comparison src/fftw-3.3.3/dft/scalar/codelets/t1_16.c @ 95:89f5e221ed7b

Add FFTW3
author Chris Cannam <cannam@all-day-breakfast.com>
date Wed, 20 Mar 2013 15:35:50 +0000
parents
children
comparison
equal deleted inserted replaced
94:d278df1123f9 95:89f5e221ed7b
1 /*
2 * Copyright (c) 2003, 2007-11 Matteo Frigo
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 */
20
21 /* This file was automatically generated --- DO NOT EDIT */
22 /* Generated on Sun Nov 25 07:35:51 EST 2012 */
23
24 #include "codelet-dft.h"
25
26 #ifdef HAVE_FMA
27
28 /* Generated by: ../../../genfft/gen_twiddle.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 16 -name t1_16 -include t.h */
29
30 /*
31 * This function contains 174 FP additions, 100 FP multiplications,
32 * (or, 104 additions, 30 multiplications, 70 fused multiply/add),
33 * 97 stack variables, 3 constants, and 64 memory accesses
34 */
35 #include "t.h"
36
37 static void t1_16(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
38 {
39 DK(KP923879532, +0.923879532511286756128183189396788286822416626);
40 DK(KP414213562, +0.414213562373095048801688724209698078569671875);
41 DK(KP707106781, +0.707106781186547524400844362104849039284835938);
42 {
43 INT m;
44 for (m = mb, W = W + (mb * 30); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 30, MAKE_VOLATILE_STRIDE(32, rs)) {
45 E T3G, T3F;
46 {
47 E T3z, T3o, T8, T1I, T2o, T35, T2r, T1s, T2w, T36, T2p, T1F, T3k, T1N, T3A;
48 E Tl, T1T, T2V, T1U, Tz, T29, T30, T2c, T11, TB, TE, T2h, T31, T2a, T1e;
49 E TC, T1X, TH, TK, TG, TD, TJ;
50 {
51 E Ta, Td, Tb, T1J, Tg, Tj, Tf, Tc, Ti;
52 {
53 E T1h, T1k, T1n, T2k, T1i, T1q, T1m, T1j, T1p;
54 {
55 E T1, T3n, T3, T6, T2, T5;
56 T1 = ri[0];
57 T3n = ii[0];
58 T3 = ri[WS(rs, 8)];
59 T6 = ii[WS(rs, 8)];
60 T2 = W[14];
61 T5 = W[15];
62 {
63 E T3l, T4, T1g, T3m, T7;
64 T1h = ri[WS(rs, 15)];
65 T1k = ii[WS(rs, 15)];
66 T3l = T2 * T6;
67 T4 = T2 * T3;
68 T1g = W[28];
69 T1n = ri[WS(rs, 7)];
70 T3m = FNMS(T5, T3, T3l);
71 T7 = FMA(T5, T6, T4);
72 T2k = T1g * T1k;
73 T1i = T1g * T1h;
74 T3z = T3n - T3m;
75 T3o = T3m + T3n;
76 T8 = T1 + T7;
77 T1I = T1 - T7;
78 T1q = ii[WS(rs, 7)];
79 T1m = W[12];
80 }
81 T1j = W[29];
82 T1p = W[13];
83 }
84 {
85 E T1u, T1x, T1v, T2s, T1A, T1D, T1z, T1w, T1C;
86 {
87 E T2l, T1l, T2n, T1r, T2m, T1o, T1t;
88 T1u = ri[WS(rs, 3)];
