tz + TA;
952 T1f = Tv + Tw;
953 TV = TT - TU;
954 T15 = T14 * T9;
955 T17 = T16 * Te;
956 T1Q = T15 + T17;
957 Ta = T8 * T9;
958 Tf = Td * Te;
959 Tg = Ta + Tf;
960 T1a = T14 * Te;
961 T1b = T16 * T9;
962 T1S = T1a - T1b;
963 Ti = T8 * Te;
964 Tj = Td * T9;
965 Tk = Ti - Tj;
966 T18 = T15 - T17;
967 T2s = Ti + Tj;
968 T1c = T1a + T1b;
969 T2q = Ta - Tf;
970 Tn = W[6];
971 To = W[7];
972 Tp = FMA(T8, Tn, Td * To);
973 Tr = FNMS(Td, Tn, T8 * To);
974 T28 = FNMS(T1S, Tn, T1Q * To);
975 T2x = FNMS(TV, Tn, TR * To);
976 TY = FMA(T3, Tn, T6 * To);
977 T2k = FMA(T2, Tn, T5 * To);
978 T2m = FNMS(T5, Tn, T2 * To);
979 T2v = FMA(TR, Tn, TV * To);
980 TG = FNMS(Te, Tn, T9 * To);
981 TE = FMA(T9, Tn, Te * To);
982 T10 = FNMS(T6, Tn, T3 * To);
983 T1h = FMA(T1f, Tn, T1g * To);
984 T1E = FMA(Tg, Tn, Tk * To);
985 T26 = FMA(T1Q, Tn, T1S * To);
986 T1B = FNMS(TB, Tn, Tx * To);
987 T1G = FNMS(Tk, Tn, Tg * To);
988 T1V = FMA(T14, Tn, T16 * To);
989 T1X = FNMS(T16, Tn, T14 * To);
990 T1z = FMA(Tx, Tn, TB * To);
991 T1j = FNMS(T1g, Tn, T1f * To);
992 }
993 }
994 {
995 E T1, T6v, T2F, T6I, TK, T2G, T6u, T6J, T6N, T7c, T2O, T52, T2C, T6k, T48;
996 E T5X, T4L, T5s, T4j, T5W, T4K, T5v, T1o, T6g, T30, T5M, T4A, T56, T3b, T5N;
997 E T4B, T59, T1L, T6h, T3n, T5Q, T4D, T5g, T3y, T5P, T4E, T5d, T2d, T6j, T3L;
998 E T5T, T4I, T5l, T3W, T5U, T4H, T5o;
999 {
1000 E Tm, T2I, Tt, T2J, Tu, T6s, TD, T2L, TI, T2M, TJ, T6t;
1001 T1 = ri[0];
1002 T6v = ii[0];
1003 {
1004 E Th, Tl, Tq, Ts;
1005 Th = ri[WS(rs, 5)];
1006 Tl = ii[WS(rs, 5)];
1007 Tm = FMA(Tg, Th, Tk * Tl);
1008 T2I = FNMS(Tk, Th, Tg * Tl);
1009 Tq = ri[WS(rs, 20)];
1010 Ts = ii[WS(rs, 20)];
1011 Tt = FMA(Tp, Tq, Tr * Ts);
1012 T2J = FNMS(Tr, Tq, Tp * Ts);
1013 }
1014 Tu = Tm + Tt;
1015 T6s = T2I + T2J;
1016 {
1017 E Ty, TC, TF, TH;
1018 Ty = ri[WS(rs, 10)];
1019 TC = ii[WS(rs, 10)];
1020 TD = FMA(Tx, Ty, TB * TC);
1021 T2L = FNMS(TB, Ty, Tx * TC);
1022 TF = ri[WS(rs, 15)];
1023 TH = ii[WS(rs, 15)];
1024 TI = FMA(TE, TF, TG * TH);
1025 T2M = FNMS(TG, TF, TE * TH);
1026 }
1027 TJ = TD + TI;
1028 T6t = T2L + T2M;
1029 T2F = KP559016994 * (Tu - TJ);
1030 T6I = KP559016994 * (T6s - T6t);
1031 TK = Tu + TJ;
1032 T2G = FNMS(KP250000000, TK, T1);
1033 T6u = T6s + T6t;
1034 T6J = FNMS(KP250000000, T6u, T6v);
1035 {
1036 E T6L, T6M, T2K, T2N;
1037 T6L = Tm - Tt;
1038 T6M = TD - TI;
