Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.3/dft/scalar/codelets/t1_12.c @ 95:89f5e221ed7b
Add FFTW3
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
94:d278df1123f9 | 95:89f5e221ed7b |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-11 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Sun Nov 25 07:35:50 EST 2012 */ | |
23 | |
24 #include "codelet-dft.h" | |
25 | |
26 #ifdef HAVE_FMA | |
27 | |
28 /* Generated by: ../../../genfft/gen_twiddle.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 12 -name t1_12 -include t.h */ | |
29 | |
30 /* | |
31 * This function contains 118 FP additions, 68 FP multiplications, | |
32 * (or, 72 additions, 22 multiplications, 46 fused multiply/add), | |
33 * 84 stack variables, 2 constants, and 48 memory accesses | |
34 */ | |
35 #include "t.h" | |
36 | |
37 static void t1_12(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
38 { | |
39 DK(KP866025403, +0.866025403784438646763723170752936183471402627); | |
40 DK(KP500000000, +0.500000000000000000000000000000000000000000000); | |
41 { | |
42 INT m; | |
43 for (m = mb, W = W + (mb * 22); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 22, MAKE_VOLATILE_STRIDE(24, rs)) { | |
44 E T2B, T2C; | |
45 { | |
46 E T1, T2i, T2e, Tl, T1Y, T10, T1S, TG, T2f, T1s, T2r, Ty, T1Z, T1H, T21; | |
47 E T1d, TI, TL, T2h, T1l, T2o, Te, TJ, T1w, TO, TR, TN, TK, TQ; | |
48 { | |
49 E TW, TZ, TY, T1X, TX; | |
50 T1 = ri[0]; | |
51 T2i = ii[0]; | |
52 { | |
53 E Th, Tk, Tg, Tj, T2d, Ti, TV; | |
54 Th = ri[WS(rs, 6)]; | |
55 Tk = ii[WS(rs, 6)]; | |
56 Tg = W[10]; | |
57 Tj = W[11]; | |
58 TW = ri[WS(rs, 9)]; | |
59 TZ = ii[WS(rs, 9)]; | |
60 T2d = Tg * Tk; | |
61 Ti = Tg * Th; | |
62 TV = W[16]; | |
63 TY = W[17]; | |
64 T2e = FNMS(Tj, Th, T2d); | |
65 Tl = FMA(Tj, Tk, Ti); | |
66 T1X = TV * TZ; | |
67 TX = TV * TW; | |
68 } | |
69 { | |
70 E Tn, Tq, Tt, T1o, To, Tw, Ts, Tp, Tv; | |
71 { | |
72 E TC, TF, TB, TE, T1R, TD, Tm; | |
73 TC = ri[WS(rs, 3)]; | |
74 TF = ii[WS(rs, 3)]; | |
75 T1Y = FNMS(TY, TW, T1X); | |
76 T10 = FMA(TY, TZ, TX); | |
77 TB = W[4]; | |
78 TE = W[5]; | |
79 Tn = ri[WS(rs, 10)]; | |
80 Tq = ii[WS(rs, 10)]; | |
81 T1R = TB * TF; | |
82 TD = TB * TC; | |
83 Tm = W[18]; | |
84 Tt = ri[WS(rs, 2)]; | |
85 T1S = FNMS(TE, TC, T1R); | |
86 TG = FMA(TE, TF, TD); | |
87 T1o = Tm * Tq; | |
88 To = Tm * Tn; | |
89 Tw = ii[WS(rs, 2)]; | |
90 Ts = W[2]; | |
91 Tp = W[19]; | |
92 Tv = W[3]; | |
93 } | |
94 { | |
95 E T12, T15, T13, T1D, T18, T1b, T17, T14, T1a; | |
96 { | |
97 E T1p, Tr, T1r, Tx, T1q, Tu, T11; | |
