Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.3/dft/scalar/codelets/t1_6.c @ 95:89f5e221ed7b
Add FFTW3
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
94:d278df1123f9 | 95:89f5e221ed7b |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-11 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Sun Nov 25 07:35:48 EST 2012 */ | |
23 | |
24 #include "codelet-dft.h" | |
25 | |
26 #ifdef HAVE_FMA | |
27 | |
28 /* Generated by: ../../../genfft/gen_twiddle.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 6 -name t1_6 -include t.h */ | |
29 | |
30 /* | |
31 * This function contains 46 FP additions, 32 FP multiplications, | |
32 * (or, 24 additions, 10 multiplications, 22 fused multiply/add), | |
33 * 47 stack variables, 2 constants, and 24 memory accesses | |
34 */ | |
35 #include "t.h" | |
36 | |
37 static void t1_6(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
38 { | |
39 DK(KP866025403, +0.866025403784438646763723170752936183471402627); | |
40 DK(KP500000000, +0.500000000000000000000000000000000000000000000); | |
41 { | |
42 INT m; | |
43 for (m = mb, W = W + (mb * 10); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 10, MAKE_VOLATILE_STRIDE(12, rs)) { | |
44 E TY, TU, T10, TZ; | |
45 { | |
46 E T1, TX, TW, T7, Tn, Tq, TJ, TR, TB, Tl, To, TK, Tt, Tw, Ts; | |
47 E Tp, Tv; | |
48 T1 = ri[0]; | |
49 TX = ii[0]; | |
50 { | |
51 E T3, T6, T2, T5; | |
52 T3 = ri[WS(rs, 3)]; | |
53 T6 = ii[WS(rs, 3)]; | |
54 T2 = W[4]; | |
55 T5 = W[5]; | |
56 { | |
57 E Ta, Td, Tg, TF, Tb, Tj, Tf, Tc, Ti, TV, T4, T9; | |
58 Ta = ri[WS(rs, 2)]; | |
59 Td = ii[WS(rs, 2)]; | |
60 TV = T2 * T6; | |
61 T4 = T2 * T3; | |
62 T9 = W[2]; | |
63 Tg = ri[WS(rs, 5)]; | |
64 TW = FNMS(T5, T3, TV); | |
65 T7 = FMA(T5, T6, T4); | |
66 TF = T9 * Td; | |
67 Tb = T9 * Ta; | |
68 Tj = ii[WS(rs, 5)]; | |
69 Tf = W[8]; | |
70 Tc = W[3]; | |
71 Ti = W[9]; | |
72 { | |
73 E TG, Te, TI, Tk, TH, Th, Tm; | |
74 Tn = ri[WS(rs, 4)]; | |
75 TH = Tf * Tj; | |
76 Th = Tf * Tg; | |
77 TG = FNMS(Tc, Ta, TF); | |
78 Te = FMA(Tc, Td, Tb); | |
79 TI = FNMS(Ti, Tg, TH); | |
80 Tk = FMA(Ti, Tj, Th); | |
81 Tq = ii[WS(rs, 4)]; | |
82 Tm = W[6]; | |
83 TJ = TG - TI; | |
84 TR = TG + TI; | |
85 TB = Te + Tk; | |
86 Tl = Te - Tk; | |
87 To = Tm * Tn; | |
88 TK = Tm * Tq; | |
89 } | |
90 Tt = ri[WS(rs, 1)]; | |
91 Tw = ii[WS(rs, 1)]; | |
92 Ts = W[0]; | |
93 Tp = W[7]; | |
94 Tv = W[1]; | |
95 } | |
96 } | |
97 { | |
98 E TA, T8, TL, Tr, TN, Tx, T11, TM, Tu; | |
99 TA = T1 + T7; | |
100 T8 = T1 - T7; | |
101 TM = Ts * Tw; | |
102 Tu = Ts * Tt; | |
103 TL = FNMS(Tp, Tn, TK); | |
