Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.3/dft/scalar/codelets/q1_6.c @ 95:89f5e221ed7b
Add FFTW3
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
94:d278df1123f9 | 95:89f5e221ed7b |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-11 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Sun Nov 25 07:36:24 EST 2012 */ | |
23 | |
24 #include "codelet-dft.h" | |
25 | |
26 #ifdef HAVE_FMA | |
27 | |
28 /* Generated by: ../../../genfft/gen_twidsq.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -reload-twiddle -dif -n 6 -name q1_6 -include q.h */ | |
29 | |
30 /* | |
31 * This function contains 276 FP additions, 192 FP multiplications, | |
32 * (or, 144 additions, 60 multiplications, 132 fused multiply/add), | |
33 * 129 stack variables, 2 constants, and 144 memory accesses | |
34 */ | |
35 #include "q.h" | |
36 | |
37 static void q1_6(R *rio, R *iio, const R *W, stride rs, stride vs, INT mb, INT me, INT ms) | |
38 { | |
39 DK(KP866025403, +0.866025403784438646763723170752936183471402627); | |
40 DK(KP500000000, +0.500000000000000000000000000000000000000000000); | |
41 { | |
42 INT m; | |
43 for (m = mb, W = W + (mb * 10); m < me; m = m + 1, rio = rio + ms, iio = iio + ms, W = W + 10, MAKE_VOLATILE_STRIDE(12, rs), MAKE_VOLATILE_STRIDE(0, vs)) { | |
44 E T4c, T4f, T4e, T4g, T4d; | |
45 { | |
46 E T3, Tw, Ta, TW, Tg, TG, TM, TT, TU, TP, Tn, T17, TV, TJ, Tv; | |
47 E T1A, T1e, T20, T1k, T1K, T1Q, T1X, T1Y, T1T, T1r, T1Z, T1N, T1z, T31, T32; | |
48 E T2X, T2v, T2b, T33, T2R, T2D, T2E, T2i, T34, T3f, T2o, T2O, T2U, T3I, T3m; | |
49 E T48, T3s, T3S, T3Y, T45, T46, T41, T3z, T4j, T47, T3V, T3H, T4M, T4q, T5c; | |
50 E T4w, T4W, T52, T59, T5a, T55, T4D, T5b, T4Z, T4L, T6d, T5r, T6e, T69, T5H; | |
51 E T5w, T5n, T6f, T63, T5P, T5s, T5o, T5p; | |
52 { | |
53 E T2f, T2k, T2g, T2c, T2d; | |
54 { | |
55 E T1b, T1g, T1c, T18, T19; | |
56 { | |
57 E T4, Tc, Te, T9, T5; | |
58 { | |
59 E T1, T2, T7, T8; | |
60 T1 = rio[0]; | |
61 T2 = rio[WS(rs, 3)]; | |
62 T7 = rio[WS(rs, 4)]; | |
63 T8 = rio[WS(rs, 1)]; | |
64 T4 = rio[WS(rs, 2)]; | |
65 Tc = T1 - T2; | |
66 T3 = T1 + T2; | |
67 Te = T7 - T8; | |
68 T9 = T7 + T8; | |
69 T5 = rio[WS(rs, 5)]; | |
70 } | |
71 { | |
72 E TN, Tj, Tk, Tl, Tt, Th, Ti; | |
73 Th = iio[WS(rs, 2)]; | |
74 Ti = iio[WS(rs, 5)]; | |
75 { | |
76 E Tr, Ts, Td, T6, Tf; | |
77 Tr = iio[0]; | |
78 Td = T4 - T5; | |
79 T6 = T4 + T5; | |
80 TN = Th + Ti; | |
81 Tj = Th - Ti; | |
82 Tf = Td + Te; | |
83 Tw = Te - Td; | |
84 Ta = T6 + T9; | |
85 TW = T9 - T6; | |
86 Tg = FNMS(KP500000000, Tf, Tc); | |
87 TG = Tc + Tf; | |
88 Ts = iio[WS(rs, 3)]; | |
89 TM = FNMS(KP500000000, Ta, T3); | |
90 Tk = iio[WS(rs, 4)]; | |
91 Tl = iio[WS(rs, 1)]; | |
92 Tt = Tr - Ts; | |
93 TT = Tr + Ts; | |
94 } | |
95 { | |
96 E T15, TO, Tm, T16, Tu; | |
97 T15 = rio[WS(vs, 1)]; | |
98 TO = Tk + Tl; | |
99 Tm = Tk - Tl; | |
100 T16 = rio[WS(vs, 1) + WS(rs, 3)]; | |
101 T1b = rio[WS(vs, 1) + WS(rs, 4)]; | |
102 TU = TN + TO; | |
103 TP = TN - TO; | |
104 Tu = Tj + Tm; | |
105 Tn = Tj - Tm; | |
106 T1g = T15 - T16; | |
107 T17 = T15 + T16; | |
108 TV = FNMS(KP500000000, TU, TT); | |
109 TJ = Tt + Tu; | |
110 Tv = FNMS(KP500000000, Tu, Tt); | |
111 T1c = rio[WS(vs, 1) + WS(rs, 1)]; | |
112 T18 = rio[WS(vs, 1) + WS(rs, 2)]; | |
113 T19 = rio[WS(vs, 1) + WS(rs, 5)]; | |
114 } | |
115 } | |
116 } | |
117 { | |
118 E T1v, T1R, T1n, T1w, T1o, T1p; | |
119 { | |
120 E T1l, T1i, T1d, T1h, T1a, T1m, T1j; | |
121 T1l = iio[WS(vs, 1) + WS(rs, 2)]; | |
122 T1i = T1b - T1c; | |
123 T1d = T1b + T1c; | |
124 T1h = T18 - T19; | |
125 T1a = T18 + T19; | |
126 T1m = iio[WS(vs, 1) + WS(rs, 5)]; | |
127 T1v = iio[WS(vs, 1)]; | |
128 T1j = T1h + T1i; | |
129 T1A = T1i - T1h; | |
130 T1e = T1a + T1d; | |
131 T20 = T1d - T1a; | |
132 T1R = T1l + T1m; | |
133 T1n = T1l - T1m; | |
134 T1k = FNMS(KP500000000, T1j, T1g); | |
135 T1K = T1g + T1j; | |
136 T1Q = FNMS(KP500000000, T1e, T17); | |
137 T1w = iio[WS(vs, 1) + WS(rs, 3)]; | |
138 T1o = iio[WS(vs, 1) + WS(rs, 4)]; | |
139 T1p = iio[WS(vs, 1) + WS(rs, 1)]; | |
140 } | |
141 { | |
142 E T2z, T2V, T2r, T2A, T2s, T2t; | |
143 { | |
144 E T2p, T1x, T1S, T1q, T2q, T1y; | |
145 T2p = iio[WS(vs, 2) + WS(rs, 2)]; | |
146 T1X = T1v + T1w; | |
147 T1x = T1v - T1w; | |
148 T1S = T1o + T1p; | |
149 T1q = T1o - T1p; | |
150 T2q = iio[WS(vs, 2) + WS(rs, 5)]; | |
151 T2z = iio[WS(vs, 2)]; | |
152 T1Y = T1R + T1S; | |
153 T1T = T1R - T1S; | |
154 T1y = T1n + T1q; | |
155 T1r = T1n - T1q; | |
156 T2V = T2p + T2q; | |
157 T2r = T2p - T2q; | |
158 T1Z = FNMS(KP500000000, T1Y, T1X); | |
159 T1N = T1x + T1y; | |
160 T1z = FNMS(KP500000000, T1y, T1x); | |
161 T2A = iio[WS(vs, 2) + WS(rs, 3)]; | |
162 T2s = iio[WS(vs, 2) + WS(rs, 4)]; | |
163 T2t = iio[WS(vs, 2) + WS(rs, 1)]; | |
164 } | |
165 { | |
166 E T29, T2B, T2W, T2u, T2a, T2C; | |
167 T29 = rio[WS(vs, 2)]; | |
168 T31 = T2z + T2A; | |
169 T2B = T2z - T2A; | |
170 T2W = T2s + T2t; | |