98 T12 = ri[WS(rs, 1)]; | |
99 T1q = Ts * Tw; | |
100 Tu = Ts * Tt; | |
101 T1p = FNMS(Tp, Tn, T1o); | |
102 Tr = FMA(Tp, Tq, To); | |
103 T1r = FNMS(Tv, Tt, T1q); | |
104 Tx = FMA(Tv, Tw, Tu); | |
105 T15 = ii[WS(rs, 1)]; | |
106 T11 = W[0]; | |
107 T2f = T1p + T1r; | |
108 T1s = T1p - T1r; | |
109 T2r = Tx - Tr; | |
110 Ty = Tr + Tx; | |
111 T13 = T11 * T12; | |
112 T1D = T11 * T15; | |
113 } | |
114 T18 = ri[WS(rs, 5)]; | |
115 T1b = ii[WS(rs, 5)]; | |
116 T17 = W[8]; | |
117 T14 = W[1]; | |
118 T1a = W[9]; | |
119 { | |
120 E T3, T6, T4, T1h, T9, Tc, T8, T5, Tb; | |
121 { | |
122 E T1E, T16, T1G, T1c, T1F, T19, T2; | |
123 T3 = ri[WS(rs, 4)]; | |
124 T1F = T17 * T1b; | |
125 T19 = T17 * T18; | |
126 T1E = FNMS(T14, T12, T1D); | |
127 T16 = FMA(T14, T15, T13); | |
128 T1G = FNMS(T1a, T18, T1F); | |
129 T1c = FMA(T1a, T1b, T19); | |
130 T6 = ii[WS(rs, 4)]; | |
131 T2 = W[6]; | |
132 T1Z = T1E + T1G; | |
133 T1H = T1E - T1G; | |
134 T21 = T1c - T16; | |
135 T1d = T16 + T1c; | |
136 T4 = T2 * T3; | |
137 T1h = T2 * T6; | |
138 } | |
139 T9 = ri[WS(rs, 8)]; | |
140 Tc = ii[WS(rs, 8)]; | |
141 T8 = W[14]; | |
142 T5 = W[7]; | |
143 Tb = W[15]; | |
144 { | |
145 E T1i, T7, T1k, Td, T1j, Ta, TH; | |
146 TI = ri[WS(rs, 7)]; | |
147 T1j = T8 * Tc; | |
148 Ta = T8 * T9; | |
149 T1i = FNMS(T5, T3, T1h); | |
150 T7 = FMA(T5, T6, T4); | |
151 T1k = FNMS(Tb, T9, T1j); | |
152 Td = FMA(Tb, Tc, Ta); | |
153 TL = ii[WS(rs, 7)]; | |
154 TH = W[12]; | |
155 T2h = T1i + T1k; | |
156 T1l = T1i - T1k; | |
157 T2o = Td - T7; | |
158 Te = T7 + Td; | |
159 TJ = TH * TI; | |
160 T1w = TH * TL; | |
161 } | |
162 TO = ri[WS(rs, 11)]; | |
163 TR = ii[WS(rs, 11)]; | |
164 TN = W[20]; | |
165 TK = W[13]; | |
166 TQ = W[21]; | |
167 } | |
168 } | |
169 } | |
170 } | |
171 { | |
172 E T1g, T1n, T2q, T1A, T1V, T28, TA, T2n, T1v, T1C, T1U, T29, T2m, T2k, T2l; | |
173 E T1f, T2a, T20; | |
174 { | |
175 E T2g, T1T, TT, T2j, TU, T1e; | |
176 { | |
177 E Tf, T1x, TM, T1z, TS, Tz, T1y, TP; | |
178 T1g = FNMS(KP500000000, Te, T1); | |
179 Tf = T1 + Te; | |
180 T1y = TN * TR; | |
181 TP = TN * TO; | |
182 T1x = FNMS(TK, TI, T1w); | |
183 TM = FMA(TK, TL, TJ); | |
184 T1z = FNMS(TQ, TO, T1y); | |
185 TS = FMA(TQ, TR, TP); | |
186 Tz = Tl + Ty; | |
187 T1n = FNMS(KP500000000, Ty, Tl); | |
188 T2q = FNMS(KP500000000, T2f, T2e); | |
189 T2g = T2e + T2f; | |
190 T1T = T1x + T1z; | |
191 T1A = T1x - T1z; | |
192 T1V = TS - TM; | |
193 TT = TM + TS; | |
194 T28 = Tf - Tz; | |
195 TA = Tf + Tz; | |
196 T2j = T2h + T2i; | |
197 T2n = FNMS(KP500000000, T2h, T2i); | |
198 } | |
