Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.3/dft/scalar/codelets/q1_5.c @ 95:89f5e221ed7b
Add FFTW3
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
94:d278df1123f9 | 95:89f5e221ed7b |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-11 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Sun Nov 25 07:36:23 EST 2012 */ | |
23 | |
24 #include "codelet-dft.h" | |
25 | |
26 #ifdef HAVE_FMA | |
27 | |
28 /* Generated by: ../../../genfft/gen_twidsq.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -reload-twiddle -dif -n 5 -name q1_5 -include q.h */ | |
29 | |
30 /* | |
31 * This function contains 200 FP additions, 170 FP multiplications, | |
32 * (or, 70 additions, 40 multiplications, 130 fused multiply/add), | |
33 * 104 stack variables, 4 constants, and 100 memory accesses | |
34 */ | |
35 #include "q.h" | |
36 | |
37 static void q1_5(R *rio, R *iio, const R *W, stride rs, stride vs, INT mb, INT me, INT ms) | |
38 { | |
39 DK(KP951056516, +0.951056516295153572116439333379382143405698634); | |
40 DK(KP559016994, +0.559016994374947424102293417182819058860154590); | |
41 DK(KP250000000, +0.250000000000000000000000000000000000000000000); | |
42 DK(KP618033988, +0.618033988749894848204586834365638117720309180); | |
43 { | |
44 INT m; | |
45 for (m = mb, W = W + (mb * 8); m < me; m = m + 1, rio = rio + ms, iio = iio + ms, W = W + 8, MAKE_VOLATILE_STRIDE(10, rs), MAKE_VOLATILE_STRIDE(0, vs)) { | |
46 E T1x, T1w, T1v; | |
47 { | |
48 E T1, Tn, TM, Tw, Tb, T8, Ta, TV, Tq, Ts, TH, Tj, Tr, T1h, T1q; | |
49 E T1G, T12, T15, T1P, T14, T1k, T1m, T1B, T1d, T1l, T2b, T2k, T2A, T1W, T1Z; | |
50 E T3Z, T1Y, T2e, T2g, T2v, T27, T2f, T3D, T42, T44, T4j, T3V, T43, T2J, T48; | |
51 E T4o, T3K, T3N, T35, T3M, T2V, T3e, T3u, T2Q, T2T, T37, T30, T2S, T2W; | |
52 { | |
53 E T1Q, T2j, T1V, T1R; | |
54 { | |
55 E Tp, Ti, Td, Te; | |
56 { | |
57 E T5, T6, T2, T3, T7, Tv; | |
58 T1 = rio[0]; | |
59 T5 = rio[WS(rs, 2)]; | |
60 T6 = rio[WS(rs, 3)]; | |
61 T2 = rio[WS(rs, 1)]; | |
62 T3 = rio[WS(rs, 4)]; | |
63 Tn = iio[0]; | |
64 T7 = T5 + T6; | |
65 Tv = T5 - T6; | |
66 { | |
67 E T4, Tu, Tg, Th; | |
68 T4 = T2 + T3; | |
69 Tu = T2 - T3; | |
70 Tg = iio[WS(rs, 2)]; | |
71 Th = iio[WS(rs, 3)]; | |
72 TM = FNMS(KP618033988, Tu, Tv); | |
73 Tw = FMA(KP618033988, Tv, Tu); | |
74 Tb = T4 - T7; | |