171 T2u = T2s - T2t; | |
172 T2a = rio[WS(vs, 2) + WS(rs, 3)]; | |
173 T2f = rio[WS(vs, 2) + WS(rs, 4)]; | |
174 T32 = T2V + T2W; | |
175 T2X = T2V - T2W; | |
176 T2C = T2r + T2u; | |
177 T2v = T2r - T2u; | |
178 T2k = T29 - T2a; | |
179 T2b = T29 + T2a; | |
180 T33 = FNMS(KP500000000, T32, T31); | |
181 T2R = T2B + T2C; | |
182 T2D = FNMS(KP500000000, T2C, T2B); | |
183 T2g = rio[WS(vs, 2) + WS(rs, 1)]; | |
184 T2c = rio[WS(vs, 2) + WS(rs, 2)]; | |
185 T2d = rio[WS(vs, 2) + WS(rs, 5)]; | |
186 } | |
187 } | |
188 } | |
189 } | |
190 { | |
191 E T4n, T4s, T4o, T4k, T4l; | |
192 { | |
193 E T3j, T3o, T3k, T3g, T3h; | |
194 { | |
195 E T3d, T2m, T2h, T2l, T2e, T3e, T2n; | |
196 T3d = rio[WS(vs, 3)]; | |
197 T2m = T2f - T2g; | |
198 T2h = T2f + T2g; | |
199 T2l = T2c - T2d; | |
200 T2e = T2c + T2d; | |
201 T3e = rio[WS(vs, 3) + WS(rs, 3)]; | |
202 T3j = rio[WS(vs, 3) + WS(rs, 4)]; | |
203 T2n = T2l + T2m; | |
204 T2E = T2m - T2l; | |
205 T2i = T2e + T2h; | |
206 T34 = T2h - T2e; | |
207 T3o = T3d - T3e; | |
208 T3f = T3d + T3e; | |
209 T2o = FNMS(KP500000000, T2n, T2k); | |
210 T2O = T2k + T2n; | |
211 T2U = FNMS(KP500000000, T2i, T2b); | |
212 T3k = rio[WS(vs, 3) + WS(rs, 1)]; | |
213 T3g = rio[WS(vs, 3) + WS(rs, 2)]; | |
214 T3h = rio[WS(vs, 3) + WS(rs, 5)]; | |
215 } | |
216 { | |
217 E T3D, T3Z, T3v, T3E, T3w, T3x; | |
218 { | |
219 E T3t, T3q, T3l, T3p, T3i, T3u, T3r; | |
220 T3t = iio[WS(vs, 3) + WS(rs, 2)]; | |
221 T3q = T3j - T3k; | |
222 T3l = T3j + T3k; | |
223 T3p = T3g - T3h; | |
224 T3i = T3g + T3h; | |
225 T3u = iio[WS(vs, 3) + WS(rs, 5)]; | |
226 T3D = iio[WS(vs, 3)]; | |
227 T3r = T3p + T3q; | |
228 T3I = T3q - T3p; | |
229 T3m = T3i + T3l; | |
230 T48 = T3l - T3i; | |
231 T3Z = T3t + T3u; | |
232 T3v = T3t - T3u; | |
233 T3s = FNMS(KP500000000, T3r, T3o); | |
234 T3S = T3o + T3r; | |
235 T3Y = FNMS(KP500000000, T3m, T3f); | |
236 T3E = iio[WS(vs, 3) + WS(rs, 3)]; | |
237 T3w = iio[WS(vs, 3) + WS(rs, 4)]; | |
238 T3x = iio[WS(vs, 3) + WS(rs, 1)]; | |
239 } | |
240 { | |
241 E T4h, T3F, T40, T3y, T4i, T3G; | |
242 T4h = rio[WS(vs, 4)]; | |
243 T45 = T3D + T3E; | |
244 T3F = T3D - T3E; | |
245 T40 = T3w + T3x; | |
246 T3y = T3w - T3x; | |
247 T4i = rio[WS(vs, 4) + WS(rs, 3)]; | |
248 T4n = rio[WS(vs, 4) + WS(rs, 4)]; | |
249 T46 = T3Z + T40; | |
250 T41 = T3Z - T40; | |
251 T3G = T3v + T3y; | |
252 T3z = T3v - T3y; | |
253 T4s = T4h - T4i; | |
254 T4j = T4h + T4i; | |
255 T47 = FNMS(KP500000000, T46, T45); | |
256 T3V = T3F + T3G; | |
257 T3H = FNMS(KP500000000, T3G, T3F); | |
258 T4o = rio[WS(vs, 4) + WS(rs, 1)]; | |
259 T4k = rio[WS(vs, 4) + WS(rs, 2)]; | |
260 T4l = rio[WS(vs, 4) + WS(rs, 5)]; | |
261 } | |
262 } | |
263 } | |
264 { | |
265 E T4H, T53, T4z, T4I, T4A, T4B; | |
266 { | |
267 E T4x, T4u, T4p, T4t, T4m, T4y, T4v; | |
268 T4x = iio[WS(vs, 4) + WS(rs, 2)]; | |
269 T4u = T4n - T4o; | |
270 T4p = T4n + T4o; | |
271 T4t = T4k - T4l; | |
272 T4m = T4k + T4l; | |
273 T4y = iio[WS(vs, 4) + WS(rs, 5)]; | |
274 T4H = iio[WS(vs, 4)]; | |
275 T4v = T4t + T4u; | |
276 T4M = T4u - T4t; | |
277 T4q = T4m + T4p; | |
278 T5c = T4p - T4m; | |
279 T53 = T4x + T4y; | |
280 T4z = T4x - T4y; | |
281 T4w = FNMS(KP500000000, T4v, T4s); | |
282 T4W = T4s + T4v; | |
283 T52 = FNMS(KP500000000, T4q, T4j); | |
284 T4I = iio[WS(vs, 4) + WS(rs, 3)]; | |
285 T4A = iio[WS(vs, 4) + WS(rs, 4)]; | |
286 T4B = iio[WS(vs, 4) + WS(rs, 1)]; | |
287 } | |
288 { | |
289 E T5L, T67, T5D, T5M, T5E, T5F; | |
290 { | |
291 E T5B, T4J, T54, T4C, T5C, T4K; | |
292 T5B = iio[WS(vs, 5) + WS(rs, 2)]; | |
293 T59 = T4H + T4I; | |
294 T4J = T4H - T4I; | |
295 T54 = T4A + T4B; | |
296 T4C = T4A - T4B; | |
297 T5C = iio[WS(vs, 5) + WS(rs, 5)]; | |
298 T5L = iio[WS(vs, 5)]; | |
299 T5a = T53 + T54; | |
300 T55 = T53 - T54; | |
301 T4K = T4z + T4C; | |
302 T4D = T4z - T4C; | |
303 T67 = T5B + T5C; | |
304 T5D = T5B - T5C; | |
305 T5b = FNMS(KP500000000, T5a, T59); | |
306 T4Z = T4J + T4K; | |
307 T4L = FNMS(KP500000000, T4K, T4J); | |
308 T5M = iio[WS(vs, 5) + WS(rs, 3)]; | |
309 T5E = iio[WS(vs, 5) + WS(rs, 4)]; | |
310 T5F = iio[WS(vs, 5) + WS(rs, 1)]; | |
311 } | |
312 { | |
313 E T5l, T5N, T68, T5G, T5m, T5O; | |
314 T5l = rio[WS(vs, 5)]; | |
315 T6d = T5L + T5M; | |
316 T5N = T5L - T5M; | |
317 T68 = T5E + T5F; | |
318 T5G = T5E - T5F; | |
319 T5m = rio[WS(vs, 5) + WS(rs, 3)]; | |
320 T5r = rio[WS(vs, 5) + WS(rs, 4)]; | |
321 T6e = T67 + T68; | |
322 T69 = T67 - T68; | |
323 T5O = T5D + T5G; | |
324 T5H = T5D - T5G; | |
325 T5w = T5l - T5m; | |
326 T5n = T5l + T5m; | |
327 T6f = FNMS(KP500000000, T6e, T6d); | |
328 T63 = T5N + T5O; | |
329 T5P = FNMS(KP500000000, T5O, T5N); | |
330 T5s = rio[WS(vs, 5) + WS(rs, 1)]; | |
331 T5o = rio[WS(vs, 5) + WS(rs, 2)]; | |
332 T5p = rio[WS(vs, 5) + WS(rs, 5)]; | |
333 } | |
334 } | |
335 } | |
336 } | |
337 } | |
338 { | |
339 E T6a, T6h, T5I, T5R, T65, T6c; | |
340 { | |
341 E T5Q, T5u, T6g, T5A, T60, T66; | |