199 T1v = FNMS(KP500000000, TT, TG); | |
200 TU = TG + TT; | |
201 T1e = T10 + T1d; | |
202 T1C = FNMS(KP500000000, T1d, T10); | |
203 T1U = FNMS(KP500000000, T1T, T1S); | |
204 T29 = T1S + T1T; | |
205 T2m = T2j - T2g; | |
206 T2k = T2g + T2j; | |
207 T2l = TU - T1e; | |
208 T1f = TU + T1e; | |
209 T2a = T1Y + T1Z; | |
210 T20 = FNMS(KP500000000, T1Z, T1Y); | |
211 } | |
212 { | |
213 E T1m, T1K, T2y, T2p, T2x, T2s, T1L, T1t, T1B, T1N, T2c, T2b; | |
214 ii[WS(rs, 9)] = T2m - T2l; | |
215 ii[WS(rs, 3)] = T2l + T2m; | |
216 ri[0] = TA + T1f; | |
217 ri[WS(rs, 6)] = TA - T1f; | |
218 T2c = T29 + T2a; | |
219 T2b = T29 - T2a; | |
220 T1m = FNMS(KP866025403, T1l, T1g); | |
221 T1K = FMA(KP866025403, T1l, T1g); | |
222 ii[0] = T2c + T2k; | |
223 ii[WS(rs, 6)] = T2k - T2c; | |
224 ri[WS(rs, 9)] = T28 + T2b; | |
225 ri[WS(rs, 3)] = T28 - T2b; | |
226 T2y = FNMS(KP866025403, T2o, T2n); | |
227 T2p = FMA(KP866025403, T2o, T2n); | |
228 T2x = FNMS(KP866025403, T2r, T2q); | |
229 T2s = FMA(KP866025403, T2r, T2q); | |
230 T1L = FMA(KP866025403, T1s, T1n); | |
231 T1t = FNMS(KP866025403, T1s, T1n); | |
232 T1B = FNMS(KP866025403, T1A, T1v); | |
233 T1N = FMA(KP866025403, T1A, T1v); | |
234 { | |
235 E T24, T27, T1Q, T2u, T23, T2v, T2w, T2t; | |
236 { | |
237 E T1u, T1W, T22, T1O, T1I, T2z, T2A, T25, T26, T1M, T1J, T1P; | |
238 T24 = T1m - T1t; | |
239 T1u = T1m + T1t; | |
240 T25 = FNMS(KP866025403, T1V, T1U); | |
241 T1W = FMA(KP866025403, T1V, T1U); | |
242 T26 = FNMS(KP866025403, T21, T20); | |
243 T22 = FMA(KP866025403, T21, T20); | |
244 T1O = FMA(KP866025403, T1H, T1C); | |
245 T1I = FNMS(KP866025403, T1H, T1C); | |
246 T2z = T2x + T2y; | |
247 T2B = T2y - T2x; | |
248 T27 = T25 - T26; | |
249 T2A = T25 + T26; | |
250 T1M = T1K + T1L; | |
251 T1Q = T1K - T1L; | |
252 T2C = T1B - T1I; | |
253 T1J = T1B + T1I; | |
254 T1P = T1N + T1O; | |
255 T2u = T1N - T1O; | |
256 ii[WS(rs, 8)] = T2A + T2z; | |
257 ii[WS(rs, 2)] = T2z - T2A; | |
258 ri[WS(rs, 8)] = T1u + T1J; | |
259 ri[WS(rs, 2)] = T1u - T1J; | |
260 ri[WS(rs, 10)] = T1M - T1P; | |
261 ri[WS(rs, 4)] = T1M + T1P; | |
262 T23 = T1W - T22; | |
263 T2v = T1W + T22; | |
264 T2w = T2s + T2p; | |
265 T2t = T2p - T2s; | |
266 } | |
267 ii[WS(rs, 10)] = T2w - T2v; | |
268 ii[WS(rs, 4)] = T2v + T2w; | |
269 ri[WS(rs, 1)] = T1Q + T23; | |
270 ri[WS(rs, 7)] = T1Q - T23; | |
271 ii[WS(rs, 7)] = T2u + T2t; | |
272 ii[WS(rs, 1)] = T2t - T2u; | |
273 ri[WS(rs, 5)] = T24 + T27; | |
274 ri[WS(rs, 11)] = T24 - T27; | |
275 } | |
276 } | |
277 } | |
278 } | |
279 ii[WS(rs, 11)] = T2C + T2B; | |