75 T8 = T4 + T7; | |
76 Tp = Tg + Th; | |
77 Ti = Tg - Th; | |
78 Ta = FNMS(KP250000000, T8, T1); | |
79 Td = iio[WS(rs, 1)]; | |
80 Te = iio[WS(rs, 4)]; | |
81 } | |
82 } | |
83 { | |
84 E TW, T1p, T11, TX; | |
85 TV = rio[WS(vs, 1)]; | |
86 { | |
87 E TZ, T10, Tf, To; | |
88 TZ = rio[WS(vs, 1) + WS(rs, 2)]; | |
89 T10 = rio[WS(vs, 1) + WS(rs, 3)]; | |
90 Tf = Td - Te; | |
91 To = Td + Te; | |
92 TW = rio[WS(vs, 1) + WS(rs, 1)]; | |
93 T1p = TZ - T10; | |
94 T11 = TZ + T10; | |
95 Tq = To + Tp; | |
96 Ts = To - Tp; | |
97 TH = FNMS(KP618033988, Tf, Ti); | |
98 Tj = FMA(KP618033988, Ti, Tf); | |
99 Tr = FNMS(KP250000000, Tq, Tn); | |
100 TX = rio[WS(vs, 1) + WS(rs, 4)]; | |
101 } | |
102 { | |
103 E T17, T1j, T1c, T18; | |
104 T1h = iio[WS(vs, 1)]; | |
105 { | |
106 E T1a, T1b, TY, T1o; | |
107 T1a = iio[WS(vs, 1) + WS(rs, 2)]; | |
108 T1b = iio[WS(vs, 1) + WS(rs, 3)]; | |
109 TY = TW + TX; | |
110 T1o = TW - TX; | |
111 T17 = iio[WS(vs, 1) + WS(rs, 1)]; | |
112 T1j = T1a + T1b; | |
113 T1c = T1a - T1b; | |
114 T1q = FMA(KP618033988, T1p, T1o); | |
115 T1G = FNMS(KP618033988, T1o, T1p); | |
116 T12 = TY + T11; | |
117 T15 = TY - T11; | |
118 T18 = iio[WS(vs, 1) + WS(rs, 4)]; | |
119 } | |
120 T1P = rio[WS(vs, 2)]; | |
121 T14 = FNMS(KP250000000, T12, TV); | |
122 { | |
123 E T1T, T1i, T19, T1U; | |
124 T1T = rio[WS(vs, 2) + WS(rs, 2)]; | |
125 T1i = T17 + T18; | |
126 T19 = T17 - T18; | |
127 T1U = rio[WS(vs, 2) + WS(rs, 3)]; | |
128 T1Q = rio[WS(vs, 2) + WS(rs, 1)]; | |
129 T1k = T1i + T1j; | |
130 T1m = T1i - T1j; | |
131 T1B = FNMS(KP618033988, T19, T1c); | |
132 T1d = FMA(KP618033988, T1c, T19); | |
133 T2j = T1T - T1U; | |
134 T1V = T1T + T1U; | |
135 T1l = FNMS(KP250000000, T1k, T1h); | |
136 T1R = rio[WS(vs, 2) + WS(rs, 4)]; | |
137 } | |
138 } | |
139 } | |
140 } | |
141 { | |
142 E T3P, T41, T3U, T3Q; | |
143 { | |
144 E T21, T2d, T26, T22; | |
145 T2b = iio[WS(vs, 2)]; | |
146 { | |
147 E T24, T25, T1S, T2i; | |
148 T24 = iio[WS(vs, 2) + WS(rs, 2)]; | |
149 T25 = iio[WS(vs, 2) + WS(rs, 3)]; | |
150 T1S = T1Q + T1R; | |
151 T2i = T1Q - T1R; | |
152 T21 = iio[WS(vs, 2) + WS(rs, 1)]; | |
153 T2d = T24 + T25; | |
154 T26 = T24 - T25; | |
155 T2k = FMA(KP618033988, T2j, T2i); | |
156 T2A = FNMS(KP618033988, T2i, T2j); | |
157 T1W = T1S + T1V; | |
158 T1Z = T1S - T1V; | |