1039 T6N = FMA(KP951056516, T6L, KP587785252 * T6M);
1040 T7c = FNMS(KP587785252, T6L, KP951056516 * T6M);
1041 T2K = T2I - T2J;
1042 T2N = T2L - T2M;
1043 T2O = FMA(KP951056516, T2K, KP587785252 * T2N);
1044 T52 = FNMS(KP587785252, T2K, KP951056516 * T2N);
1045 }
1046 }
1047 {
1048 E T2g, T4c, T43, T46, T4h, T4g, T49, T4a, T4d, T2p, T2A, T2B, T2e, T2f;
1049 T2e = ri[WS(rs, 3)];
1050 T2f = ii[WS(rs, 3)];
1051 T2g = FMA(T3, T2e, T6 * T2f);
1052 T4c = FNMS(T6, T2e, T3 * T2f);
1053 {
1054 E T2j, T41, T2z, T45, T2o, T42, T2u, T44;
1055 {
1056 E T2h, T2i, T2w, T2y;
1057 T2h = ri[WS(rs, 8)];
1058 T2i = ii[WS(rs, 8)];
1059 T2j = FMA(T1f, T2h, T1g * T2i);
1060 T41 = FNMS(T1g, T2h, T1f * T2i);
1061 T2w = ri[WS(rs, 18)];
1062 T2y = ii[WS(rs, 18)];
1063 T2z = FMA(T2v, T2w, T2x * T2y);
1064 T45 = FNMS(T2x, T2w, T2v * T2y);
1065 }
1066 {
1067 E T2l, T2n, T2r, T2t;
1068 T2l = ri[WS(rs, 23)];
1069 T2n = ii[WS(rs, 23)];
1070 T2o = FMA(T2k, T2l, T2m * T2n);
1071 T42 = FNMS(T2m, T2l, T2k * T2n);
1072 T2r = ri[WS(rs, 13)];
1073 T2t = ii[WS(rs, 13)];
1074 T2u = FMA(T2q, T2r, T2s * T2t);
1075 T44 = FNMS(T2s, T2r, T2q * T2t);
1076 }
1077 T43 = T41 - T42;
1078 T46 = T44 - T45;
1079 T4h = T2u - T2z;
1080 T4g = T2j - T2o;
1081 T49 = T41 + T42;
1082 T4a = T44 + T45;
1083 T4d = T49 + T4a;
1084 T2p = T2j + T2o;
1085 T2A = T2u + T2z;
1086 T2B = T2p + T2A;
1087 }
1088 T2C = T2g + T2B;
1089 T6k = T4c + T4d;
1090 {
1091 E T47, T5r, T40, T5q, T3Y, T3Z;
1092 T47 = FMA(KP951056516, T43, KP587785252 * T46);
1093 T5r = FNMS(KP587785252, T43, KP951056516 * T46);
1094 T3Y = KP559016994 * (T2p - T2A);
1095 T3Z = FNMS(KP250000000, T2B, T2g);
1096 T40 = T3Y + T3Z;
1097 T5q = T3Z - T3Y;
1098 T48 = T40 + T47;
1099 T5X = T5q + T5r;
1100 T4L = T40 - T47;
1101 T5s = T5q - T5r;
1102 }
1103 {
1104 E T4i, T5t, T4f, T5u, T4b, T4e;
1105 T4i = FMA(KP951056516, T4g, KP587785252 * T4h);
1106 T5t = FNMS(KP587785252, T4g, KP951056516 * T4h);
1107 T4b = KP559016994 * (T49 - T4a);
1108 T4e = FNMS(KP250000000, T4d, T4c);
1109 T4f = T4b + T4e;
1110 T5u = T4e - T4b;
1111 T4j = T4f - T4i;
1112 T5W = T5u - T5t;
1113 T4K = T4i + T4f;
1114 T5v = T5t + T5u;
1115 }
1116 }
1117 {
1118 E TO, T34, T2V, T2Y, T39, T38, T31, T32, T35, T13, T1m, T1n, TM, TN;
1119 TM = ri[WS(rs, 1)];
1120 TN = ii[WS(rs, 1)];
1121 TO = FMA(T2, TM, T5 * TN);
1122 T34 = FNMS(T5, TM, T2 * TN);
1123 {