280 ii[WS(rs, 5)] = T2B - T2C; | |
281 } | |
282 } | |
283 } | |
284 | |
285 static const tw_instr twinstr[] = { | |
286 {TW_FULL, 0, 12}, | |
287 {TW_NEXT, 1, 0} | |
288 }; | |
289 | |
290 static const ct_desc desc = { 12, "t1_12", twinstr, &GENUS, {72, 22, 46, 0}, 0, 0, 0 }; | |
291 | |
292 void X(codelet_t1_12) (planner *p) { | |
293 X(kdft_dit_register) (p, t1_12, &desc); | |
294 } | |
295 #else /* HAVE_FMA */ | |
296 | |
297 /* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -n 12 -name t1_12 -include t.h */ | |
298 | |
299 /* | |
300 * This function contains 118 FP additions, 60 FP multiplications, | |
301 * (or, 88 additions, 30 multiplications, 30 fused multiply/add), | |
302 * 47 stack variables, 2 constants, and 48 memory accesses | |
303 */ | |
304 #include "t.h" | |
305 | |
306 static void t1_12(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
307 { | |
308 DK(KP500000000, +0.500000000000000000000000000000000000000000000); | |
309 DK(KP866025403, +0.866025403784438646763723170752936183471402627); | |
310 { | |
311 INT m; | |
312 for (m = mb, W = W + (mb * 22); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 22, MAKE_VOLATILE_STRIDE(24, rs)) { | |
313 E T1, T1W, T18, T21, Tc, T15, T1V, T22, TR, T1E, T1o, T1D, T12, T1l, T1F; | |
314 E T1G, Ti, T1S, T1d, T24, Tt, T1a, T1T, T25, TA, T1z, T1j, T1y, TL, T1g; | |
315 E T1A, T1B; | |
316 { | |
317 E T6, T16, Tb, T17; | |
318 T1 = ri[0]; | |
319 T1W = ii[0]; | |
320 { | |
321 E T3, T5, T2, T4; | |
322 T3 = ri[WS(rs, 4)]; | |
323 T5 = ii[WS(rs, 4)]; | |
324 T2 = W[6]; | |
325 T4 = W[7]; | |
326 T6 = FMA(T2, T3, T4 * T5); | |
327 T16 = FNMS(T4, T3, T2 * T5); | |
328 } | |
329 { | |
330 E T8, Ta, T7, T9; | |
331 T8 = ri[WS(rs, 8)]; | |
332 Ta = ii[WS(rs, 8)]; | |
333 T7 = W[14]; | |
334 T9 = W[15]; | |
335 Tb = FMA(T7, T8, T9 * Ta); | |
336 T17 = FNMS(T9, T8, T7 * Ta); | |
337 } | |
338 T18 = KP866025403 * (T16 - T17); | |
339 T21 = KP866025403 * (Tb - T6); | |
340 Tc = T6 + Tb; | |
341 T15 = FNMS(KP500000000, Tc, T1); | |
342 T1V = T16 + T17; | |
343 T22 = FNMS(KP500000000, T1V, T1W); | |
344 } | |
345 { | |
346 E T11, T1n, TW, T1m; | |
347 { | |
348 E TO, TQ, TN, TP; | |
349 TO = ri[WS(rs, 9)]; | |
350 TQ = ii[WS(rs, 9)]; | |
351 TN = W[16]; | |
352 TP = W[17]; | |
353 TR = FMA(TN, TO, TP * TQ); | |
354 T1E = FNMS(TP, TO, TN * TQ); | |
355 } | |
356 { | |
357 E TY, T10, TX, TZ; | |
358 TY = ri[WS(rs, 5)]; | |
359 T10 = ii[WS(rs, 5)]; | |
360 TX = W[8]; | |
361 TZ = W[9]; | |
362 T11 = FMA(TX, TY, TZ * T10); | |
363 T1n = FNMS(TZ, TY, TX * T10); | |
364 } | |