89 T2m = T1m * T1q;
90 T1o = T1m * T1n;
91 T2l = FNMS(T1j, T1h, T2k);
92 T1l = FMA(T1j, T1k, T1i);
93 T2n = FNMS(T1p, T1n, T2m);
94 T1r = FMA(T1p, T1q, T1o);
95 T1x = ii[WS(rs, 3)];
96 T1t = W[4];
97 T2o = T2l - T2n;
98 T35 = T2l + T2n;
99 T2r = T1l - T1r;
100 T1s = T1l + T1r;
101 T1v = T1t * T1u;
102 T2s = T1t * T1x;
103 }
104 T1A = ri[WS(rs, 11)];
105 T1D = ii[WS(rs, 11)];
106 T1z = W[20];
107 T1w = W[5];
108 T1C = W[21];
109 {
110 E T2t, T1y, T2v, T1E, T2u, T1B, T9;
111 Ta = ri[WS(rs, 4)];
112 T2u = T1z * T1D;
113 T1B = T1z * T1A;
114 T2t = FNMS(T1w, T1u, T2s);
115 T1y = FMA(T1w, T1x, T1v);
116 T2v = FNMS(T1C, T1A, T2u);
117 T1E = FMA(T1C, T1D, T1B);
118 Td = ii[WS(rs, 4)];
119 T9 = W[6];
120 T2w = T2t - T2v;
121 T36 = T2t + T2v;
122 T2p = T1y - T1E;
123 T1F = T1y + T1E;
124 Tb = T9 * Ta;
125 T1J = T9 * Td;
126 }
127 Tg = ri[WS(rs, 12)];
128 Tj = ii[WS(rs, 12)];
129 Tf = W[22];
130 Tc = W[7];
131 Ti = W[23];
132 }
133 }
134 {
135 E TQ, TT, TR, T25, TW, TZ, TV, TS, TY;
136 {
137 E To, Tr, Tp, T1P, Tu, Tx, Tt, Tq, Tw;
138 {
139 E T1K, Te, T1M, Tk, T1L, Th, Tn;
140 To = ri[WS(rs, 2)];
141 T1L = Tf * Tj;
142 Th = Tf * Tg;
143 T1K = FNMS(Tc, Ta, T1J);
144 Te = FMA(Tc, Td, Tb);
145 T1M = FNMS(Ti, Tg, T1L);
146 Tk = FMA(Ti, Tj, Th);
147 Tr = ii[WS(rs, 2)];
148 Tn = W[2];
149 T3k = T1K + T1M;
150 T1N = T1K - T1M;
151 T3A = Te - Tk;
152 Tl = Te + Tk;
153 Tp = Tn * To;
154 T1P = Tn * Tr;
155 }
156 Tu = ri[WS(rs, 10)];
157 Tx = ii[WS(rs, 10)];
158 Tt = W[18];
159 Tq = W[3];
160 Tw = W[19];
161 {
162 E T1Q, Ts, T1S, Ty, T1R, Tv, TP;
163 TQ = ri[WS(rs, 1)];
164 T1R = Tt * Tx;
165 Tv = Tt * Tu;
166 T1Q = FNMS(Tq, To, T1P);
167 Ts = FMA(Tq, Tr, Tp);
168 T1S = FNMS(Tw, Tu, T1R);
169 Ty = FMA(Tw, Tx, Tv);
170 TT = ii[WS(rs, 1)];
171 TP = W[0];
172 T1T = T1Q - T1S;
173 T2V = T1Q + T1S;
174 T1U = Ts - Ty;
175 Tz = Ts + Ty;
176 TR = TP * TQ;
177 T25 = TP * TT;
178 }
179 TW = ri[WS(rs, 9)];
180 TZ = ii[WS(rs, 9)];
181 TV = W[16];
182 TS = W[1];
183 TY = W[17];
184 }
185 {
186 E T13, T16, T14, T2d, T19, T1c, T18, T15, T1b;
187 {
188 E T26, TU, T28, T10, T27, TX, T12;
189 T13 = ri[WS(rs, 5)];
190 T27 = TV * TZ;
191 TX = TV * TW;
192 T26 = FNMS(TS, TQ, T25);
193 TU = FMA(TS, TT, TR);
194 T28 = FNMS(TY, TW, T27);
195 T10 = FMA(TY, TZ, TX);
196 T16 = ii[WS(rs, 5)];
197 T12 = W[8];
198 T29 = T26 - T28;