342 { | |
343 E T5y, T5t, T5x, T5q, T5z; | |
344 rio[0] = T3 + Ta; | |
345 T5y = T5r - T5s; | |
346 T5t = T5r + T5s; | |
347 T5x = T5o - T5p; | |
348 T5q = T5o + T5p; | |
349 iio[0] = TT + TU; | |
350 rio[WS(rs, 1)] = T17 + T1e; | |
351 T5z = T5x + T5y; | |
352 T5Q = T5y - T5x; | |
353 T5u = T5q + T5t; | |
354 T6g = T5t - T5q; | |
355 T5A = FNMS(KP500000000, T5z, T5w); | |
356 T60 = T5w + T5z; | |
357 iio[WS(rs, 1)] = T1X + T1Y; | |
358 T66 = FNMS(KP500000000, T5u, T5n); | |
359 rio[WS(rs, 2)] = T2b + T2i; | |
360 } | |
361 iio[WS(rs, 2)] = T31 + T32; | |
362 iio[WS(rs, 4)] = T59 + T5a; | |
363 rio[WS(rs, 4)] = T4j + T4q; | |
364 rio[WS(rs, 3)] = T3f + T3m; | |
365 iio[WS(rs, 3)] = T45 + T46; | |
366 { | |
367 E TA, TD, TQ, T10, T13, TX, TZ, T12; | |
368 rio[WS(rs, 5)] = T5n + T5u; | |
369 iio[WS(rs, 5)] = T6d + T6e; | |
370 { | |
371 E To, Tx, Tb, Tq; | |
372 TA = FNMS(KP866025403, Tn, Tg); | |
373 To = FMA(KP866025403, Tn, Tg); | |
374 Tx = FMA(KP866025403, Tw, Tv); | |
375 TD = FNMS(KP866025403, Tw, Tv); | |
376 Tb = W[0]; | |
377 Tq = W[1]; | |
378 { | |
379 E TI, TK, TH, Ty, Tp, TF; | |
380 Ty = Tb * Tx; | |
381 Tp = Tb * To; | |
382 TF = W[4]; | |
383 TI = W[5]; | |
384 iio[WS(vs, 1)] = FNMS(Tq, To, Ty); | |
385 rio[WS(vs, 1)] = FMA(Tq, Tx, Tp); | |
386 TK = TF * TJ; | |
387 TH = TF * TG; | |
388 TQ = FNMS(KP866025403, TP, TM); | |
389 T10 = FMA(KP866025403, TP, TM); | |
390 T13 = FMA(KP866025403, TW, TV); | |
391 TX = FNMS(KP866025403, TW, TV); | |
392 iio[WS(vs, 3)] = FNMS(TI, TG, TK); | |
393 rio[WS(vs, 3)] = FMA(TI, TJ, TH); | |
394 TZ = W[6]; | |
395 T12 = W[7]; | |
396 } | |
397 } | |
398 { | |
399 E TC, TE, TB, TL, TS; | |
400 { | |
401 E T62, T64, T61, T14, T11, T5Z; | |
402 T14 = TZ * T13; | |
403 T11 = TZ * T10; | |
404 T5Z = W[4]; | |
405 T62 = W[5]; | |
406 iio[WS(vs, 4)] = FNMS(T12, T10, T14); | |
407 rio[WS(vs, 4)] = FMA(T12, T13, T11); | |
408 T64 = T5Z * T63; | |
409 T61 = T5Z * T60; | |
410 { | |
411 E T6k, T6n, T6j, T6m, T6o, T6l, Tz; | |
412 T6a = FNMS(KP866025403, T69, T66); | |
413 T6k = FMA(KP866025403, T69, T66); | |
414 T6n = FMA(KP866025403, T6g, T6f); | |
415 T6h = FNMS(KP866025403, T6g, T6f); | |
416 iio[WS(vs, 3) + WS(rs, 5)] = FNMS(T62, T60, T64); | |
417 rio[WS(vs, 3) + WS(rs, 5)] = FMA(T62, T63, T61); | |
418 T6j = W[6]; | |
419 T6m = W[7]; | |
420 T6o = T6j * T6n; | |
421 T6l = T6j * T6k; | |
422 Tz = W[8]; | |
423 TC = W[9]; | |
424 iio[WS(vs, 4) + WS(rs, 5)] = FNMS(T6m, T6k, T6o); | |
425 rio[WS(vs, 4) + WS(rs, 5)] = FMA(T6m, T6n, T6l); | |
426 TE = Tz * TD; | |
427 TB = Tz * TA; | |
428 } | |
429 } | |
430 iio[WS(vs, 5)] = FNMS(TC, TA, TE); | |
431 rio[WS(vs, 5)] = FMA(TC, TD, TB); | |
432 TL = W[2]; | |
433 TS = W[3]; | |
434 { | |
435 E T5U, T5X, T5W, T5Y, T5V, TY, TR, T5T; | |
436 T5I = FMA(KP866025403, T5H, T5A); | |
437 T5U = FNMS(KP866025403, T5H, T5A); | |
438 T5X = FNMS(KP866025403, T5Q, T5P); | |
439 T5R = FMA(KP866025403, T5Q, T5P); | |
440 TY = TL * TX; | |
441 TR = TL * TQ; | |
442 T5T = W[8]; | |
443 T5W = W[9]; | |
444 iio[WS(vs, 2)] = FNMS(TS, TQ, TY); | |
445 rio[WS(vs, 2)] = FMA(TS, TX, TR); | |
446 T5Y = T5T * T5X; | |
447 T5V = T5T * T5U; | |
448 iio[WS(vs, 5) + WS(rs, 5)] = FNMS(T5W, T5U, T5Y); | |
449 rio[WS(vs, 5) + WS(rs, 5)] = FMA(T5W, T5X, T5V); | |
450 T65 = W[2]; | |
451 T6c = W[3]; | |
452 } | |
453 } | |
454 } | |
455 } | |
456 { | |
457 E T5g, T5j, T5f, T5i; | |
458 { | |
459 E T1E, T1H, T3M, T3P, T56, T5d, T58, T5e, T57; | |
460 { | |
461 E T1s, T1B, T1f, T1u; | |
462 { | |
463 E T5K, T5S, T5J, T6i, T6b, T5v; | |
464 T6i = T65 * T6h; | |
465 T6b = T65 * T6a; | |
466 T5v = W[0]; | |
467 T5K = W[1]; | |
468 iio[WS(vs, 2) + WS(rs, 5)] = FNMS(T6c, T6a, T6i); | |
469 rio[WS(vs, 2) + WS(rs, 5)] = FMA(T6c, T6h, T6b); | |
470 T5S = T5v * T5R; | |
471 T5J = T5v * T5I; | |
472 T1E = FNMS(KP866025403, T1r, T1k); | |
473 T1s = FMA(KP866025403, T1r, T1k); | |
474 T1B = FMA(KP866025403, T1A, T1z); | |
475 T1H = FNMS(KP866025403, T1A, T1z); | |
476 iio[WS(vs, 1) + WS(rs, 5)] = FNMS(T5K, T5I, T5S); | |
477 rio[WS(vs, 1) + WS(rs, 5)] = FMA(T5K, T5R, T5J); | |
478 T1f = W[0]; | |
479 T1u = W[1]; | |
480 } | |
481 { | |
482 E T3U, T3W, T3T, T1C, T1t, T3R; | |
483 T1C = T1f * T1B; | |
484 T1t = T1f * T1s; | |
485 T3R = W[4]; | |
486 T3U = W[5]; | |
487 iio[WS(vs, 1) + WS(rs, 1)] = FNMS(T1u, T1s, T1C); | |
488 rio[WS(vs, 1) + WS(rs, 1)] = FMA(T1u, T1B, T1t); | |
489 T3W = T3R * T3V; | |
490 T3T = T3R * T3S; | |
491 { | |
492 E T3A, T3J, T3n, T3C, T3K, T3B, T51; | |
493 T3M = FNMS(KP866025403, T3z, T3s); | |
494 T3A = FMA(KP866025403, T3z, T3s); | |
495 T3J = FMA(KP866025403, T3I, T3H); | |
496 T3P = FNMS(KP866025403, T3I, T3H); | |
497 iio[WS(vs, 3) + WS(rs, 3)] = FNMS(T3U, T3S, T3W); | |
498 rio[WS(vs, 3) + WS(rs, 3)] = FMA(T3U, T3V, T3T); | |
499 T3n = W[0]; | |
500 T3C = W[1]; | |
501 T5g = FMA(KP866025403, T55, T52); | |
502 T56 = FNMS(KP866025403, T55, T52); | |