1124 E TX, T2T, T1l, T2X, T12, T2U, T1e, T2W;
1125 {
1126 E TS, TW, T1i, T1k;
1127 TS = ri[WS(rs, 6)];
1128 TW = ii[WS(rs, 6)];
1129 TX = FMA(TR, TS, TV * TW);
1130 T2T = FNMS(TV, TS, TR * TW);
1131 T1i = ri[WS(rs, 16)];
1132 T1k = ii[WS(rs, 16)];
1133 T1l = FMA(T1h, T1i, T1j * T1k);
1134 T2X = FNMS(T1j, T1i, T1h * T1k);
1135 }
1136 {
1137 E TZ, T11, T19, T1d;
1138 TZ = ri[WS(rs, 21)];
1139 T11 = ii[WS(rs, 21)];
1140 T12 = FMA(TY, TZ, T10 * T11);
1141 T2U = FNMS(T10, TZ, TY * T11);
1142 T19 = ri[WS(rs, 11)];
1143 T1d = ii[WS(rs, 11)];
1144 T1e = FMA(T18, T19, T1c * T1d);
1145 T2W = FNMS(T1c, T19, T18 * T1d);
1146 }
1147 T2V = T2T - T2U;
1148 T2Y = T2W - T2X;
1149 T39 = T1e - T1l;
1150 T38 = TX - T12;
1151 T31 = T2T + T2U;
1152 T32 = T2W + T2X;
1153 T35 = T31 + T32;
1154 T13 = TX + T12;
1155 T1m = T1e + T1l;
1156 T1n = T13 + T1m;
1157 }
1158 T1o = TO + T1n;
1159 T6g = T34 + T35;
1160 {
1161 E T2Z, T55, T2S, T54, T2Q, T2R;
1162 T2Z = FMA(KP951056516, T2V, KP587785252 * T2Y);
1163 T55 = FNMS(KP587785252, T2V, KP951056516 * T2Y);
1164 T2Q = KP559016994 * (T13 - T1m);
1165 T2R = FNMS(KP250000000, T1n, TO);
1166 T2S = T2Q + T2R;
1167 T54 = T2R - T2Q;
1168 T30 = T2S + T2Z;
1169 T5M = T54 + T55;
1170 T4A = T2S - T2Z;
1171 T56 = T54 - T55;
1172 }
1173 {
1174 E T3a, T57, T37, T58, T33, T36;
1175 T3a = FMA(KP951056516, T38, KP587785252 * T39);
1176 T57 = FNMS(KP587785252, T38, KP951056516 * T39);
1177 T33 = KP559016994 * (T31 - T32);
1178 T36 = FNMS(KP250000000, T35, T34);
1179 T37 = T33 + T36;
1180 T58 = T36 - T33;
1181 T3b = T37 - T3a;
1182 T5N = T58 - T57;
1183 T4B = T3a + T37;
1184 T59 = T57 + T58;
1185 }
1186 }
1187 {
1188 E T1r, T3r, T3i, T3l, T3w, T3v, T3o, T3p, T3s, T1y, T1J, T1K, T1p, T1q;
1189 T1p = ri[WS(rs, 4)];
1190 T1q = ii[WS(rs, 4)];
1191 T1r = FMA(T8, T1p, Td * T1q);
1192 T3r = FNMS(Td, T1p, T8 * T1q);
1193 {
1194 E T1u, T3g, T1I, T3k, T1x, T3h, T1D, T3j;
1195 {
1196 E T1s, T1t, T1F, T1H;
1197 T1s = ri[WS(rs, 9)];
1198 T1t = ii[WS(rs, 9)];
1199 T1u = FMA(T9, T1s, Te * T1t);
1200 T3g = FNMS(Te, T1s, T9 * T1t);
1201 T1F = ri[WS(rs, 19)];
1202 T1H = ii[WS(rs, 19)];
1203 T1I = FMA(T1E, T1F, T1G * T1H);
1204 T3k = FNMS(T1G, T1F, T1E * T1H);
1205 }
1206 {
1207 E T1v, T1w, T1A, T1C;
1208 T1v = ri[WS(rs, 24)];
1209 T1w = ii[WS(rs, 24)];
1210 T1x = FMA(Tn, T1v, To * T1w);
1211 T3h = FNMS(To, T1v, Tn * T1w);