199 T30 = T26 + T28;
200 T2c = TU - T10;
201 T11 = TU + T10;
202 T14 = T12 * T13;
203 T2d = T12 * T16;
204 }
205 T19 = ri[WS(rs, 13)];
206 T1c = ii[WS(rs, 13)];
207 T18 = W[24];
208 T15 = W[9];
209 T1b = W[25];
210 {
211 E T2e, T17, T2g, T1d, T2f, T1a, TA;
212 TB = ri[WS(rs, 14)];
213 T2f = T18 * T1c;
214 T1a = T18 * T19;
215 T2e = FNMS(T15, T13, T2d);
216 T17 = FMA(T15, T16, T14);
217 T2g = FNMS(T1b, T19, T2f);
218 T1d = FMA(T1b, T1c, T1a);
219 TE = ii[WS(rs, 14)];
220 TA = W[26];
221 T2h = T2e - T2g;
222 T31 = T2e + T2g;
223 T2a = T17 - T1d;
224 T1e = T17 + T1d;
225 TC = TA * TB;
226 T1X = TA * TE;
227 }
228 TH = ri[WS(rs, 6)];
229 TK = ii[WS(rs, 6)];
230 TG = W[10];
231 TD = W[27];
232 TJ = W[11];
233 }
234 }
235 }
236 {
237 E T2U, T3u, T2Z, T21, T1W, T34, T2X, T3f, T32, T3t, T1H, T3q, T3e, TO, T3g;
238 E T37, T3r, T3s, T3h, T3i;
239 {
240 E Tm, T1Y, TF, T20, TL, T3p, T1Z, TI;
241 T2U = T8 - Tl;
242 Tm = T8 + Tl;
243 T1Z = TG * TK;
244 TI = TG * TH;
245 T1Y = FNMS(TD, TB, T1X);
246 TF = FMA(TD, TE, TC);
247 T20 = FNMS(TJ, TH, T1Z);
248 TL = FMA(TJ, TK, TI);
249 T3p = T3k + T3o;
250 T3u = T3o - T3k;
251 {
252 E T1f, TM, T1G, T3j, T2W, TN;
253 T2Z = T11 - T1e;
254 T1f = T11 + T1e;
255 T21 = T1Y - T20;
256 T2W = T1Y + T20;
257 T1W = TF - TL;
258 TM = TF + TL;
259 T1G = T1s + T1F;
260 T34 = T1s - T1F;
261 T2X = T2V - T2W;
262 T3j = T2V + T2W;
263 T3f = T30 + T31;
264 T32 = T30 - T31;
265 T3t = TM - Tz;
266 TN = Tz + TM;
267 T3r = T1G - T1f;
268 T1H = T1f + T1G;
269 T3s = T3p - T3j;
270 T3q = T3j + T3p;
271 T3e = Tm - TN;
272 TO = Tm + TN;
273 T3g = T35 + T36;
274 T37 = T35 - T36;
275 }
276 }
277 ii[WS(rs, 12)] = T3s - T3r;
278 ii[WS(rs, 4)] = T3r + T3s;
279 ri[0] = TO + T1H;
280 ri[WS(rs, 8)] = TO - T1H;
281 T3h = T3f - T3g;
282 T3i = T3f + T3g;
283 {
284 E T3a, T2Y, T3x, T3v, T3b, T33;
285 ii[0] = T3i + T3q;
286 ii[WS(rs, 8)] = T3q - T3i;
287 ri[WS(rs, 4)] = T3e + T3h;
288 ri[WS(rs, 12)] = T3e - T3h;
289 T3a = T2U - T2X;
290 T2Y = T2U + T2X;
291 T3x = T3u - T3t;
292 T3v = T3t + T3u;
293 T3b = T32 - T2Z;
294 T33 = T2Z + T32;
295 {
296 E T2E, T1O, T3B, T3H, T2x, T2q, T3C, T23, T2S, T2O, T2K, T2J, T3I, T2H, T2B;
297 E T2j;
298 {
299 E T2F, T1V, T22, T2G, T3c, T38;
300 T2E = T1I + T1N;
301 T1O = T1I - T1N;
302 T3B = T3z - T3A;
303 T3H = T3A + T3z;
304 T3c = T34 + T37;
305 T38 = T34 - T37;