159 T22 = iio[WS(vs, 2) + WS(rs, 4)]; | |
160 } | |
161 T3Z = iio[WS(vs, 4)]; | |
162 T1Y = FNMS(KP250000000, T1W, T1P); | |
163 { | |
164 E T3S, T2c, T23, T3T; | |
165 T3S = iio[WS(vs, 4) + WS(rs, 2)]; | |
166 T2c = T21 + T22; | |
167 T23 = T21 - T22; | |
168 T3T = iio[WS(vs, 4) + WS(rs, 3)]; | |
169 T3P = iio[WS(vs, 4) + WS(rs, 1)]; | |
170 T2e = T2c + T2d; | |
171 T2g = T2c - T2d; | |
172 T2v = FNMS(KP618033988, T23, T26); | |
173 T27 = FMA(KP618033988, T26, T23); | |
174 T41 = T3S + T3T; | |
175 T3U = T3S - T3T; | |
176 T2f = FNMS(KP250000000, T2e, T2b); | |
177 T3Q = iio[WS(vs, 4) + WS(rs, 4)]; | |
178 } | |
179 } | |
180 { | |
181 E T3E, T47, T3J, T3F; | |
182 T3D = rio[WS(vs, 4)]; | |
183 { | |
184 E T3H, T3I, T3R, T40; | |
185 T3H = rio[WS(vs, 4) + WS(rs, 2)]; | |
186 T3I = rio[WS(vs, 4) + WS(rs, 3)]; | |
187 T3R = T3P - T3Q; | |
188 T40 = T3P + T3Q; | |
189 T3E = rio[WS(vs, 4) + WS(rs, 1)]; | |
190 T47 = T3H - T3I; | |
191 T3J = T3H + T3I; | |
192 T42 = T40 + T41; | |
193 T44 = T40 - T41; | |
194 T4j = FNMS(KP618033988, T3R, T3U); | |
195 T3V = FMA(KP618033988, T3U, T3R); | |
196 T43 = FNMS(KP250000000, T42, T3Z); | |
197 T3F = rio[WS(vs, 4) + WS(rs, 4)]; | |
198 } | |
199 { | |
200 E T2K, T3d, T2P, T2L; | |
201 T2J = rio[WS(vs, 3)]; | |
202 { | |
203 E T2N, T2O, T3G, T46; | |
204 T2N = rio[WS(vs, 3) + WS(rs, 2)]; | |
205 T2O = rio[WS(vs, 3) + WS(rs, 3)]; | |
206 T3G = T3E + T3F; | |
207 T46 = T3E - T3F; | |
208 T2K = rio[WS(vs, 3) + WS(rs, 1)]; | |
209 T3d = T2N - T2O; | |
210 T2P = T2N + T2O; | |
211 T48 = FMA(KP618033988, T47, T46); | |
212 T4o = FNMS(KP618033988, T46, T47); | |
213 T3K = T3G + T3J; | |
214 T3N = T3G - T3J; | |
215 T2L = rio[WS(vs, 3) + WS(rs, 4)]; | |
216 } | |
217 T35 = iio[WS(vs, 3)]; | |
218 T3M = FNMS(KP250000000, T3K, T3D); | |
219 { | |
220 E T2Y, T3c, T2M, T2Z; | |
221 T2Y = iio[WS(vs, 3) + WS(rs, 2)]; | |
222 T3c = T2K - T2L; | |
223 T2M = T2K + T2L; | |
224 T2Z = iio[WS(vs, 3) + WS(rs, 3)]; | |
225 T2V = iio[WS(vs, 3) + WS(rs, 1)]; | |
226 T3e = FMA(KP618033988, T3d, T3c); | |
227 T3u = FNMS(KP618033988, T3c, T3d); | |
228 T2Q = T2M + T2P; | |
229 T2T = T2M - T2P; | |
230 T37 = T2Y + T2Z; | |
231 T30 = T2Y - T2Z; | |
232 T2S = FNMS(KP250000000, T2Q, T2J); | |
233 T2W = iio[WS(vs, 3) + WS(rs, 4)]; | |
234 } | |
235 } | |
236 } | |
237 } | |
238 } | |