1212 T1A = ri[WS(rs, 14)];
1213 T1C = ii[WS(rs, 14)];
1214 T1D = FMA(T1z, T1A, T1B * T1C);
1215 T3j = FNMS(T1B, T1A, T1z * T1C);
1216 }
1217 T3i = T3g - T3h;
1218 T3l = T3j - T3k;
1219 T3w = T1D - T1I;
1220 T3v = T1u - T1x;
1221 T3o = T3g + T3h;
1222 T3p = T3j + T3k;
1223 T3s = T3o + T3p;
1224 T1y = T1u + T1x;
1225 T1J = T1D + T1I;
1226 T1K = T1y + T1J;
1227 }
1228 T1L = T1r + T1K;
1229 T6h = T3r + T3s;
1230 {
1231 E T3m, T5f, T3f, T5e, T3d, T3e;
1232 T3m = FMA(KP951056516, T3i, KP587785252 * T3l);
1233 T5f = FNMS(KP587785252, T3i, KP951056516 * T3l);
1234 T3d = KP559016994 * (T1y - T1J);
1235 T3e = FNMS(KP250000000, T1K, T1r);
1236 T3f = T3d + T3e;
1237 T5e = T3e - T3d;
1238 T3n = T3f + T3m;
1239 T5Q = T5e + T5f;
1240 T4D = T3f - T3m;
1241 T5g = T5e - T5f;
1242 }
1243 {
1244 E T3x, T5b, T3u, T5c, T3q, T3t;
1245 T3x = FMA(KP951056516, T3v, KP587785252 * T3w);
1246 T5b = FNMS(KP587785252, T3v, KP951056516 * T3w);
1247 T3q = KP559016994 * (T3o - T3p);
1248 T3t = FNMS(KP250000000, T3s, T3r);
1249 T3u = T3q + T3t;
1250 T5c = T3t - T3q;
1251 T3y = T3u - T3x;
1252 T5P = T5c - T5b;
1253 T4E = T3x + T3u;
1254 T5d = T5b + T5c;
1255 }
1256 }
1257 {
1258 E T1P, T3P, T3G, T3J, T3U, T3T, T3M, T3N, T3Q, T20, T2b, T2c, T1N, T1O;
1259 T1N = ri[WS(rs, 2)];
1260 T1O = ii[WS(rs, 2)];
1261 T1P = FMA(T14, T1N, T16 * T1O);
1262 T3P = FNMS(T16, T1N, T14 * T1O);
1263 {
1264 E T1U, T3E, T2a, T3I, T1Z, T3F, T25, T3H;
1265 {
1266 E T1R, T1T, T27, T29;
1267 T1R = ri[WS(rs, 7)];
1268 T1T = ii[WS(rs, 7)];
1269 T1U = FMA(T1Q, T1R, T1S * T1T);
1270 T3E = FNMS(T1S, T1R, T1Q * T1T);
1271 T27 = ri[WS(rs, 17)];
1272 T29 = ii[WS(rs, 17)];
1273 T2a = FMA(T26, T27, T28 * T29);
1274 T3I = FNMS(T28, T27, T26 * T29);
1275 }
1276 {
1277 E T1W, T1Y, T22, T24;
1278 T1W = ri[WS(rs, 22)];
1279 T1Y = ii[WS(rs, 22)];
1280 T1Z = FMA(T1V, T1W, T1X * T1Y);
1281 T3F = FNMS(T1X, T1W, T1V * T1Y);
1282 T22 = ri[WS(rs, 12)];
1283 T24 = ii[WS(rs, 12)];
1284 T25 = FMA(T21, T22, T23 * T24);
1285 T3H = FNMS(T23, T22, T21 * T24);
1286 }
1287 T3G = T3E - T3F;
1288 T3J = T3H - T3I;
1289 T3U = T25 - T2a;
1290 T3T = T1U - T1Z;
1291 T3M = T3E + T3F;
1292 T3N = T3H + T3I;
1293 T3Q = T3M + T3N;
1294 T20 = T1U + T1Z;
1295 T2b = T25 + T2a;
1296 T2c = T20 + T2b;
1297 }
1298 T2d = T1P + T2c;
1299 T6j = T3P + T3Q;
1300 {
1301 E T3K, T5k, T3D, T5j, T3B, T3C;