503 T5d = FNMS(KP866025403, T5c, T5b); | |
504 T5j = FMA(KP866025403, T5c, T5b); | |
505 T3K = T3n * T3J; | |
506 T3B = T3n * T3A; | |
507 T51 = W[2]; | |
508 T58 = W[3]; | |
509 iio[WS(vs, 1) + WS(rs, 3)] = FNMS(T3C, T3A, T3K); | |
510 rio[WS(vs, 1) + WS(rs, 3)] = FMA(T3C, T3J, T3B); | |
511 T5e = T51 * T5d; | |
512 T57 = T51 * T56; | |
513 } | |
514 } | |
515 } | |
516 { | |
517 E T38, T3b, T3O, T3Q, T3N, T37, T3a; | |
518 { | |
519 E T2Y, T35, T2T, T30, T36, T2Z, T3L; | |
520 T38 = FMA(KP866025403, T2X, T2U); | |
521 T2Y = FNMS(KP866025403, T2X, T2U); | |
522 T35 = FNMS(KP866025403, T34, T33); | |
523 T3b = FMA(KP866025403, T34, T33); | |
524 iio[WS(vs, 2) + WS(rs, 4)] = FNMS(T58, T56, T5e); | |
525 rio[WS(vs, 2) + WS(rs, 4)] = FMA(T58, T5d, T57); | |
526 T2T = W[2]; | |
527 T30 = W[3]; | |
528 T36 = T2T * T35; | |
529 T2Z = T2T * T2Y; | |
530 T3L = W[8]; | |
531 T3O = W[9]; | |
532 iio[WS(vs, 2) + WS(rs, 2)] = FNMS(T30, T2Y, T36); | |
533 rio[WS(vs, 2) + WS(rs, 2)] = FMA(T30, T35, T2Z); | |
534 T3Q = T3L * T3P; | |
535 T3N = T3L * T3M; | |
536 } | |
537 iio[WS(vs, 5) + WS(rs, 3)] = FNMS(T3O, T3M, T3Q); | |
538 rio[WS(vs, 5) + WS(rs, 3)] = FMA(T3O, T3P, T3N); | |
539 T37 = W[6]; | |
540 T3a = W[7]; | |
541 { | |
542 E T1G, T1I, T1F, T3c, T39, T1D; | |
543 T3c = T37 * T3b; | |
544 T39 = T37 * T38; | |
545 T1D = W[8]; | |
546 T1G = W[9]; | |
547 iio[WS(vs, 4) + WS(rs, 2)] = FNMS(T3a, T38, T3c); | |
548 rio[WS(vs, 4) + WS(rs, 2)] = FMA(T3a, T3b, T39); | |
549 T1I = T1D * T1H; | |
550 T1F = T1D * T1E; | |
551 iio[WS(vs, 5) + WS(rs, 1)] = FNMS(T1G, T1E, T1I); | |
552 rio[WS(vs, 5) + WS(rs, 1)] = FMA(T1G, T1H, T1F); | |
553 T5f = W[6]; | |
554 T5i = W[7]; | |
555 } | |
556 } | |
557 } | |
558 { | |
559 E T4Q, T4T, T2I, T2w, T2F, T2L, T2y, T2G, T2x, T4V, T4Y; | |
560 { | |
561 E T1M, T1O, T1L, T5k, T5h, T1J; | |
562 T5k = T5f * T5j; | |
563 T5h = T5f * T5g; | |
564 T1J = W[4]; | |
565 T1M = W[5]; | |
566 iio[WS(vs, 4) + WS(rs, 4)] = FNMS(T5i, T5g, T5k); | |
567 rio[WS(vs, 4) + WS(rs, 4)] = FMA(T5i, T5j, T5h); | |
568 T1O = T1J * T1N; | |
569 T1L = T1J * T1K; | |
570 iio[WS(vs, 3) + WS(rs, 1)] = FNMS(T1M, T1K, T1O); | |
571 rio[WS(vs, 3) + WS(rs, 1)] = FMA(T1M, T1N, T1L); | |
572 T4V = W[4]; | |
573 T4Y = W[5]; | |
574 } | |
575 { | |
576 E T4E, T4N, T4G, T4O, T4F, T50, T4X, T4r; | |
577 T4Q = FNMS(KP866025403, T4D, T4w); | |
578 T4E = FMA(KP866025403, T4D, T4w); | |
579 T4N = FMA(KP866025403, T4M, T4L); | |
580 T4T = FNMS(KP866025403, T4M, T4L); | |
581 T50 = T4V * T4Z; | |
582 T4X = T4V * T4W; | |
583 T4r = W[0]; | |
584 T4G = W[1]; | |
585 iio[WS(vs, 3) + WS(rs, 4)] = FNMS(T4Y, T4W, T50); | |
586 rio[WS(vs, 3) + WS(rs, 4)] = FMA(T4Y, T4Z, T4X); | |
587 T4O = T4r * T4N; | |
588 T4F = T4r * T4E; | |
589 { | |
590 E T2N, T2Q, T2S, T2P, T2j; | |
591 iio[WS(vs, 1) + WS(rs, 4)] = FNMS(T4G, T4E, T4O); | |
592 rio[WS(vs, 1) + WS(rs, 4)] = FMA(T4G, T4N, T4F); | |
593 T2N = W[4]; | |
594 T2Q = W[5]; | |
595 T2I = FNMS(KP866025403, T2v, T2o); | |
596 T2w = FMA(KP866025403, T2v, T2o); | |
597 T2F = FMA(KP866025403, T2E, T2D); | |
598 T2L = FNMS(KP866025403, T2E, T2D); | |
599 T2S = T2N * T2R; | |
600 T2P = T2N * T2O; | |
601 T2j = W[0]; | |
602 T2y = W[1]; | |
603 iio[WS(vs, 3) + WS(rs, 2)] = FNMS(T2Q, T2O, T2S); | |
604 rio[WS(vs, 3) + WS(rs, 2)] = FMA(T2Q, T2R, T2P); | |
605 T2G = T2j * T2F; | |
606 T2x = T2j * T2w; | |
607 } | |
608 } | |
609 { | |
610 E T1U, T21, T2H, T2K; | |
611 { | |
612 E T24, T27, T23, T26; | |
613 T1U = FNMS(KP866025403, T1T, T1Q); | |
614 T24 = FMA(KP866025403, T1T, T1Q); | |
615 T27 = FMA(KP866025403, T20, T1Z); | |
616 T21 = FNMS(KP866025403, T20, T1Z); | |
617 iio[WS(vs, 1) + WS(rs, 2)] = FNMS(T2y, T2w, T2G); | |
618 rio[WS(vs, 1) + WS(rs, 2)] = FMA(T2y, T2F, T2x); | |
619 T23 = W[6]; | |
620 T26 = W[7]; | |
621 { | |
622 E T42, T49, T44, T4a, T43, T28, T25, T3X; | |
623 T4c = FMA(KP866025403, T41, T3Y); | |
624 T42 = FNMS(KP866025403, T41, T3Y); | |
625 T49 = FNMS(KP866025403, T48, T47); | |
626 T4f = FMA(KP866025403, T48, T47); | |
627 T28 = T23 * T27; | |
628 T25 = T23 * T24; | |
629 T3X = W[2]; | |
630 T44 = W[3]; | |
631 iio[WS(vs, 4) + WS(rs, 1)] = FNMS(T26, T24, T28); | |
632 rio[WS(vs, 4) + WS(rs, 1)] = FMA(T26, T27, T25); | |
633 T4a = T3X * T49; | |
634 T43 = T3X * T42; | |
635 iio[WS(vs, 2) + WS(rs, 3)] = FNMS(T44, T42, T4a); | |
636 rio[WS(vs, 2) + WS(rs, 3)] = FMA(T44, T49, T43); | |
637 T2H = W[8]; | |
638 T2K = W[9]; | |
639 } | |
640 } | |
641 { | |
642 E T4S, T4U, T4R, T2M, T2J, T4P; | |
643 T2M = T2H * T2L; | |
644 T2J = T2H * T2I; | |
645 T4P = W[8]; | |
646 T4S = W[9]; | |
647 iio[WS(vs, 5) + WS(rs, 2)] = FNMS(T2K, T2I, T2M); | |
648 rio[WS(vs, 5) + WS(rs, 2)] = FMA(T2K, T2L, T2J); | |
649 T4U = T4P * T4T; | |
650 T4R = T4P * T4Q; | |
651 { | |
652 E T1P, T1W, T22, T1V, T4b; | |
653 iio[WS(vs, 5) + WS(rs, 4)] = FNMS(T4S, T4Q, T4U); | |
654 rio[WS(vs, 5) + WS(rs, 4)] = FMA(T4S, T4T, T4R); | |
655 T1P = W[2]; | |