365 { | |
366 E TT, TV, TS, TU; | |
367 TT = ri[WS(rs, 1)]; | |
368 TV = ii[WS(rs, 1)]; | |
369 TS = W[0]; | |
370 TU = W[1]; | |
371 TW = FMA(TS, TT, TU * TV); | |
372 T1m = FNMS(TU, TT, TS * TV); | |
373 } | |
374 T1o = KP866025403 * (T1m - T1n); | |
375 T1D = KP866025403 * (T11 - TW); | |
376 T12 = TW + T11; | |
377 T1l = FNMS(KP500000000, T12, TR); | |
378 T1F = T1m + T1n; | |
379 T1G = FNMS(KP500000000, T1F, T1E); | |
380 } | |
381 { | |
382 E Ts, T1c, Tn, T1b; | |
383 { | |
384 E Tf, Th, Te, Tg; | |
385 Tf = ri[WS(rs, 6)]; | |
386 Th = ii[WS(rs, 6)]; | |
387 Te = W[10]; | |
388 Tg = W[11]; | |
389 Ti = FMA(Te, Tf, Tg * Th); | |
390 T1S = FNMS(Tg, Tf, Te * Th); | |
391 } | |
392 { | |
393 E Tp, Tr, To, Tq; | |
394 Tp = ri[WS(rs, 2)]; | |
395 Tr = ii[WS(rs, 2)]; | |
396 To = W[2]; | |
397 Tq = W[3]; | |
398 Ts = FMA(To, Tp, Tq * Tr); | |
399 T1c = FNMS(Tq, Tp, To * Tr); | |
400 } | |
401 { | |
402 E Tk, Tm, Tj, Tl; | |
403 Tk = ri[WS(rs, 10)]; | |
404 Tm = ii[WS(rs, 10)]; | |
405 Tj = W[18]; | |
406 Tl = W[19]; | |
407 Tn = FMA(Tj, Tk, Tl * Tm); | |
408 T1b = FNMS(Tl, Tk, Tj * Tm); | |
409 } | |
410 T1d = KP866025403 * (T1b - T1c); | |
411 T24 = KP866025403 * (Ts - Tn); | |
412 Tt = Tn + Ts; | |
413 T1a = FNMS(KP500000000, Tt, Ti); | |
414 T1T = T1b + T1c; | |
415 T25 = FNMS(KP500000000, T1T, T1S); | |
416 } | |
417 { | |
418 E TK, T1i, TF, T1h; | |
419 { | |
420 E Tx, Tz, Tw, Ty; | |
421 Tx = ri[WS(rs, 3)]; | |
422 Tz = ii[WS(rs, 3)]; | |
423 Tw = W[4]; | |
424 Ty = W[5]; | |
425 TA = FMA(Tw, Tx, Ty * Tz); | |
426 T1z = FNMS(Ty, Tx, Tw * Tz); | |
427 } | |
428 { | |
429 E TH, TJ, TG, TI; | |
430 TH = ri[WS(rs, 11)]; | |
431 TJ = ii[WS(rs, 11)]; | |
432 TG = W[20]; | |
433 TI = W[21]; | |
434 TK = FMA(TG, TH, TI * TJ); | |
435 T1i = FNMS(TI, TH, TG * TJ); | |
436 } | |
437 { | |
438 E TC, TE, TB, TD; | |
439 TC = ri[WS(rs, 7)]; | |
440 TE = ii[WS(rs, 7)]; | |
441 TB = W[12]; | |
442 TD = W[13]; | |
443 TF = FMA(TB, TC, TD * TE); | |
444 T1h = FNMS(TD, TC, TB * TE); | |
445 } | |
446 T1j = KP866025403 * (T1h - T1i); | |
447 T1y = KP866025403 * (TK - TF); | |
448 TL = TF + TK; | |
449 T1g = FNMS(KP500000000, TL, TA); | |
450 T1A = T1h + T1i; | |
451 T1B = FNMS(KP500000000, T1A, T1z); | |
452 } | |
453 { | |
454 E Tv, T1N, T1Y, T20, T14, T1Z, T1Q, T1R; | |
455 { | |
456 E Td, Tu, T1U, T1X; | |
457 Td = T1 + Tc; | |
458 Tu = Ti + Tt; | |
459 Tv = Td + Tu; | |
460 T1N = Td - Tu; | |
461 T1U = T1S + T1T; | |
462 T1X = T1V + T1W; | |
463 T1Y = T1U + T1X; | |
464 T20 = T1X - T1U; | |
465 } | |
466 { | |
467 E TM, T13, T1O, T1P; | |