1302 T3K = FMA(KP951056516, T3G, KP587785252 * T3J);
1303 T5k = FNMS(KP587785252, T3G, KP951056516 * T3J);
1304 T3B = KP559016994 * (T20 - T2b);
1305 T3C = FNMS(KP250000000, T2c, T1P);
1306 T3D = T3B + T3C;
1307 T5j = T3C - T3B;
1308 T3L = T3D + T3K;
1309 T5T = T5j + T5k;
1310 T4I = T3D - T3K;
1311 T5l = T5j - T5k;
1312 }
1313 {
1314 E T3V, T5m, T3S, T5n, T3O, T3R;
1315 T3V = FMA(KP951056516, T3T, KP587785252 * T3U);
1316 T5m = FNMS(KP587785252, T3T, KP951056516 * T3U);
1317 T3O = KP559016994 * (T3M - T3N);
1318 T3R = FNMS(KP250000000, T3Q, T3P);
1319 T3S = T3O + T3R;
1320 T5n = T3R - T3O;
1321 T3W = T3S - T3V;
1322 T5U = T5n - T5m;
1323 T4H = T3V + T3S;
1324 T5o = T5m + T5n;
1325 }
1326 }
1327 {
1328 E T6m, T6o, TL, T2E, T6d, T6e, T6n, T6f;
1329 {
1330 E T6i, T6l, T1M, T2D;
1331 T6i = T6g - T6h;
1332 T6l = T6j - T6k;
1333 T6m = FMA(KP951056516, T6i, KP587785252 * T6l);
1334 T6o = FNMS(KP587785252, T6i, KP951056516 * T6l);
1335 TL = T1 + TK;
1336 T1M = T1o + T1L;
1337 T2D = T2d + T2C;
1338 T2E = T1M + T2D;
1339 T6d = KP559016994 * (T1M - T2D);
1340 T6e = FNMS(KP250000000, T2E, TL);
1341 }
1342 ri[0] = TL + T2E;
1343 T6n = T6e - T6d;
1344 ri[WS(rs, 10)] = T6n - T6o;
1345 ri[WS(rs, 15)] = T6n + T6o;
1346 T6f = T6d + T6e;
1347 ri[WS(rs, 20)] = T6f - T6m;
1348 ri[WS(rs, 5)] = T6f + T6m;
1349 }
1350 {
1351 E T6C, T6D, T6w, T6r, T6x, T6y, T6E, T6z;
1352 {
1353 E T6A, T6B, T6p, T6q;
1354 T6A = T1o - T1L;
1355 T6B = T2d - T2C;
1356 T6C = FMA(KP951056516, T6A, KP587785252 * T6B);
1357 T6D = FNMS(KP587785252, T6A, KP951056516 * T6B);
1358 T6w = T6u + T6v;
1359 T6p = T6g + T6h;
1360 T6q = T6j + T6k;
1361 T6r = T6p + T6q;
1362 T6x = KP559016994 * (T6p - T6q);
1363 T6y = FNMS(KP250000000, T6r, T6w);
1364 }
1365 ii[0] = T6r + T6w;
1366 T6E = T6y - T6x;
1367 ii[WS(rs, 10)] = T6D + T6E;
1368 ii[WS(rs, 15)] = T6E - T6D;
1369 T6z = T6x + T6y;
1370 ii[WS(rs, 5)] = T6z - T6C;
1371 ii[WS(rs, 20)] = T6C + T6z;
1372 }
1373 {
1374 E T2P, T4z, T6O, T70, T4m, T6T, T4n, T6S, T4U, T71, T4X, T6Z, T4O, T75, T4P;
1375 E T74, T4s, T6P, T4v, T6H, T2H, T6K;
1376 T2H = T2F + T2G;
1377 T2P = T2H + T2O;
1378 T4z = T2H - T2O;
1379 T6K = T6I + T6J;
1380 T6O = T6K - T6N;
1381 T70 = T6N + T6K;
1382 {
1383 E T3c, T3z, T3A, T3X, T4k, T4l;
1384 T3c = FMA(KP968583161, T30, KP248689887 * T3b);
1385 T3z = FMA(KP535826794, T3n, KP844327925 * T3y);
1386 T3A = T3c + T3z;