656 T1W = W[3]; | |
657 T22 = T1P * T21; | |
658 T1V = T1P * T1U; | |
659 T4b = W[6]; | |
660 T4e = W[7]; | |
661 iio[WS(vs, 2) + WS(rs, 1)] = FNMS(T1W, T1U, T22); | |
662 rio[WS(vs, 2) + WS(rs, 1)] = FMA(T1W, T21, T1V); | |
663 T4g = T4b * T4f; | |
664 T4d = T4b * T4c; | |
665 } | |
666 } | |
667 } | |
668 } | |
669 } | |
670 } | |
671 } | |
672 iio[WS(vs, 4) + WS(rs, 3)] = FNMS(T4e, T4c, T4g); | |
673 rio[WS(vs, 4) + WS(rs, 3)] = FMA(T4e, T4f, T4d); | |
674 } | |
675 } | |
676 } | |
677 | |
678 static const tw_instr twinstr[] = { | |
679 {TW_FULL, 0, 6}, | |
680 {TW_NEXT, 1, 0} | |
681 }; | |
682 | |
683 static const ct_desc desc = { 6, "q1_6", twinstr, &GENUS, {144, 60, 132, 0}, 0, 0, 0 }; | |
684 | |
685 void X(codelet_q1_6) (planner *p) { | |
686 X(kdft_difsq_register) (p, q1_6, &desc); | |
687 } | |
688 #else /* HAVE_FMA */ | |
689 | |
690 /* Generated by: ../../../genfft/gen_twidsq.native -compact -variables 4 -pipeline-latency 4 -reload-twiddle -dif -n 6 -name q1_6 -include q.h */ | |
691 | |
692 /* | |
693 * This function contains 276 FP additions, 168 FP multiplications, | |
694 * (or, 192 additions, 84 multiplications, 84 fused multiply/add), | |
695 * 85 stack variables, 2 constants, and 144 memory accesses | |
696 */ | |
697 #include "q.h" | |
698 | |
699 static void q1_6(R *rio, R *iio, const R *W, stride rs, stride vs, INT mb, INT me, INT ms) | |
700 { | |
701 DK(KP500000000, +0.500000000000000000000000000000000000000000000); | |
702 DK(KP866025403, +0.866025403784438646763723170752936183471402627); | |
703 { | |
704 INT m; | |
705 for (m = mb, W = W + (mb * 10); m < me; m = m + 1, rio = rio + ms, iio = iio + ms, W = W + 10, MAKE_VOLATILE_STRIDE(12, rs), MAKE_VOLATILE_STRIDE(0, vs)) { | |
706 E T3, Tc, Tt, TM, TX, T16, T1n, T1G, T2h, T2A, T1R, T20, T2L, T2U, T3b; | |
707 E T3u, T3F, T3O, T45, T4o, T4Z, T5i, T4z, T4I, Ta, TP, Tf, Tq, Tn, TN; | |
708 E Tu, TJ, T14, T1J, T19, T1k, T1h, T1H, T1o, T1D, T2b, T2B, T2i, T2x, T1Y; | |
709 E T2D, T23, T2e, T2S, T3x, T2X, T38, T35, T3v, T3c, T3r, T3M, T4r, T3R, T42; | |
710 E T3Z, T4p, T46, T4l, T4T, T5j, T50, T5f, T4G, T5l, T4L, T4W; | |
711 { | |
712 E T1, T2, T1l, T1m; | |
713 T1 = rio[0]; | |
714 T2 = rio[WS(rs, 3)]; | |
715 T3 = T1 + T2; | |
716 Tc = T1 - T2; | |
717 { | |
718 E Tr, Ts, TV, TW; | |
719 Tr = iio[0]; | |
720 Ts = iio[WS(rs, 3)]; | |
721 Tt = Tr - Ts; | |
722 TM = Tr + Ts; | |
723 TV = rio[WS(vs, 1)]; | |
724 TW = rio[WS(vs, 1) + WS(rs, 3)]; | |
725 TX = TV + TW; | |
726 T16 = TV - TW; | |
727 } | |
728 T1l = iio[WS(vs, 1)]; | |
729 T1m = iio[WS(vs, 1) + WS(rs, 3)]; | |
730 T1n = T1l - T1m; | |
731 T1G = T1l + T1m; | |
732 { | |
733 E T2f, T2g, T1P, T1Q; | |
734 T2f = iio[WS(vs, 2)]; | |
735 T2g = iio[WS(vs, 2) + WS(rs, 3)]; | |
736 T2h = T2f - T2g; | |
737 T2A = T2f + T2g; | |
738 T1P = rio[WS(vs, 2)]; | |
739 T1Q = rio[WS(vs, 2) + WS(rs, 3)]; | |
740 T1R = T1P + T1Q; | |
741 T20 = T1P - T1Q; | |
742 } | |
743 } | |
744 { | |
745 E T2J, T2K, T43, T44; | |
746 T2J = rio[WS(vs, 3)]; | |
747 T2K = rio[WS(vs, 3) + WS(rs, 3)]; | |
748 T2L = T2J + T2K; | |
749 T2U = T2J - T2K; | |
750 { | |
751 E T39, T3a, T3D, T3E; | |
752 T39 = iio[WS(vs, 3)]; | |
753 T3a = iio[WS(vs, 3) + WS(rs, 3)]; | |
754 T3b = T39 - T3a; | |
755 T3u = T39 + T3a; | |
756 T3D = rio[WS(vs, 4)]; | |
757 T3E = rio[WS(vs, 4) + WS(rs, 3)]; | |
758 T3F = T3D + T3E; | |
759 T3O = T3D - T3E; | |
760 } | |
761 T43 = iio[WS(vs, 4)]; | |
762 T44 = iio[WS(vs, 4) + WS(rs, 3)]; | |
763 T45 = T43 - T44; | |
764 T4o = T43 + T44; | |
765 { | |
766 E T4X, T4Y, T4x, T4y; | |
767 T4X = iio[WS(vs, 5)]; | |
768 T4Y = iio[WS(vs, 5) + WS(rs, 3)]; | |
769 T4Z = T4X - T4Y; | |
770 T5i = T4X + T4Y; | |
771 T4x = rio[WS(vs, 5)]; | |
772 T4y = rio[WS(vs, 5) + WS(rs, 3)]; | |
773 T4z = T4x + T4y; | |
774 T4I = T4x - T4y; | |
775 } | |
776 } | |
777 { | |
778 E T6, Td, T9, Te; | |
779 { | |
780 E T4, T5, T7, T8; | |
781 T4 = rio[WS(rs, 2)]; | |
782 T5 = rio[WS(rs, 5)]; | |
783 T6 = T4 + T5; | |
784 Td = T4 - T5; | |
785 T7 = rio[WS(rs, 4)]; | |
786 T8 = rio[WS(rs, 1)]; | |
787 T9 = T7 + T8; | |
788 Te = T7 - T8; | |
789 } | |
790 Ta = T6 + T9; | |
791 TP = KP866025403 * (T9 - T6); | |
792 Tf = Td + Te; | |
793 Tq = KP866025403 * (Te - Td); | |
794 } | |
795 { | |
796 E Tj, TH, Tm, TI; | |
797 { | |
798 E Th, Ti, Tk, Tl; | |
799 Th = iio[WS(rs, 2)]; | |
800 Ti = iio[WS(rs, 5)]; | |
801 Tj = Th - Ti; | |
802 TH = Th + Ti; | |
803 Tk = iio[WS(rs, 4)]; | |
804 Tl = iio[WS(rs, 1)]; | |
805 Tm = Tk - Tl; | |
806 TI = Tk + Tl; | |
807 } | |
808 Tn = KP866025403 * (Tj - Tm); | |
809 TN = TH + TI; | |
810 Tu = Tj + Tm; | |
811 TJ = KP866025403 * (TH - TI); | |
812 } | |
813 { | |
814 E T10, T17, T13, T18; | |
815 { | |
816 E TY, TZ, T11, T12; | |
817 TY = rio[WS(vs, 1) + WS(rs, 2)]; | |
818 TZ = rio[WS(vs, 1) + WS(rs, 5)]; | |
819 T10 = TY + TZ; | |
820 T17 = TY - TZ; | |
821 T11 = rio[WS(vs, 1) + WS(rs, 4)]; | |