104 Tr = FMA(Tp, Tq, To); | |
105 TN = FNMS(Tv, Tt, TM); | |
106 Tx = FMA(Tv, Tw, Tu); | |
107 T11 = TX - TW; | |
108 TY = TW + TX; | |
109 { | |
110 E TP, TT, TD, TE, TQ, Tz, T14, T13; | |
111 { | |
112 E TO, TS, TC, Ty, T12; | |
113 TO = TL - TN; | |
114 TS = TL + TN; | |
115 TC = Tr + Tx; | |
116 Ty = Tr - Tx; | |
117 T12 = TJ + TO; | |
118 TP = TJ - TO; | |
119 TT = TR - TS; | |
120 TU = TR + TS; | |
121 Tz = Tl + Ty; | |
122 T14 = Ty - Tl; | |
123 ii[WS(rs, 3)] = T12 + T11; | |
124 T13 = FNMS(KP500000000, T12, T11); | |
125 T10 = TC - TB; | |
126 TD = TB + TC; | |
127 } | |
128 ri[WS(rs, 3)] = T8 + Tz; | |
129 TE = FNMS(KP500000000, Tz, T8); | |
130 ii[WS(rs, 5)] = FNMS(KP866025403, T14, T13); | |
131 ii[WS(rs, 1)] = FMA(KP866025403, T14, T13); | |
132 TQ = FNMS(KP500000000, TD, TA); | |
133 ri[WS(rs, 5)] = FNMS(KP866025403, TP, TE); | |
134 ri[WS(rs, 1)] = FMA(KP866025403, TP, TE); | |
135 ri[0] = TA + TD; | |
136 ri[WS(rs, 4)] = FMA(KP866025403, TT, TQ); | |
137 ri[WS(rs, 2)] = FNMS(KP866025403, TT, TQ); | |
138 } | |
139 } | |
140 } | |
141 ii[0] = TU + TY; | |
142 TZ = FNMS(KP500000000, TU, TY); | |
143 ii[WS(rs, 2)] = FNMS(KP866025403, T10, TZ); | |
144 ii[WS(rs, 4)] = FMA(KP866025403, T10, TZ); | |
145 } | |
146 } | |
147 } | |
148 | |
149 static const tw_instr twinstr[] = { | |
150 {TW_FULL, 0, 6}, | |
151 {TW_NEXT, 1, 0} | |
152 }; | |
153 | |
154 static const ct_desc desc = { 6, "t1_6", twinstr, &GENUS, {24, 10, 22, 0}, 0, 0, 0 }; | |
155 | |
156 void X(codelet_t1_6) (planner *p) { | |
157 X(kdft_dit_register) (p, t1_6, &desc); | |
158 } | |
159 #else /* HAVE_FMA */ | |
160 | |
161 /* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -n 6 -name t1_6 -include t.h */ | |
162 | |
163 /* | |
164 * This function contains 46 FP additions, 28 FP multiplications, | |
165 * (or, 32 additions, 14 multiplications, 14 fused multiply/add), | |
166 * 23 stack variables, 2 constants, and 24 memory accesses | |
167 */ | |
168 #include "t.h" | |
169 | |
170 static void t1_6(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
171 { | |
172 DK(KP500000000, +0.500000000000000000000000000000000000000000000); | |
173 DK(KP866025403, +0.866025403784438646763723170752936183471402627); | |
174 { | |
175 INT m; | |
176 for (m = mb, W = W + (mb * 10); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 10, MAKE_VOLATILE_STRIDE(12, rs)) { | |
177 E T7, TS, Tv, TO, Tt, TJ, Tx, TF, Ti, TI, Tw, TC; | |
178 { | |
179 E T1, TN, T6, TM; | |
180 T1 = ri[0]; | |
181 TN = ii[0]; | |
182 { | |
183 E T3, T5, T2, T4; | |
184 T3 = ri[WS(rs, 3)]; | |
185 T5 = ii[WS(rs, 3)]; | |