1387 T3X = FMA(KP876306680, T3L, KP481753674 * T3W);
1388 T4k = FMA(KP728968627, T48, KP684547105 * T4j);
1389 T4l = T3X + T4k;
1390 T4m = T3A + T4l;
1391 T6T = T3X - T4k;
1392 T4n = KP559016994 * (T3A - T4l);
1393 T6S = T3c - T3z;
1394 }
1395 {
1396 E T4S, T4T, T6X, T4V, T4W, T6Y;
1397 T4S = FNMS(KP844327925, T4A, KP535826794 * T4B);
1398 T4T = FNMS(KP637423989, T4E, KP770513242 * T4D);
1399 T6X = T4S + T4T;
1400 T4V = FMA(KP125333233, T4L, KP992114701 * T4K);
1401 T4W = FMA(KP904827052, T4I, KP425779291 * T4H);
1402 T6Y = T4W + T4V;
1403 T4U = T4S - T4T;
1404 T71 = KP559016994 * (T6X + T6Y);
1405 T4X = T4V - T4W;
1406 T6Z = T6X - T6Y;
1407 }
1408 {
1409 E T4C, T4F, T4G, T4J, T4M, T4N;
1410 T4C = FMA(KP535826794, T4A, KP844327925 * T4B);
1411 T4F = FMA(KP637423989, T4D, KP770513242 * T4E);
1412 T4G = T4C - T4F;
1413 T4J = FNMS(KP425779291, T4I, KP904827052 * T4H);
1414 T4M = FNMS(KP992114701, T4L, KP125333233 * T4K);
1415 T4N = T4J + T4M;
1416 T4O = T4G + T4N;
1417 T75 = T4J - T4M;
1418 T4P = KP559016994 * (T4G - T4N);
1419 T74 = T4C + T4F;
1420 }
1421 {
1422 E T4q, T4r, T6F, T4t, T4u, T6G;
1423 T4q = FNMS(KP248689887, T30, KP968583161 * T3b);
1424 T4r = FNMS(KP844327925, T3n, KP535826794 * T3y);
1425 T6F = T4q + T4r;
1426 T4t = FNMS(KP481753674, T3L, KP876306680 * T3W);
1427 T4u = FNMS(KP684547105, T48, KP728968627 * T4j);
1428 T6G = T4t + T4u;
1429 T4s = T4q - T4r;
1430 T6P = KP559016994 * (T6F - T6G);
1431 T4v = T4t - T4u;
1432 T6H = T6F + T6G;
1433 }
1434 ri[WS(rs, 1)] = T2P + T4m;
1435 ii[WS(rs, 1)] = T6H + T6O;
1436 ri[WS(rs, 4)] = T4z + T4O;
1437 ii[WS(rs, 4)] = T6Z + T70;
1438 {
1439 E T4w, T4y, T4p, T4x, T4o;
1440 T4w = FMA(KP951056516, T4s, KP587785252 * T4v);
1441 T4y = FNMS(KP587785252, T4s, KP951056516 * T4v);
1442 T4o = FNMS(KP250000000, T4m, T2P);
1443 T4p = T4n + T4o;
1444 T4x = T4o - T4n;
1445 ri[WS(rs, 21)] = T4p - T4w;
1446 ri[WS(rs, 16)] = T4x + T4y;
1447 ri[WS(rs, 6)] = T4p + T4w;
1448 ri[WS(rs, 11)] = T4x - T4y;
1449 }
1450 {
1451 E T6U, T6V, T6R, T6W, T6Q;
1452 T6U = FMA(KP951056516, T6S, KP587785252 * T6T);
1453 T6V = FNMS(KP587785252, T6S, KP951056516 * T6T);
1454 T6Q = FNMS(KP250000000, T6H, T6O);
1455 T6R = T6P + T6Q;
1456 T6W = T6Q - T6P;
1457 ii[WS(rs, 6)] = T6R - T6U;
1458 ii[WS(rs, 16)] = T6W - T6V;
1459 ii[WS(rs, 21)] = T6U + T6R;
1460 ii[WS(rs, 11)] = T6V + T6W;