822 T12 = rio[WS(vs, 1) + WS(rs, 1)]; | |
823 T13 = T11 + T12; | |
824 T18 = T11 - T12; | |
825 } | |
826 T14 = T10 + T13; | |
827 T1J = KP866025403 * (T13 - T10); | |
828 T19 = T17 + T18; | |
829 T1k = KP866025403 * (T18 - T17); | |
830 } | |
831 { | |
832 E T1d, T1B, T1g, T1C; | |
833 { | |
834 E T1b, T1c, T1e, T1f; | |
835 T1b = iio[WS(vs, 1) + WS(rs, 2)]; | |
836 T1c = iio[WS(vs, 1) + WS(rs, 5)]; | |
837 T1d = T1b - T1c; | |
838 T1B = T1b + T1c; | |
839 T1e = iio[WS(vs, 1) + WS(rs, 4)]; | |
840 T1f = iio[WS(vs, 1) + WS(rs, 1)]; | |
841 T1g = T1e - T1f; | |
842 T1C = T1e + T1f; | |
843 } | |
844 T1h = KP866025403 * (T1d - T1g); | |
845 T1H = T1B + T1C; | |
846 T1o = T1d + T1g; | |
847 T1D = KP866025403 * (T1B - T1C); | |
848 } | |
849 { | |
850 E T27, T2v, T2a, T2w; | |
851 { | |
852 E T25, T26, T28, T29; | |
853 T25 = iio[WS(vs, 2) + WS(rs, 2)]; | |
854 T26 = iio[WS(vs, 2) + WS(rs, 5)]; | |
855 T27 = T25 - T26; | |
856 T2v = T25 + T26; | |
857 T28 = iio[WS(vs, 2) + WS(rs, 4)]; | |
858 T29 = iio[WS(vs, 2) + WS(rs, 1)]; | |
859 T2a = T28 - T29; | |
860 T2w = T28 + T29; | |
861 } | |
862 T2b = KP866025403 * (T27 - T2a); | |
863 T2B = T2v + T2w; | |
864 T2i = T27 + T2a; | |
865 T2x = KP866025403 * (T2v - T2w); | |
866 } | |
867 { | |
868 E T1U, T21, T1X, T22; | |
869 { | |
870 E T1S, T1T, T1V, T1W; | |
871 T1S = rio[WS(vs, 2) + WS(rs, 2)]; | |
872 T1T = rio[WS(vs, 2) + WS(rs, 5)]; | |
873 T1U = T1S + T1T; | |
874 T21 = T1S - T1T; | |
875 T1V = rio[WS(vs, 2) + WS(rs, 4)]; | |
876 T1W = rio[WS(vs, 2) + WS(rs, 1)]; | |
877 T1X = T1V + T1W; | |
878 T22 = T1V - T1W; | |
879 } | |
880 T1Y = T1U + T1X; | |
881 T2D = KP866025403 * (T1X - T1U); | |
882 T23 = T21 + T22; | |
883 T2e = KP866025403 * (T22 - T21); | |
884 } | |
885 { | |
886 E T2O, T2V, T2R, T2W; | |
887 { | |
888 E T2M, T2N, T2P, T2Q; | |
889 T2M = rio[WS(vs, 3) + WS(rs, 2)]; | |
890 T2N = rio[WS(vs, 3) + WS(rs, 5)]; | |
891 T2O = T2M + T2N; | |
892 T2V = T2M - T2N; | |
893 T2P = rio[WS(vs, 3) + WS(rs, 4)]; | |
894 T2Q = rio[WS(vs, 3) + WS(rs, 1)]; | |
895 T2R = T2P + T2Q; | |
896 T2W = T2P - T2Q; | |
897 } | |
898 T2S = T2O + T2R; | |
899 T3x = KP866025403 * (T2R - T2O); | |
900 T2X = T2V + T2W; | |
901 T38 = KP866025403 * (T2W - T2V); | |
902 } | |
903 { | |
904 E T31, T3p, T34, T3q; | |
905 { | |
906 E T2Z, T30, T32, T33; | |
907 T2Z = iio[WS(vs, 3) + WS(rs, 2)]; | |
908 T30 = iio[WS(vs, 3) + WS(rs, 5)]; | |
909 T31 = T2Z - T30; | |
910 T3p = T2Z + T30; | |
911 T32 = iio[WS(vs, 3) + WS(rs, 4)]; | |
912 T33 = iio[WS(vs, 3) + WS(rs, 1)]; | |
913 T34 = T32 - T33; | |
914 T3q = T32 + T33; | |
915 } | |
916 T35 = KP866025403 * (T31 - T34); | |
917 T3v = T3p + T3q; | |
918 T3c = T31 + T34; | |
919 T3r = KP866025403 * (T3p - T3q); | |
920 } | |
921 { | |
922 E T3I, T3P, T3L, T3Q; | |
923 { | |
924 E T3G, T3H, T3J, T3K; | |
925 T3G = rio[WS(vs, 4) + WS(rs, 2)]; | |
926 T3H = rio[WS(vs, 4) + WS(rs, 5)]; | |
927 T3I = T3G + T3H; | |
928 T3P = T3G - T3H; | |
929 T3J = rio[WS(vs, 4) + WS(rs, 4)]; | |
930 T3K = rio[WS(vs, 4) + WS(rs, 1)]; | |
931 T3L = T3J + T3K; | |
932 T3Q = T3J - T3K; | |
933 } | |
934 T3M = T3I + T3L; | |
935 T4r = KP866025403 * (T3L - T3I); | |
936 T3R = T3P + T3Q; | |
937 T42 = KP866025403 * (T3Q - T3P); | |
938 } | |
939 { | |
940 E T3V, T4j, T3Y, T4k; | |
941 { | |
942 E T3T, T3U, T3W, T3X; | |
943 T3T = iio[WS(vs, 4) + WS(rs, 2)]; | |
944 T3U = iio[WS(vs, 4) + WS(rs, 5)]; | |
945 T3V = T3T - T3U; | |
946 T4j = T3T + T3U; | |
947 T3W = iio[WS(vs, 4) + WS(rs, 4)]; | |
948 T3X = iio[WS(vs, 4) + WS(rs, 1)]; | |
949 T3Y = T3W - T3X; | |
950 T4k = T3W + T3X; | |
951 } | |
952 T3Z = KP866025403 * (T3V - T3Y); | |
953 T4p = T4j + T4k; | |
954 T46 = T3V + T3Y; | |
955 T4l = KP866025403 * (T4j - T4k); | |
956 } | |
957 { | |
958 E T4P, T5d, T4S, T5e; | |
959 { | |
960 E T4N, T4O, T4Q, T4R; | |
961 T4N = iio[WS(vs, 5) + WS(rs, 2)]; | |
962 T4O = iio[WS(vs, 5) + WS(rs, 5)]; | |
963 T4P = T4N - T4O; | |
964 T5d = T4N + T4O; | |
965 T4Q = iio[WS(vs, 5) + WS(rs, 4)]; | |
966 T4R = iio[WS(vs, 5) + WS(rs, 1)]; | |
967 T4S = T4Q - T4R; | |
968 T5e = T4Q + T4R; | |
969 } | |
970 T4T = KP866025403 * (T4P - T4S); | |
971 T5j = T5d + T5e; | |
972 T50 = T4P + T4S; | |
973 T5f = KP866025403 * (T5d - T5e); | |
974 } | |
975 { | |
976 E T4C, T4J, T4F, T4K; | |
977 { | |
978 E T4A, T4B, T4D, T4E; | |
979 T4A = rio[WS(vs, 5) + WS(rs, 2)]; | |
980 T4B = rio[WS(vs, 5) + WS(rs, 5)]; | |
981 T4C = T4A + T4B; | |
982 T4J = T4A - T4B; | |
983 T4D = rio[WS(vs, 5) + WS(rs, 4)]; | |
984 T4E = rio[WS(vs, 5) + WS(rs, 1)]; | |
985 T4F = T4D + T4E; | |
986 T4K = T4D - T4E; | |
987 } | |
988 T4G = T4C + T4F; | |
989 T5l = KP866025403 * (T4F - T4C); | |
990 T4L = T4J + T4K; | |
991 T4W = KP866025403 * (T4K - T4J); | |
992 } | |
993 rio[0] = T3 + Ta; | |
994 iio[0] = TM + TN; | |
995 rio[WS(rs, 1)] = TX + T14; | |
996 iio[WS(rs, 1)] = T1G + T1H; | |
997 rio[WS(rs, 3)] = T2L + T2S; | |
998 rio[WS(rs, 2)] = T1R + T1Y; | |