306 T2F = T1U + T1T;
307 T1V = T1T - T1U;
308 {
309 E T3d, T3w, T3y, T39;
310 T3d = T3b - T3c;
311 T3w = T3b + T3c;
312 T3y = T38 - T33;
313 T39 = T33 + T38;
314 ri[WS(rs, 6)] = FMA(KP707106781, T3d, T3a);
315 ri[WS(rs, 14)] = FNMS(KP707106781, T3d, T3a);
316 ii[WS(rs, 10)] = FNMS(KP707106781, T3w, T3v);
317 ii[WS(rs, 2)] = FMA(KP707106781, T3w, T3v);
318 ii[WS(rs, 14)] = FNMS(KP707106781, T3y, T3x);
319 ii[WS(rs, 6)] = FMA(KP707106781, T3y, T3x);
320 ri[WS(rs, 2)] = FMA(KP707106781, T39, T2Y);
321 ri[WS(rs, 10)] = FNMS(KP707106781, T39, T2Y);
322 T22 = T1W + T21;
323 T2G = T1W - T21;
324 }
325 {
326 E T2M, T2N, T2b, T2i;
327 T2x = T2r - T2w;
328 T2M = T2r + T2w;
329 T2N = T2o - T2p;
330 T2q = T2o + T2p;
331 T3C = T1V + T22;
332 T23 = T1V - T22;
333 T2S = FMA(KP414213562, T2M, T2N);
334 T2O = FNMS(KP414213562, T2N, T2M);
335 T2K = T29 - T2a;
336 T2b = T29 + T2a;
337 T2i = T2c - T2h;
338 T2J = T2c + T2h;
339 T3I = T2G - T2F;
340 T2H = T2F + T2G;
341 T2B = FNMS(KP414213562, T2b, T2i);
342 T2j = FMA(KP414213562, T2i, T2b);
343 }
344 }
345 {
346 E T2R, T2L, T3L, T3M;
347 {
348 E T2A, T24, T2C, T2y, T3J, T3K, T2D, T2z;
349 T2A = FNMS(KP707106781, T23, T1O);
350 T24 = FMA(KP707106781, T23, T1O);
351 T2R = FNMS(KP414213562, T2J, T2K);
352 T2L = FMA(KP414213562, T2K, T2J);
353 T2C = FMA(KP414213562, T2q, T2x);
354 T2y = FNMS(KP414213562, T2x, T2q);
355 T3J = FMA(KP707106781, T3I, T3H);
356 T3L = FNMS(KP707106781, T3I, T3H);
357 T3K = T2C - T2B;
358 T2D = T2B + T2C;
359 T3M = T2j + T2y;
360 T2z = T2j - T2y;
361 ii[WS(rs, 11)] = FNMS(KP923879532, T3K, T3J);
362 ii[WS(rs, 3)] = FMA(KP923879532, T3K, T3J);
363 ri[WS(rs, 3)] = FMA(KP923879532, T2z, T24);
364 ri[WS(rs, 11)] = FNMS(KP923879532, T2z, T24);
365 ri[WS(rs, 15)] = FMA(KP923879532, T2D, T2A);
366 ri[WS(rs, 7)] = FNMS(KP923879532, T2D, T2A);
367 }
368 {
369 E T2Q, T3D, T3E, T2T, T2I, T2P;
370 T2Q = FNMS(KP707106781, T2H, T2E);
371 T2I = FMA(KP707106781, T2H, T2E);
372 T2P = T2L + T2O;
373 T3G = T2O - T2L;
374 T3F = FNMS(KP707106781, T3C, T3B);
375 T3D = FMA(KP707106781, T3C, T3B);
376 ii[WS(rs, 15)] = FMA(KP923879532, T3M, T3L);
377 ii[WS(rs, 7)] = FNMS(KP923879532, T3M, T3L);
378 ri[WS(rs, 1)] = FMA(KP923879532, T2P, T2I);
379 ri[WS(rs, 9)] = FNMS(KP923879532, T2P, T2I);
380 T3E = T2R + T2S;
381 T2T = T2R - T2S;