186 T2 = W[4]; | |
187 T4 = W[5]; | |
188 T6 = FMA(T2, T3, T4 * T5); | |
189 TM = FNMS(T4, T3, T2 * T5); | |
190 } | |
191 T7 = T1 - T6; | |
192 TS = TN - TM; | |
193 Tv = T1 + T6; | |
194 TO = TM + TN; | |
195 } | |
196 { | |
197 E Tn, TD, Ts, TE; | |
198 { | |
199 E Tk, Tm, Tj, Tl; | |
200 Tk = ri[WS(rs, 4)]; | |
201 Tm = ii[WS(rs, 4)]; | |
202 Tj = W[6]; | |
203 Tl = W[7]; | |
204 Tn = FMA(Tj, Tk, Tl * Tm); | |
205 TD = FNMS(Tl, Tk, Tj * Tm); | |
206 } | |
207 { | |
208 E Tp, Tr, To, Tq; | |
209 Tp = ri[WS(rs, 1)]; | |
210 Tr = ii[WS(rs, 1)]; | |
211 To = W[0]; | |
212 Tq = W[1]; | |
213 Ts = FMA(To, Tp, Tq * Tr); | |
214 TE = FNMS(Tq, Tp, To * Tr); | |
215 } | |
216 Tt = Tn - Ts; | |
217 TJ = TD + TE; | |
218 Tx = Tn + Ts; | |
219 TF = TD - TE; | |
220 } | |
221 { | |
222 E Tc, TA, Th, TB; | |
223 { | |
224 E T9, Tb, T8, Ta; | |
225 T9 = ri[WS(rs, 2)]; | |
226 Tb = ii[WS(rs, 2)]; | |
227 T8 = W[2]; | |
228 Ta = W[3]; | |
229 Tc = FMA(T8, T9, Ta * Tb); | |
230 TA = FNMS(Ta, T9, T8 * Tb); | |
231 } | |
232 { | |
233 E Te, Tg, Td, Tf; | |
234 Te = ri[WS(rs, 5)]; | |
235 Tg = ii[WS(rs, 5)]; | |
236 Td = W[8]; | |
237 Tf = W[9]; | |
238 Th = FMA(Td, Te, Tf * Tg); | |
239 TB = FNMS(Tf, Te, Td * Tg); | |
240 } | |
241 Ti = Tc - Th; | |
242 TI = TA + TB; | |
243 Tw = Tc + Th; | |
244 TC = TA - TB; | |
245 } | |
246 { | |
247 E TG, Tu, Tz, TR, TT, TU; | |
248 TG = KP866025403 * (TC - TF); | |
249 Tu = Ti + Tt; | |
250 Tz = FNMS(KP500000000, Tu, T7); | |
251 ri[WS(rs, 3)] = T7 + Tu; | |
252 ri[WS(rs, 1)] = Tz + TG; | |
253 ri[WS(rs, 5)] = Tz - TG; | |
254 TR = KP866025403 * (Tt - Ti); | |
255 TT = TC + TF; | |
256 TU = FNMS(KP500000000, TT, TS); | |
257 ii[WS(rs, 1)] = TR + TU; | |
258 ii[WS(rs, 3)] = TT + TS; | |
259 ii[WS(rs, 5)] = TU - TR; | |
260 } | |
261 { | |
262 E TK, Ty, TH, TQ, TL, TP; | |
263 TK = KP866025403 * (TI - TJ); | |
264 Ty = Tw + Tx; | |
265 TH = FNMS(KP500000000, Ty, Tv); | |
266 ri[0] = Tv + Ty; | |
267 ri[WS(rs, 4)] = TH + TK; | |
268 ri[WS(rs, 2)] = TH - TK; | |
269 TQ = KP866025403 * (Tx - Tw); | |
270 TL = TI + TJ; | |
271 TP = FNMS(KP500000000, TL, TO); | |
272 ii[0] = TL + TO; | |
273 ii[WS(rs, 4)] = TQ + TP; | |
274 ii[WS(rs, 2)] = TP - TQ; | |
275 } | |
276 } | |
277 } | |
278 } | |
279 | |
280 static const tw_instr twinstr[] = { | |
281 {TW_FULL, 0, 6}, | |
282 {TW_NEXT, 1, 0} | |
283 }; | |
284 | |
285 static const ct_desc desc = { 6, "t1_6", twinstr, &GENUS, {32, 14, 14, 0}, 0, 0, 0 }; | |
286 | |
287 void X(codelet_t1_6) (planner *p) { | |
288 X(kdft_dit_register) (p, t1_6, &desc); | |
289 } | |
290 #endif /* HAVE_FMA */ |