239 { | |
240 E T3a, T31, T3p, T39, T2X, T36, T38; | |
241 rio[0] = T1 + T8; | |
242 iio[0] = Tn + Tq; | |
243 rio[WS(rs, 1)] = TV + T12; | |
244 T2X = T2V - T2W; | |
245 T36 = T2V + T2W; | |
246 iio[WS(rs, 1)] = T1h + T1k; | |
247 rio[WS(rs, 2)] = T1P + T1W; | |
248 T3a = T36 - T37; | |
249 T38 = T36 + T37; | |
250 T31 = FMA(KP618033988, T30, T2X); | |
251 T3p = FNMS(KP618033988, T2X, T30); | |
252 T39 = FNMS(KP250000000, T38, T35); | |
253 iio[WS(rs, 2)] = T2b + T2e; | |
254 iio[WS(rs, 4)] = T3Z + T42; | |
255 rio[WS(rs, 4)] = T3D + T3K; | |
256 rio[WS(rs, 3)] = T2J + T2Q; | |
257 iio[WS(rs, 3)] = T35 + T38; | |
258 { | |
259 E T3O, T45, T2r, T2q, T2p, TT, TS, TR; | |
260 { | |
261 E TG, TL, TD, TC, TB, Tc, Tt; | |
262 TG = FNMS(KP559016994, Tb, Ta); | |
263 Tc = FMA(KP559016994, Tb, Ta); | |
264 Tt = FMA(KP559016994, Ts, Tr); | |
265 TL = FNMS(KP559016994, Ts, Tr); | |
266 { | |
267 E T9, Tm, Tk, TA, Tx; | |
268 T9 = W[0]; | |
269 Tm = W[1]; | |
270 Tk = FMA(KP951056516, Tj, Tc); | |
271 TA = FNMS(KP951056516, Tj, Tc); | |
272 Tx = FNMS(KP951056516, Tw, Tt); | |
273 TD = FMA(KP951056516, Tw, Tt); | |
274 { | |
275 E Tz, Tl, Ty, TE; | |
276 Tz = W[6]; | |
277 Tl = T9 * Tk; | |
278 TC = W[7]; | |
279 Ty = T9 * Tx; | |
280 TE = Tz * TD; | |
281 TB = Tz * TA; | |
282 rio[WS(vs, 1)] = FMA(Tm, Tx, Tl); | |
283 iio[WS(vs, 1)] = FNMS(Tm, Tk, Ty); | |
284 iio[WS(vs, 4)] = FNMS(TC, TA, TE); | |
285 } | |
286 } | |
287 rio[WS(vs, 4)] = FMA(TC, TD, TB); | |
288 { | |
289 E TF, TK, TI, TQ, TN; | |
290 TF = W[2]; | |
291 TK = W[3]; | |
292 TI = FNMS(KP951056516, TH, TG); | |
293 TQ = FMA(KP951056516, TH, TG); | |
294 TN = FMA(KP951056516, TM, TL); | |
295 TT = FNMS(KP951056516, TM, TL); | |
296 { | |
297 E TP, TJ, TO, TU; | |
298 TP = W[4]; | |
299 TJ = TF * TI; | |
300 TS = W[5]; | |
301 TO = TF * TN; | |
302 TU = TP * TT; | |
303 TR = TP * TQ; | |
304 rio[WS(vs, 2)] = FMA(TK, TN, TJ); | |
305 iio[WS(vs, 2)] = FNMS(TK, TI, TO); | |
306 iio[WS(vs, 3)] = FNMS(TS, TQ, TU); | |
307 } | |
308 } | |
309 } | |
310 rio[WS(vs, 3)] = FMA(TS, TT, TR); | |
311 { | |
312 E T20, T2h, T2H, T2G, T2F, T2u, T2z; | |
313 T20 = FMA(KP559016994, T1Z, T1Y); | |
314 T2u = FNMS(KP559016994, T1Z, T1Y); | |
315 T2z = FNMS(KP559016994, T2g, T2f); | |
316 T2h = FMA(KP559016994, T2g, T2f); | |
317 { | |
318 E T2t, T2y, T2w, T2E, T2B; | |