468 TM = TA + TL; | |
469 T13 = TR + T12; | |
470 T14 = TM + T13; | |
471 T1Z = TM - T13; | |
472 T1O = T1z + T1A; | |
473 T1P = T1E + T1F; | |
474 T1Q = T1O - T1P; | |
475 T1R = T1O + T1P; | |
476 } | |
477 ri[WS(rs, 6)] = Tv - T14; | |
478 ii[WS(rs, 6)] = T1Y - T1R; | |
479 ri[0] = Tv + T14; | |
480 ii[0] = T1R + T1Y; | |
481 ri[WS(rs, 3)] = T1N - T1Q; | |
482 ii[WS(rs, 3)] = T1Z + T20; | |
483 ri[WS(rs, 9)] = T1N + T1Q; | |
484 ii[WS(rs, 9)] = T20 - T1Z; | |
485 } | |
486 { | |
487 E T1t, T1x, T27, T2a, T1w, T28, T1I, T29; | |
488 { | |
489 E T1r, T1s, T23, T26; | |
490 T1r = T15 + T18; | |
491 T1s = T1a + T1d; | |
492 T1t = T1r + T1s; | |
493 T1x = T1r - T1s; | |
494 T23 = T21 + T22; | |
495 T26 = T24 + T25; | |
496 T27 = T23 - T26; | |
497 T2a = T26 + T23; | |
498 } | |
499 { | |
500 E T1u, T1v, T1C, T1H; | |
501 T1u = T1g + T1j; | |
502 T1v = T1l + T1o; | |
503 T1w = T1u + T1v; | |
504 T28 = T1u - T1v; | |
505 T1C = T1y + T1B; | |
506 T1H = T1D + T1G; | |
507 T1I = T1C - T1H; | |
508 T29 = T1C + T1H; | |
509 } | |
510 ri[WS(rs, 10)] = T1t - T1w; | |
511 ii[WS(rs, 10)] = T2a - T29; | |
512 ri[WS(rs, 4)] = T1t + T1w; | |
513 ii[WS(rs, 4)] = T29 + T2a; | |
514 ri[WS(rs, 7)] = T1x - T1I; | |
515 ii[WS(rs, 7)] = T28 + T27; | |
516 ri[WS(rs, 1)] = T1x + T1I; | |
517 ii[WS(rs, 1)] = T27 - T28; | |
518 } | |
519 { | |
520 E T1f, T1J, T2d, T2f, T1q, T2g, T1M, T2e; | |
521 { | |
522 E T19, T1e, T2b, T2c; | |
523 T19 = T15 - T18; | |
524 T1e = T1a - T1d; | |
525 T1f = T19 + T1e; | |
526 T1J = T19 - T1e; | |
527 T2b = T25 - T24; | |
528 T2c = T22 - T21; | |
529 T2d = T2b + T2c; | |
530 T2f = T2c - T2b; | |
531 } | |
532 { | |
533 E T1k, T1p, T1K, T1L; | |
534 T1k = T1g - T1j; | |
535 T1p = T1l - T1o; | |
536 T1q = T1k + T1p; | |
537 T2g = T1k - T1p; | |
538 T1K = T1B - T1y; | |
539 T1L = T1G - T1D; | |
540 T1M = T1K - T1L; | |
541 T2e = T1K + T1L; | |
542 } | |
543 ri[WS(rs, 2)] = T1f - T1q; | |
544 ii[WS(rs, 2)] = T2d - T2e; | |
545 ri[WS(rs, 8)] = T1f + T1q; | |
546 ii[WS(rs, 8)] = T2e + T2d; | |
547 ri[WS(rs, 11)] = T1J - T1M; | |
548 ii[WS(rs, 11)] = T2g + T2f; | |
549 ri[WS(rs, 5)] = T1J + T1M; | |
550 ii[WS(rs, 5)] = T2f - T2g; | |
551 } | |
552 } | |
553 } | |
554 } | |
555 | |
556 static const tw_instr twinstr[] = { | |
557 {TW_FULL, 0, 12}, | |
558 {TW_NEXT, 1, 0} | |
559 }; | |
560 | |
561 static const ct_desc desc = { 12, "t1_12", twinstr, &GENUS, {88, 30, 30, 0}, 0, 0, 0 }; | |
562 | |
563 void X(codelet_t1_12) (planner *p) { | |
564 X(kdft_dit_register) (p, t1_12, &desc); | |
565 } | |
566 #endif /* HAVE_FMA */ |