382 ii[WS(rs, 9)] = FNMS(KP923879532, T3E, T3D);
383 ii[WS(rs, 1)] = FMA(KP923879532, T3E, T3D);
384 ri[WS(rs, 5)] = FMA(KP923879532, T2T, T2Q);
385 ri[WS(rs, 13)] = FNMS(KP923879532, T2T, T2Q);
386 }
387 }
388 }
389 }
390 }
391 }
392 ii[WS(rs, 13)] = FNMS(KP923879532, T3G, T3F);
393 ii[WS(rs, 5)] = FMA(KP923879532, T3G, T3F);
394 }
395 }
396 }
397
398 static const tw_instr twinstr[] = {
399 {TW_FULL, 0, 16},
400 {TW_NEXT, 1, 0}
401 };
402
403 static const ct_desc desc = { 16, "t1_16", twinstr, &GENUS, {104, 30, 70, 0}, 0, 0, 0 };
404
405 void X(codelet_t1_16) (planner *p) {
406 X(kdft_dit_register) (p, t1_16, &desc);
407 }
408 #else /* HAVE_FMA */
409
410 /* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -n 16 -name t1_16 -include t.h */
411
412 /*
413 * This function contains 174 FP additions, 84 FP multiplications,
414 * (or, 136 additions, 46 multiplications, 38 fused multiply/add),
415 * 52 stack variables, 3 constants, and 64 memory accesses
416 */
417 #include "t.h"
418
419 static void t1_16(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
420 {
421 DK(KP382683432, +0.382683432365089771728459984030398866761344562);
422 DK(KP923879532, +0.923879532511286756128183189396788286822416626);
423 DK(KP707106781, +0.707106781186547524400844362104849039284835938);
424 {
425 INT m;
426 for (m = mb, W = W + (mb * 30); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 30, MAKE_VOLATILE_STRIDE(32, rs)) {
427 E T7, T37, T1t, T2U, Ti, T38, T1w, T2R, Tu, T2s, T1C, T2c, TF, T2t, T1H;
428 E T2d, T1f, T1q, T2B, T2C, T2D, T2E, T1Z, T2j, T24, T2k, TS, T13, T2w, T2x;
429 E T2y, T2z, T1O, T2g, T1T, T2h;
430 {
431 E T1, T2T, T6, T2S;
432 T1 = ri[0];
433 T2T = ii[0];
434 {
435 E T3, T5, T2, T4;
436 T3 = ri[WS(rs, 8)];
437 T5 = ii[WS(rs, 8)];
438 T2 = W[14];
439 T4 = W[15];
440 T6 = FMA(T2, T3, T4 * T5);
441 T2S = FNMS(T4, T3, T2 * T5);
442 }
443 T7 = T1 + T6;
444 T37 = T2T - T2S;
445 T1t = T1 - T6;
446 T2U = T2S + T2T;
447 }
448 {
449 E Tc, T1u, Th, T1v;
450 {
451 E T9, Tb, T8, Ta;
452 T9 = ri[WS(rs, 4)];
453 Tb = ii[WS(rs, 4)];
454 T8 = W[6];
455 Ta = W[7];
456 Tc = FMA(T8, T9, Ta * Tb);
457 T1u = FNMS(Ta, T9, T8 * Tb);
458 }
459 {
460 E Te, Tg, Td, Tf;
461 Te = ri[WS(rs, 12)];
462 Tg = ii[WS(rs, 12)];
463 Td = W[22];
464 Tf = W[23];
465 Th = FMA(Td, Te, Tf * Tg);
466 T1v = FNMS(Tf, Te, Td * Tg);