999 iio[WS(rs, 2)] = T2A + T2B; | |
1000 iio[WS(rs, 3)] = T3u + T3v; | |
1001 iio[WS(rs, 4)] = T4o + T4p; | |
1002 iio[WS(rs, 5)] = T5i + T5j; | |
1003 rio[WS(rs, 5)] = T4z + T4G; | |
1004 rio[WS(rs, 4)] = T3F + T3M; | |
1005 { | |
1006 E T1w, T1y, T1v, T1x; | |
1007 T1w = T16 + T19; | |
1008 T1y = T1n + T1o; | |
1009 T1v = W[4]; | |
1010 T1x = W[5]; | |
1011 rio[WS(vs, 3) + WS(rs, 1)] = FMA(T1v, T1w, T1x * T1y); | |
1012 iio[WS(vs, 3) + WS(rs, 1)] = FNMS(T1x, T1w, T1v * T1y); | |
1013 } | |
1014 { | |
1015 E T58, T5a, T57, T59; | |
1016 T58 = T4I + T4L; | |
1017 T5a = T4Z + T50; | |
1018 T57 = W[4]; | |
1019 T59 = W[5]; | |
1020 rio[WS(vs, 3) + WS(rs, 5)] = FMA(T57, T58, T59 * T5a); | |
1021 iio[WS(vs, 3) + WS(rs, 5)] = FNMS(T59, T58, T57 * T5a); | |
1022 } | |
1023 { | |
1024 E TC, TE, TB, TD; | |
1025 TC = Tc + Tf; | |
1026 TE = Tt + Tu; | |
1027 TB = W[4]; | |
1028 TD = W[5]; | |
1029 rio[WS(vs, 3)] = FMA(TB, TC, TD * TE); | |
1030 iio[WS(vs, 3)] = FNMS(TD, TC, TB * TE); | |
1031 } | |
1032 { | |
1033 E T4e, T4g, T4d, T4f; | |
1034 T4e = T3O + T3R; | |
1035 T4g = T45 + T46; | |
1036 T4d = W[4]; | |
1037 T4f = W[5]; | |
1038 rio[WS(vs, 3) + WS(rs, 4)] = FMA(T4d, T4e, T4f * T4g); | |
1039 iio[WS(vs, 3) + WS(rs, 4)] = FNMS(T4f, T4e, T4d * T4g); | |
1040 } | |
1041 { | |
1042 E T3k, T3m, T3j, T3l; | |
1043 T3k = T2U + T2X; | |
1044 T3m = T3b + T3c; | |
1045 T3j = W[4]; | |
1046 T3l = W[5]; | |
1047 rio[WS(vs, 3) + WS(rs, 3)] = FMA(T3j, T3k, T3l * T3m); | |
1048 iio[WS(vs, 3) + WS(rs, 3)] = FNMS(T3l, T3k, T3j * T3m); | |
1049 } | |
1050 { | |
1051 E T2q, T2s, T2p, T2r; | |
1052 T2q = T20 + T23; | |
1053 T2s = T2h + T2i; | |
1054 T2p = W[4]; | |
1055 T2r = W[5]; | |
1056 rio[WS(vs, 3) + WS(rs, 2)] = FMA(T2p, T2q, T2r * T2s); | |
1057 iio[WS(vs, 3) + WS(rs, 2)] = FNMS(T2r, T2q, T2p * T2s); | |
1058 } | |
1059 { | |
1060 E T5g, T5o, T5m, T5q, T5c, T5k; | |
1061 T5c = FNMS(KP500000000, T4G, T4z); | |
1062 T5g = T5c - T5f; | |
1063 T5o = T5c + T5f; | |
1064 T5k = FNMS(KP500000000, T5j, T5i); | |
1065 T5m = T5k - T5l; | |
1066 T5q = T5l + T5k; | |
1067 { | |
1068 E T5b, T5h, T5n, T5p; | |
1069 T5b = W[2]; | |
1070 T5h = W[3]; | |
1071 rio[WS(vs, 2) + WS(rs, 5)] = FMA(T5b, T5g, T5h * T5m); | |
1072 iio[WS(vs, 2) + WS(rs, 5)] = FNMS(T5h, T5g, T5b * T5m); | |
1073 T5n = W[6]; | |
1074 T5p = W[7]; | |
1075 rio[WS(vs, 4) + WS(rs, 5)] = FMA(T5n, T5o, T5p * T5q); | |
1076 iio[WS(vs, 4) + WS(rs, 5)] = FNMS(T5p, T5o, T5n * T5q); | |
1077 } | |
1078 } | |
1079 { | |
1080 E To, Ty, Tw, TA, Tg, Tv; | |
1081 Tg = FNMS(KP500000000, Tf, Tc); | |
1082 To = Tg + Tn; | |
1083 Ty = Tg - Tn; | |
1084 Tv = FNMS(KP500000000, Tu, Tt); | |
1085 Tw = Tq + Tv; | |
1086 TA = Tv - Tq; | |
1087 { | |
1088 E Tb, Tp, Tx, Tz; | |
1089 Tb = W[0]; | |
1090 Tp = W[1]; | |
1091 rio[WS(vs, 1)] = FMA(Tb, To, Tp * Tw); | |
1092 iio[WS(vs, 1)] = FNMS(Tp, To, Tb * Tw); | |
1093 Tx = W[8]; | |
1094 Tz = W[9]; | |
1095 rio[WS(vs, 5)] = FMA(Tx, Ty, Tz * TA); | |
1096 iio[WS(vs, 5)] = FNMS(Tz, Ty, Tx * TA); | |
1097 } | |
1098 } | |
1099 { | |
1100 E T36, T3g, T3e, T3i, T2Y, T3d; | |
1101 T2Y = FNMS(KP500000000, T2X, T2U); | |
1102 T36 = T2Y + T35; | |
1103 T3g = T2Y - T35; | |
1104 T3d = FNMS(KP500000000, T3c, T3b); | |
1105 T3e = T38 + T3d; | |
1106 T3i = T3d - T38; | |
1107 { | |
1108 E T2T, T37, T3f, T3h; | |
1109 T2T = W[0]; | |
1110 T37 = W[1]; | |
1111 rio[WS(vs, 1) + WS(rs, 3)] = FMA(T2T, T36, T37 * T3e); | |
1112 iio[WS(vs, 1) + WS(rs, 3)] = FNMS(T37, T36, T2T * T3e); | |
1113 T3f = W[8]; | |
1114 T3h = W[9]; | |
1115 rio[WS(vs, 5) + WS(rs, 3)] = FMA(T3f, T3g, T3h * T3i); | |
1116 iio[WS(vs, 5) + WS(rs, 3)] = FNMS(T3h, T3g, T3f * T3i); | |
1117 } | |
1118 } | |
1119 { | |
1120 E T2y, T2G, T2E, T2I, T2u, T2C; | |
1121 T2u = FNMS(KP500000000, T1Y, T1R); | |
1122 T2y = T2u - T2x; | |
1123 T2G = T2u + T2x; | |
1124 T2C = FNMS(KP500000000, T2B, T2A); | |
1125 T2E = T2C - T2D; | |
1126 T2I = T2D + T2C; | |
1127 { | |
1128 E T2t, T2z, T2F, T2H; | |
1129 T2t = W[2]; | |
1130 T2z = W[3]; | |
1131 rio[WS(vs, 2) + WS(rs, 2)] = FMA(T2t, T2y, T2z * T2E); | |
1132 iio[WS(vs, 2) + WS(rs, 2)] = FNMS(T2z, T2y, T2t * T2E); | |
1133 T2F = W[6]; | |
1134 T2H = W[7]; | |
1135 rio[WS(vs, 4) + WS(rs, 2)] = FMA(T2F, T2G, T2H * T2I); | |
1136 iio[WS(vs, 4) + WS(rs, 2)] = FNMS(T2H, T2G, T2F * T2I); | |
1137 } | |
1138 } | |
1139 { | |
1140 E T3s, T3A, T3y, T3C, T3o, T3w; | |
1141 T3o = FNMS(KP500000000, T2S, T2L); | |
1142 T3s = T3o - T3r; | |
1143 T3A = T3o + T3r; | |
1144 T3w = FNMS(KP500000000, T3v, T3u); | |
1145 T3y = T3w - T3x; | |
1146 T3C = T3x + T3w; | |
1147 { | |
1148 E T3n, T3t, T3z, T3B; | |
1149 T3n = W[2]; | |
1150 T3t = W[3]; | |
1151 rio[WS(vs, 2) + WS(rs, 3)] = FMA(T3n, T3s, T3t * T3y); | |
1152 iio[WS(vs, 2) + WS(rs, 3)] = FNMS(T3t, T3s, T3n * T3y); | |
1153 T3z = W[6]; | |
1154 T3B = W[7]; | |
1155 rio[WS(vs, 4) + WS(rs, 3)] = FMA(T3z, T3A, T3B * T3C); | |