1461 }
1462 {
1463 E T4Y, T50, T4R, T4Z, T4Q;
1464 T4Y = FMA(KP951056516, T4U, KP587785252 * T4X);
1465 T50 = FNMS(KP587785252, T4U, KP951056516 * T4X);
1466 T4Q = FNMS(KP250000000, T4O, T4z);
1467 T4R = T4P + T4Q;
1468 T4Z = T4Q - T4P;
1469 ri[WS(rs, 24)] = T4R - T4Y;
1470 ri[WS(rs, 19)] = T4Z + T50;
1471 ri[WS(rs, 9)] = T4R + T4Y;
1472 ri[WS(rs, 14)] = T4Z - T50;
1473 }
1474 {
1475 E T76, T77, T73, T78, T72;
1476 T76 = FMA(KP951056516, T74, KP587785252 * T75);
1477 T77 = FNMS(KP587785252, T74, KP951056516 * T75);
1478 T72 = FNMS(KP250000000, T6Z, T70);
1479 T73 = T71 + T72;
1480 T78 = T72 - T71;
1481 ii[WS(rs, 9)] = T73 - T76;
1482 ii[WS(rs, 19)] = T78 - T77;
1483 ii[WS(rs, 24)] = T76 + T73;
1484 ii[WS(rs, 14)] = T77 + T78;
1485 }
1486 }
1487 {
1488 E T53, T5L, T7e, T7q, T5y, T7j, T5z, T7i, T66, T7r, T69, T7p, T60, T7v, T61;
1489 E T7u, T5E, T7f, T5H, T7b, T51, T7d;
1490 T51 = T2G - T2F;
1491 T53 = T51 - T52;
1492 T5L = T51 + T52;
1493 T7d = T6J - T6I;
1494 T7e = T7c + T7d;
1495 T7q = T7d - T7c;
1496 {
1497 E T5a, T5h, T5i, T5p, T5w, T5x;
1498 T5a = FMA(KP876306680, T56, KP481753674 * T59);
1499 T5h = FNMS(KP425779291, T5g, KP904827052 * T5d);
1500 T5i = T5a + T5h;
1501 T5p = FMA(KP535826794, T5l, KP844327925 * T5o);
1502 T5w = FMA(KP062790519, T5s, KP998026728 * T5v);
1503 T5x = T5p + T5w;
1504 T5y = T5i + T5x;
1505 T7j = T5p - T5w;
1506 T5z = KP559016994 * (T5i - T5x);
1507 T7i = T5a - T5h;
1508 }
1509 {
1510 E T64, T65, T7n, T67, T68, T7o;
1511 T64 = FNMS(KP684547105, T5M, KP728968627 * T5N);
1512 T65 = FMA(KP125333233, T5Q, KP992114701 * T5P);
1513 T7n = T64 - T65;
1514 T67 = FNMS(KP998026728, T5T, KP062790519 * T5U);
1515 T68 = FMA(KP770513242, T5X, KP637423989 * T5W);
1516 T7o = T67 - T68;
1517 T66 = T64 + T65;
1518 T7r = KP559016994 * (T7n - T7o);
1519 T69 = T67 + T68;
1520 T7p = T7n + T7o;
1521 }
1522 {
1523 E T5O, T5R, T5S, T5V, T5Y, T5Z;
1524 T5O = FMA(KP728968627, T5M, KP684547105 * T5N);
1525 T5R = FNMS(KP992114701, T5Q, KP125333233 * T5P);
1526 T5S = T5O + T5R;
1527 T5V = FMA(KP062790519, T5T, KP998026728 * T5U);
1528 T5Y = FNMS(KP637423989, T5X, KP770513242 * T5W);
1529 T5Z = T5V + T5Y;
1530 T60 = T5S + T5Z;
1531 T7v = T5V - T5Y;
1532 T61 = KP559016994 * (T5S - T5Z);
1533 T7u = T5O - T5R;
1534 }
1535 {
1536 E T5C, T5D, T79, T5F, T5G, T7a;
1537 T5C = FNMS(KP481753674, T56, KP876306680 * T59);