319 T2t = W[2]; | |
320 T2y = W[3]; | |
321 T2w = FNMS(KP951056516, T2v, T2u); | |
322 T2E = FMA(KP951056516, T2v, T2u); | |
323 T2B = FMA(KP951056516, T2A, T2z); | |
324 T2H = FNMS(KP951056516, T2A, T2z); | |
325 { | |
326 E T2D, T2x, T2C, T2I; | |
327 T2D = W[4]; | |
328 T2x = T2t * T2w; | |
329 T2G = W[5]; | |
330 T2C = T2t * T2B; | |
331 T2I = T2D * T2H; | |
332 T2F = T2D * T2E; | |
333 rio[WS(vs, 2) + WS(rs, 2)] = FMA(T2y, T2B, T2x); | |
334 iio[WS(vs, 2) + WS(rs, 2)] = FNMS(T2y, T2w, T2C); | |
335 iio[WS(vs, 3) + WS(rs, 2)] = FNMS(T2G, T2E, T2I); | |
336 } | |
337 } | |
338 rio[WS(vs, 3) + WS(rs, 2)] = FMA(T2G, T2H, T2F); | |
339 { | |
340 E T4v, T4u, T4t, T4i, T4n; | |
341 T3O = FMA(KP559016994, T3N, T3M); | |
342 T4i = FNMS(KP559016994, T3N, T3M); | |
343 T4n = FNMS(KP559016994, T44, T43); | |
344 T45 = FMA(KP559016994, T44, T43); | |
345 { | |
346 E T4h, T4m, T4k, T4s, T4p; | |
347 T4h = W[2]; | |
348 T4m = W[3]; | |
349 T4k = FNMS(KP951056516, T4j, T4i); | |
350 T4s = FMA(KP951056516, T4j, T4i); | |
351 T4p = FMA(KP951056516, T4o, T4n); | |
352 T4v = FNMS(KP951056516, T4o, T4n); | |
353 { | |
354 E T4r, T4l, T4q, T4w; | |
355 T4r = W[4]; | |
356 T4l = T4h * T4k; | |
357 T4u = W[5]; | |
358 T4q = T4h * T4p; | |
359 T4w = T4r * T4v; | |
360 T4t = T4r * T4s; | |
361 rio[WS(vs, 2) + WS(rs, 4)] = FMA(T4m, T4p, T4l); | |
362 iio[WS(vs, 2) + WS(rs, 4)] = FNMS(T4m, T4k, T4q); | |
363 iio[WS(vs, 3) + WS(rs, 4)] = FNMS(T4u, T4s, T4w); | |
364 } | |
365 } | |
366 rio[WS(vs, 3) + WS(rs, 4)] = FMA(T4u, T4v, T4t); | |
367 { | |
368 E T1X, T2a, T28, T2o, T2l; | |
369 T1X = W[0]; | |
370 T2a = W[1]; | |
371 T28 = FMA(KP951056516, T27, T20); | |
372 T2o = FNMS(KP951056516, T27, T20); | |
373 T2l = FNMS(KP951056516, T2k, T2h); | |
374 T2r = FMA(KP951056516, T2k, T2h); | |
375 { | |
376 E T2n, T29, T2m, T2s; | |
377 T2n = W[6]; | |
378 T29 = T1X * T28; | |
379 T2q = W[7]; | |
380 T2m = T1X * T2l; | |
381 T2s = T2n * T2r; | |
382 T2p = T2n * T2o; | |
383 rio[WS(vs, 1) + WS(rs, 2)] = FMA(T2a, T2l, T29); | |
384 iio[WS(vs, 1) + WS(rs, 2)] = FNMS(T2a, T28, T2m); | |
385 iio[WS(vs, 4) + WS(rs, 2)] = FNMS(T2q, T2o, T2s); | |
386 } | |
387 } | |
388 } | |
389 } | |
390 rio[WS(vs, 4) + WS(rs, 2)] = FMA(T2q, T2r, T2p); | |
391 { | |
392 E T3B, T3A, T3z, T4f, T4e, T4d; | |
393 { | |