1156 iio[WS(vs, 4) + WS(rs, 3)] = FNMS(T3B, T3A, T3z * T3C); | |
1157 } | |
1158 } | |
1159 { | |
1160 E T1E, T1M, T1K, T1O, T1A, T1I; | |
1161 T1A = FNMS(KP500000000, T14, TX); | |
1162 T1E = T1A - T1D; | |
1163 T1M = T1A + T1D; | |
1164 T1I = FNMS(KP500000000, T1H, T1G); | |
1165 T1K = T1I - T1J; | |
1166 T1O = T1J + T1I; | |
1167 { | |
1168 E T1z, T1F, T1L, T1N; | |
1169 T1z = W[2]; | |
1170 T1F = W[3]; | |
1171 rio[WS(vs, 2) + WS(rs, 1)] = FMA(T1z, T1E, T1F * T1K); | |
1172 iio[WS(vs, 2) + WS(rs, 1)] = FNMS(T1F, T1E, T1z * T1K); | |
1173 T1L = W[6]; | |
1174 T1N = W[7]; | |
1175 rio[WS(vs, 4) + WS(rs, 1)] = FMA(T1L, T1M, T1N * T1O); | |
1176 iio[WS(vs, 4) + WS(rs, 1)] = FNMS(T1N, T1M, T1L * T1O); | |
1177 } | |
1178 } | |
1179 { | |
1180 E T4m, T4u, T4s, T4w, T4i, T4q; | |
1181 T4i = FNMS(KP500000000, T3M, T3F); | |
1182 T4m = T4i - T4l; | |
1183 T4u = T4i + T4l; | |
1184 T4q = FNMS(KP500000000, T4p, T4o); | |
1185 T4s = T4q - T4r; | |
1186 T4w = T4r + T4q; | |
1187 { | |
1188 E T4h, T4n, T4t, T4v; | |
1189 T4h = W[2]; | |
1190 T4n = W[3]; | |
1191 rio[WS(vs, 2) + WS(rs, 4)] = FMA(T4h, T4m, T4n * T4s); | |
1192 iio[WS(vs, 2) + WS(rs, 4)] = FNMS(T4n, T4m, T4h * T4s); | |
1193 T4t = W[6]; | |
1194 T4v = W[7]; | |
1195 rio[WS(vs, 4) + WS(rs, 4)] = FMA(T4t, T4u, T4v * T4w); | |
1196 iio[WS(vs, 4) + WS(rs, 4)] = FNMS(T4v, T4u, T4t * T4w); | |
1197 } | |
1198 } | |
1199 { | |
1200 E TK, TS, TQ, TU, TG, TO; | |
1201 TG = FNMS(KP500000000, Ta, T3); | |
1202 TK = TG - TJ; | |
1203 TS = TG + TJ; | |
1204 TO = FNMS(KP500000000, TN, TM); | |
1205 TQ = TO - TP; | |
1206 TU = TP + TO; | |
1207 { | |
1208 E TF, TL, TR, TT; | |
1209 TF = W[2]; | |
1210 TL = W[3]; | |
1211 rio[WS(vs, 2)] = FMA(TF, TK, TL * TQ); | |
1212 iio[WS(vs, 2)] = FNMS(TL, TK, TF * TQ); | |
1213 TR = W[6]; | |
1214 TT = W[7]; | |
1215 rio[WS(vs, 4)] = FMA(TR, TS, TT * TU); | |
1216 iio[WS(vs, 4)] = FNMS(TT, TS, TR * TU); | |
1217 } | |
1218 } | |
1219 { | |
1220 E T2c, T2m, T2k, T2o, T24, T2j; | |
1221 T24 = FNMS(KP500000000, T23, T20); | |
1222 T2c = T24 + T2b; | |
1223 T2m = T24 - T2b; | |
1224 T2j = FNMS(KP500000000, T2i, T2h); | |
1225 T2k = T2e + T2j; | |
1226 T2o = T2j - T2e; | |
1227 { | |
1228 E T1Z, T2d, T2l, T2n; | |
1229 T1Z = W[0]; | |
1230 T2d = W[1]; | |
1231 rio[WS(vs, 1) + WS(rs, 2)] = FMA(T1Z, T2c, T2d * T2k); | |
1232 iio[WS(vs, 1) + WS(rs, 2)] = FNMS(T2d, T2c, T1Z * T2k); | |
1233 T2l = W[8]; | |
1234 T2n = W[9]; | |
1235 rio[WS(vs, 5) + WS(rs, 2)] = FMA(T2l, T2m, T2n * T2o); | |
1236 iio[WS(vs, 5) + WS(rs, 2)] = FNMS(T2n, T2m, T2l * T2o); | |
1237 } | |
1238 } | |
1239 { | |
1240 E T40, T4a, T48, T4c, T3S, T47; | |
1241 T3S = FNMS(KP500000000, T3R, T3O); | |
1242 T40 = T3S + T3Z; | |
1243 T4a = T3S - T3Z; | |
1244 T47 = FNMS(KP500000000, T46, T45); | |
1245 T48 = T42 + T47; | |
1246 T4c = T47 - T42; | |
1247 { | |
1248 E T3N, T41, T49, T4b; | |
1249 T3N = W[0]; | |
1250 T41 = W[1]; | |
1251 rio[WS(vs, 1) + WS(rs, 4)] = FMA(T3N, T40, T41 * T48); | |
1252 iio[WS(vs, 1) + WS(rs, 4)] = FNMS(T41, T40, T3N * T48); | |
1253 T49 = W[8]; | |
1254 T4b = W[9]; | |
1255 rio[WS(vs, 5) + WS(rs, 4)] = FMA(T49, T4a, T4b * T4c); | |
1256 iio[WS(vs, 5) + WS(rs, 4)] = FNMS(T4b, T4a, T49 * T4c); | |
1257 } | |
1258 } | |
1259 { | |
1260 E T1i, T1s, T1q, T1u, T1a, T1p; | |
1261 T1a = FNMS(KP500000000, T19, T16); | |
1262 T1i = T1a + T1h; | |
1263 T1s = T1a - T1h; | |
1264 T1p = FNMS(KP500000000, T1o, T1n); | |
1265 T1q = T1k + T1p; | |
1266 T1u = T1p - T1k; | |
1267 { | |
1268 E T15, T1j, T1r, T1t; | |
1269 T15 = W[0]; | |
1270 T1j = W[1]; | |
1271 rio[WS(vs, 1) + WS(rs, 1)] = FMA(T15, T1i, T1j * T1q); | |
1272 iio[WS(vs, 1) + WS(rs, 1)] = FNMS(T1j, T1i, T15 * T1q); | |
1273 T1r = W[8]; | |
1274 T1t = W[9]; | |
1275 rio[WS(vs, 5) + WS(rs, 1)] = FMA(T1r, T1s, T1t * T1u); | |
1276 iio[WS(vs, 5) + WS(rs, 1)] = FNMS(T1t, T1s, T1r * T1u); | |
1277 } | |
1278 } | |
1279 { | |
1280 E T4U, T54, T52, T56, T4M, T51; | |
1281 T4M = FNMS(KP500000000, T4L, T4I); | |
1282 T4U = T4M + T4T; | |
1283 T54 = T4M - T4T; | |
1284 T51 = FNMS(KP500000000, T50, T4Z); | |
1285 T52 = T4W + T51; | |
1286 T56 = T51 - T4W; | |
1287 { | |
1288 E T4H, T4V, T53, T55; | |
1289 T4H = W[0]; | |
1290 T4V = W[1]; | |
1291 rio[WS(vs, 1) + WS(rs, 5)] = FMA(T4H, T4U, T4V * T52); | |
1292 iio[WS(vs, 1) + WS(rs, 5)] = FNMS(T4V, T4U, T4H * T52); | |
1293 T53 = W[8]; | |
1294 T55 = W[9]; | |
1295 rio[WS(vs, 5) + WS(rs, 5)] = FMA(T53, T54, T55 * T56); | |
1296 iio[WS(vs, 5) + WS(rs, 5)] = FNMS(T55, T54, T53 * T56); | |
1297 } | |
1298 } | |
1299 } | |
1300 } | |
1301 } | |
1302 | |
1303 static const tw_instr twinstr[] = { | |
1304 {TW_FULL, 0, 6}, | |
1305 {TW_NEXT, 1, 0} | |
1306 }; | |
1307 | |
1308 static const ct_desc desc = { 6, "q1_6", twinstr, &GENUS, {192, 84, 84, 0}, 0, 0, 0 }; | |
1309 | |
1310 void X(codelet_q1_6) (planner *p) { | |
1311 X(kdft_difsq_register) (p, q1_6, &desc); | |
1312 } | |
1313 #endif /* HAVE_FMA */ |