467 }
468 Ti = Tc + Th;
469 T38 = Tc - Th;
470 T1w = T1u - T1v;
471 T2R = T1u + T1v;
472 }
473 {
474 E To, T1y, Tt, T1z, T1A, T1B;
475 {
476 E Tl, Tn, Tk, Tm;
477 Tl = ri[WS(rs, 2)];
478 Tn = ii[WS(rs, 2)];
479 Tk = W[2];
480 Tm = W[3];
481 To = FMA(Tk, Tl, Tm * Tn);
482 T1y = FNMS(Tm, Tl, Tk * Tn);
483 }
484 {
485 E Tq, Ts, Tp, Tr;
486 Tq = ri[WS(rs, 10)];
487 Ts = ii[WS(rs, 10)];
488 Tp = W[18];
489 Tr = W[19];
490 Tt = FMA(Tp, Tq, Tr * Ts);
491 T1z = FNMS(Tr, Tq, Tp * Ts);
492 }
493 Tu = To + Tt;
494 T2s = T1y + T1z;
495 T1A = T1y - T1z;
496 T1B = To - Tt;
497 T1C = T1A - T1B;
498 T2c = T1B + T1A;
499 }
500 {
501 E Tz, T1E, TE, T1F, T1D, T1G;
502 {
503 E Tw, Ty, Tv, Tx;
504 Tw = ri[WS(rs, 14)];
505 Ty = ii[WS(rs, 14)];
506 Tv = W[26];
507 Tx = W[27];
508 Tz = FMA(Tv, Tw, Tx * Ty);
509 T1E = FNMS(Tx, Tw, Tv * Ty);
510 }
511 {
512 E TB, TD, TA, TC;
513 TB = ri[WS(rs, 6)];
514 TD = ii[WS(rs, 6)];
515 TA = W[10];
516 TC = W[11];
517 TE = FMA(TA, TB, TC * TD);
518 T1F = FNMS(TC, TB, TA * TD);
519 }
520 TF = Tz + TE;
521 T2t = T1E + T1F;
522 T1D = Tz - TE;
523 T1G = T1E - T1F;
524 T1H = T1D + T1G;
525 T2d = T1D - T1G;
526 }
527 {
528 E T19, T20, T1p, T1X, T1e, T21, T1k, T1W;
529 {
530 E T16, T18, T15, T17;
531 T16 = ri[WS(rs, 15)];
532 T18 = ii[WS(rs, 15)];
533 T15 = W[28];
534 T17 = W[29];
535 T19 = FMA(T15, T16, T17 * T18);
536 T20 = FNMS(T17, T16, T15 * T18);
537 }
538 {
539 E T1m, T1o, T1l, T1n;
540 T1m = ri[WS(rs, 11)];
541 T1o = ii[WS(rs, 11)];
542 T1l = W[20];
543 T1n = W[21];
544 T1p = FMA(T1l, T1m, T1n * T1o);
545 T1X = FNMS(T1n, T1m, T1l * T1o);
546 }
547 {
548 E T1b, T1d, T1a, T1c;
549 T1b = ri[WS(rs, 7)];
550 T1d = ii[WS(rs, 7)];
551 T1a = W[12];
552 T1c = W[13];
553 T1e = FMA(T1a, T1b, T1c * T1d);
554 T21 = FNMS(T1c, T1b, T1a * T1d);
555 }
556 {
557 E T1h, T1j, T1g, T1i;
558 T1h = ri[WS(rs, 3)];
559 T1j = ii[WS(rs, 3)];
560 T1g = W[4];
561 T1i = W[5];
562 T1k = FMA(T1g, T1h, T1i * T1j);
563 T1W = FNMS(T1i, T1h, T1g * T1j);
564 }
565 T1f = T19 + T1e;
566 T1q = T1k + T1p;
567 T2B = T1f - T1q;
568 T2C = T20 + T21;
569 T2D = T1W + T1X;
570 T2E = T2C - T2D;
571 {
572 E T1V, T1Y, T22, T23;
573 T1V = T19 - T1e;
574 T1Y = T1W - T1X;
575 T1Z = T1V - T1Y;
576 T2j = T1V + T1Y;
577 T22 = T20 - T21;
578 T23 = T1k - T1p;
579 T24 = T22 + T23;
580 T2k = T22 - T23;
581 }
582 }
583 {