394 E T3o, T3t, T3l, T3k, T3j, T2U, T3b; | |
395 T3o = FNMS(KP559016994, T2T, T2S); | |
396 T2U = FMA(KP559016994, T2T, T2S); | |
397 T3b = FMA(KP559016994, T3a, T39); | |
398 T3t = FNMS(KP559016994, T3a, T39); | |
399 { | |
400 E T2R, T34, T32, T3i, T3f; | |
401 T2R = W[0]; | |
402 T34 = W[1]; | |
403 T32 = FMA(KP951056516, T31, T2U); | |
404 T3i = FNMS(KP951056516, T31, T2U); | |
405 T3f = FNMS(KP951056516, T3e, T3b); | |
406 T3l = FMA(KP951056516, T3e, T3b); | |
407 { | |
408 E T3h, T33, T3g, T3m; | |
409 T3h = W[6]; | |
410 T33 = T2R * T32; | |
411 T3k = W[7]; | |
412 T3g = T2R * T3f; | |
413 T3m = T3h * T3l; | |
414 T3j = T3h * T3i; | |
415 rio[WS(vs, 1) + WS(rs, 3)] = FMA(T34, T3f, T33); | |
416 iio[WS(vs, 1) + WS(rs, 3)] = FNMS(T34, T32, T3g); | |
417 iio[WS(vs, 4) + WS(rs, 3)] = FNMS(T3k, T3i, T3m); | |
418 } | |
419 } | |
420 rio[WS(vs, 4) + WS(rs, 3)] = FMA(T3k, T3l, T3j); | |
421 { | |
422 E T3n, T3s, T3q, T3y, T3v; | |
423 T3n = W[2]; | |
424 T3s = W[3]; | |
425 T3q = FNMS(KP951056516, T3p, T3o); | |
426 T3y = FMA(KP951056516, T3p, T3o); | |
427 T3v = FMA(KP951056516, T3u, T3t); | |
428 T3B = FNMS(KP951056516, T3u, T3t); | |
429 { | |
430 E T3x, T3r, T3w, T3C; | |
431 T3x = W[4]; | |
432 T3r = T3n * T3q; | |
433 T3A = W[5]; | |
434 T3w = T3n * T3v; | |
435 T3C = T3x * T3B; | |
436 T3z = T3x * T3y; | |
437 rio[WS(vs, 2) + WS(rs, 3)] = FMA(T3s, T3v, T3r); | |
438 iio[WS(vs, 2) + WS(rs, 3)] = FNMS(T3s, T3q, T3w); | |
439 iio[WS(vs, 3) + WS(rs, 3)] = FNMS(T3A, T3y, T3C); | |
440 } | |
441 } | |
442 } | |
443 rio[WS(vs, 3) + WS(rs, 3)] = FMA(T3A, T3B, T3z); | |
444 { | |
445 E T3L, T3Y, T3W, T4c, T49; | |
446 T3L = W[0]; | |
447 T3Y = W[1]; | |
448 T3W = FMA(KP951056516, T3V, T3O); | |
449 T4c = FNMS(KP951056516, T3V, T3O); | |
450 T49 = FNMS(KP951056516, T48, T45); | |
451 T4f = FMA(KP951056516, T48, T45); | |
452 { | |
453 E T4b, T3X, T4a, T4g; | |
454 T4b = W[6]; | |
455 T3X = T3L * T3W; | |
456 T4e = W[7]; | |
457 T4a = T3L * T49; | |
458 T4g = T4b * T4f; | |
459 T4d = T4b * T4c; | |
460 rio[WS(vs, 1) + WS(rs, 4)] = FMA(T3Y, T49, T3X); | |
461 iio[WS(vs, 1) + WS(rs, 4)] = FNMS(T3Y, T3W, T4a); | |
462 iio[WS(vs, 4) + WS(rs, 4)] = FNMS(T4e, T4c, T4g); | |
463 } | |
464 } | |
465 rio[WS(vs, 4) + WS(rs, 4)] = FMA(T4e, T4f, T4d); | |
466 { | |
467 E T16, T1n, T1N, T1M, T1L, T1A, T1F; | |