1538 T5D = FMA(KP904827052, T5g, KP425779291 * T5d);
1539 T79 = T5C - T5D;
1540 T5F = FNMS(KP844327925, T5l, KP535826794 * T5o);
1541 T5G = FNMS(KP998026728, T5s, KP062790519 * T5v);
1542 T7a = T5F + T5G;
1543 T5E = T5C + T5D;
1544 T7f = KP559016994 * (T79 - T7a);
1545 T5H = T5F - T5G;
1546 T7b = T79 + T7a;
1547 }
1548 ri[WS(rs, 2)] = T53 + T5y;
1549 ii[WS(rs, 2)] = T7b + T7e;
1550 ri[WS(rs, 3)] = T5L + T60;
1551 ii[WS(rs, 3)] = T7p + T7q;
1552 {
1553 E T5I, T5K, T5B, T5J, T5A;
1554 T5I = FMA(KP951056516, T5E, KP587785252 * T5H);
1555 T5K = FNMS(KP587785252, T5E, KP951056516 * T5H);
1556 T5A = FNMS(KP250000000, T5y, T53);
1557 T5B = T5z + T5A;
1558 T5J = T5A - T5z;
1559 ri[WS(rs, 22)] = T5B - T5I;
1560 ri[WS(rs, 17)] = T5J + T5K;
1561 ri[WS(rs, 7)] = T5B + T5I;
1562 ri[WS(rs, 12)] = T5J - T5K;
1563 }
1564 {
1565 E T7k, T7l, T7h, T7m, T7g;
1566 T7k = FMA(KP951056516, T7i, KP587785252 * T7j);
1567 T7l = FNMS(KP587785252, T7i, KP951056516 * T7j);
1568 T7g = FNMS(KP250000000, T7b, T7e);
1569 T7h = T7f + T7g;
1570 T7m = T7g - T7f;
1571 ii[WS(rs, 7)] = T7h - T7k;
1572 ii[WS(rs, 17)] = T7m - T7l;
1573 ii[WS(rs, 22)] = T7k + T7h;
1574 ii[WS(rs, 12)] = T7l + T7m;
1575 }
1576 {
1577 E T6a, T6c, T63, T6b, T62;
1578 T6a = FMA(KP951056516, T66, KP587785252 * T69);
1579 T6c = FNMS(KP587785252, T66, KP951056516 * T69);
1580 T62 = FNMS(KP250000000, T60, T5L);
1581 T63 = T61 + T62;
1582 T6b = T62 - T61;
1583 ri[WS(rs, 23)] = T63 - T6a;
1584 ri[WS(rs, 18)] = T6b + T6c;
1585 ri[WS(rs, 8)] = T63 + T6a;
1586 ri[WS(rs, 13)] = T6b - T6c;
1587 }
1588 {
1589 E T7w, T7x, T7t, T7y, T7s;
1590 T7w = FMA(KP951056516, T7u, KP587785252 * T7v);
1591 T7x = FNMS(KP587785252, T7u, KP951056516 * T7v);
1592 T7s = FNMS(KP250000000, T7p, T7q);
1593 T7t = T7r + T7s;
1594 T7y = T7s - T7r;
1595 ii[WS(rs, 8)] = T7t - T7w;
1596 ii[WS(rs, 18)] = T7y - T7x;
1597 ii[WS(rs, 23)] = T7w + T7t;
1598 ii[WS(rs, 13)] = T7x + T7y;
1599 }
1600 }
1601 }
1602 }
1603 }
1604 }
1605
1606 static const tw_instr twinstr[] = {
1607 {TW_CEXP, 0, 1},
1608 {TW_CEXP, 0, 3},
1609 {TW_CEXP, 0, 9},
1610 {TW_CEXP, 0, 24},
1611 {TW_NEXT, 1, 0}
1612 };
1613
1614 static const ct_desc desc = { 25, "t2_25", twinstr, &GENUS, {280, 180, 160, 0}, 0, 0, 0 };
1615
1616 void X(codelet_t2_25) (planner *p) {
1617 X(kdft_dit_register) (p, t2_25, &desc);
1618 }
1619 #endif /* HAVE_FMA */