584 E TM, T1K, T12, T1R, TR, T1L, TX, T1Q;
585 {
586 E TJ, TL, TI, TK;
587 TJ = ri[WS(rs, 1)];
588 TL = ii[WS(rs, 1)];
589 TI = W[0];
590 TK = W[1];
591 TM = FMA(TI, TJ, TK * TL);
592 T1K = FNMS(TK, TJ, TI * TL);
593 }
594 {
595 E TZ, T11, TY, T10;
596 TZ = ri[WS(rs, 13)];
597 T11 = ii[WS(rs, 13)];
598 TY = W[24];
599 T10 = W[25];
600 T12 = FMA(TY, TZ, T10 * T11);
601 T1R = FNMS(T10, TZ, TY * T11);
602 }
603 {
604 E TO, TQ, TN, TP;
605 TO = ri[WS(rs, 9)];
606 TQ = ii[WS(rs, 9)];
607 TN = W[16];
608 TP = W[17];
609 TR = FMA(TN, TO, TP * TQ);
610 T1L = FNMS(TP, TO, TN * TQ);
611 }
612 {
613 E TU, TW, TT, TV;
614 TU = ri[WS(rs, 5)];
615 TW = ii[WS(rs, 5)];
616 TT = W[8];
617 TV = W[9];
618 TX = FMA(TT, TU, TV * TW);
619 T1Q = FNMS(TV, TU, TT * TW);
620 }
621 TS = TM + TR;
622 T13 = TX + T12;
623 T2w = TS - T13;
624 T2x = T1K + T1L;
625 T2y = T1Q + T1R;
626 T2z = T2x - T2y;
627 {
628 E T1M, T1N, T1P, T1S;
629 T1M = T1K - T1L;
630 T1N = TX - T12;
631 T1O = T1M + T1N;
632 T2g = T1M - T1N;
633 T1P = TM - TR;
634 T1S = T1Q - T1R;
635 T1T = T1P - T1S;
636 T2h = T1P + T1S;
637 }
638 }
639 {
640 E T1J, T27, T3g, T3i, T26, T3h, T2a, T3d;
641 {
642 E T1x, T1I, T3e, T3f;
643 T1x = T1t - T1w;
644 T1I = KP707106781 * (T1C - T1H);
645 T1J = T1x + T1I;
646 T27 = T1x - T1I;
647 T3e = KP707106781 * (T2d - T2c);
648 T3f = T38 + T37;
649 T3g = T3e + T3f;
650 T3i = T3f - T3e;
651 }
652 {
653 E T1U, T25, T28, T29;
654 T1U = FMA(KP923879532, T1O, KP382683432 * T1T);
655 T25 = FNMS(KP923879532, T24, KP382683432 * T1Z);
656 T26 = T1U + T25;
657 T3h = T25 - T1U;
658 T28 = FNMS(KP923879532, T1T, KP382683432 * T1O);
659 T29 = FMA(KP382683432, T24, KP923879532 * T1Z);
660 T2a = T28 - T29;
661 T3d = T28 + T29;
662 }
663 ri[WS(rs, 11)] = T1J - T26;
664 ii[WS(rs, 11)] = T3g - T3d;
665 ri[WS(rs, 3)] = T1J + T26;
666 ii[WS(rs, 3)] = T3d + T3g;
667 ri[WS(rs, 15)] = T27 - T2a;
668 ii[WS(rs, 15)] = T3i - T3h;
669 ri[WS(rs, 7)] = T27 + T2a;
670 ii[WS(rs, 7)] = T3h + T3i;
671 }
672 {
673 E T2v, T2H, T32, T34, T2G, T33, T2K, T2Z;
674 {
675 E T2r, T2u, T30, T31;
676 T2r = T7 - Ti;
677 T2u = T2s - T2t;
678 T2v = T2r + T2u;
679 T2H = T2r - T2u;
680 T30 = TF - Tu;
681 T31 = T2U - T2R;
682 T32 = T30 + T31;
683 T34 = T31 - T30;
684 }
685 {
686 E T2A, T2F, T2I, T2J;
687 T2A = T2w + T2z;
688 T2F = T2B - T2E;
689 T2G = KP707106781 * (T2A + T2F);
690 T33 = KP707106781 * (T2F - T2A);
691 T2I = T2z - T2w;
692 T2J = T2B + T2E;
693 T2K = KP707106781 * (T2I - T2J);
694 T2Z = KP707106781 * (T2I + T2J);
695 }
696 ri[WS(rs, 10)] = T2v - T2G;
697 ii[WS(rs, 10)] = T32 - T2Z;
698 ri[WS(rs, 2)] = T2v + T2G;
699 ii[WS(rs, 2)] = T2Z + T32;
700 ri[WS(rs, 14)] = T2H - T2K;
701 ii[WS(rs, 14)] = T34 - T33;
702 ri[WS(rs, 6)] = T2H + T2K;
703 ii[WS(rs, 6)] = T33 + T34;
704 }
705 {
706 E T2f, T2n, T3a, T3c, T2m, T3b, T2q, T35;
707 {
708 E T2b, T2e, T36, T39;
709 T2b = T1t + T1w;
710 T2e = KP707106781 * (T2c + T2d);
711 T2f = T2b + T2e;
712 T2n = T2b - T2e;
713 T36 = KP707106781 * (T1C + T1H);
714 T39 = T37 - T38;
715 T3a = T36 + T39;
716 T3c = T39 - T36;
717 }
718 {
719 E T2i, T2l, T2o, T2p;
720 T2i = FMA(KP382683432, T2g, KP923879532 * T2h);
721 T2l = FNMS(KP382683432, T2k, KP923879532 * T2j);
722 T2m = T2i + T2l;
723 T3b = T2l - T2i;
724 T2o = FNMS(KP382683432, T2h, KP923879532 * T2g);
725 T2p = FMA(KP923879532, T2k, KP382683432 * T2j);
726 T2q = T2o - T2p;
727 T35 = T2o + T2p;
728 }
729 ri[WS(rs, 9)] = T2f - T2m;
730 ii[WS(rs, 9)] = T3a - T35;
731 ri[WS(rs, 1)] = T2f + T2m;
732 ii[WS(rs, 1)] = T35 + T3a;
733 ri[WS(rs, 13)] = T2n - T2q;
734 ii[WS(rs, 13)] = T3c - T3b;
735 ri[WS(rs, 5)] = T2n + T2q;
736 ii[WS(rs, 5)] = T3b + T3c;
737 }
738 {
739 E TH, T2L, T2W, T2Y, T1s, T2X, T2O, T2P;
740 {
741 E Tj, TG, T2Q, T2V;
742 Tj = T7 + Ti;
743 TG = Tu + TF;
744 TH = Tj + TG;
745 T2L = Tj - TG;
746 T2Q = T2s + T2t;
747 T2V = T2R + T2U;
748 T2W = T2Q + T2V;
749 T2Y = T2V - T2Q;
750 }
751 {
752 E T14, T1r, T2M, T2N;
753 T14 = TS + T13;
754 T1r = T1f + T1q;
755 T1s = T14 + T1r;
756 T2X = T1r - T14;
757 T2M = T2x + T2y;
758 T2N = T2C + T2D;
759 T2O = T2M - T2N;
760 T2P = T2M + T2N;
761 }
762 ri[WS(rs, 8)] = TH - T1s;
763 ii[WS(rs, 8)] = T2W - T2P;
764 ri[0] = TH + T1s;
765 ii[0] = T2P + T2W;
766 ri[WS(rs, 12)] = T2L - T2O;
767 ii[WS(rs, 12)] = T2Y - T2X;
768 ri[WS(rs, 4)] = T2L + T2O;
769 ii[WS(rs, 4)] = T2X + T2Y;
770 }
771 }
772 }
773 }
774
775 static const tw_instr twinstr[] = {
776 {TW_FULL, 0, 16},
777 {TW_NEXT, 1, 0}
778 };
779
780 static const ct_desc desc = { 16, "t1_16", twinstr, &GENUS, {136, 46, 38, 0}, 0, 0, 0 };
781
782 void X(codelet_t1_16) (planner *p) {
783 X(kdft_dit_register) (p, t1_16, &desc);
784 }
785 #endif /* HAVE_FMA */