468 T16 = FMA(KP559016994, T15, T14); | |
469 T1A = FNMS(KP559016994, T15, T14); | |
470 T1F = FNMS(KP559016994, T1m, T1l); | |
471 T1n = FMA(KP559016994, T1m, T1l); | |
472 { | |
473 E T1z, T1E, T1C, T1K, T1H; | |
474 T1z = W[2]; | |
475 T1E = W[3]; | |
476 T1C = FNMS(KP951056516, T1B, T1A); | |
477 T1K = FMA(KP951056516, T1B, T1A); | |
478 T1H = FMA(KP951056516, T1G, T1F); | |
479 T1N = FNMS(KP951056516, T1G, T1F); | |
480 { | |
481 E T1J, T1D, T1I, T1O; | |
482 T1J = W[4]; | |
483 T1D = T1z * T1C; | |
484 T1M = W[5]; | |
485 T1I = T1z * T1H; | |
486 T1O = T1J * T1N; | |
487 T1L = T1J * T1K; | |
488 rio[WS(vs, 2) + WS(rs, 1)] = FMA(T1E, T1H, T1D); | |
489 iio[WS(vs, 2) + WS(rs, 1)] = FNMS(T1E, T1C, T1I); | |
490 iio[WS(vs, 3) + WS(rs, 1)] = FNMS(T1M, T1K, T1O); | |
491 } | |
492 } | |
493 rio[WS(vs, 3) + WS(rs, 1)] = FMA(T1M, T1N, T1L); | |
494 { | |
495 E T13, T1g, T1e, T1u, T1r; | |
496 T13 = W[0]; | |
497 T1g = W[1]; | |
498 T1e = FMA(KP951056516, T1d, T16); | |
499 T1u = FNMS(KP951056516, T1d, T16); | |
500 T1r = FNMS(KP951056516, T1q, T1n); | |
501 T1x = FMA(KP951056516, T1q, T1n); | |
502 { | |
503 E T1t, T1f, T1s, T1y; | |
504 T1t = W[6]; | |
505 T1f = T13 * T1e; | |
506 T1w = W[7]; | |
507 T1s = T13 * T1r; | |
508 T1y = T1t * T1x; | |
509 T1v = T1t * T1u; | |
510 rio[WS(vs, 1) + WS(rs, 1)] = FMA(T1g, T1r, T1f); | |
511 iio[WS(vs, 1) + WS(rs, 1)] = FNMS(T1g, T1e, T1s); | |
512 iio[WS(vs, 4) + WS(rs, 1)] = FNMS(T1w, T1u, T1y); | |
513 } | |
514 } | |
515 } | |
516 } | |
517 } | |
518 } | |
519 } | |
520 rio[WS(vs, 4) + WS(rs, 1)] = FMA(T1w, T1x, T1v); | |
521 } | |
522 } | |
523 } | |
524 | |
525 static const tw_instr twinstr[] = { | |
526 {TW_FULL, 0, 5}, | |
527 {TW_NEXT, 1, 0} | |
528 }; | |
529 | |
530 static const ct_desc desc = { 5, "q1_5", twinstr, &GENUS, {70, 40, 130, 0}, 0, 0, 0 }; | |
531 | |
532 void X(codelet_q1_5) (planner *p) { | |
533 X(kdft_difsq_register) (p, q1_5, &desc); | |
534 } | |
535 #else /* HAVE_FMA */ | |
536 | |
537 /* Generated by: ../../../genfft/gen_twidsq.native -compact -variables 4 -pipeline-latency 4 -reload-twiddle -dif -n 5 -name q1_5 -include q.h */ | |
538 | |
539 /* | |
540 * This function contains 200 FP additions, 140 FP multiplications, | |
541 * (or, 130 additions, 70 multiplications, 70 fused multiply/add), | |
542 * 75 stack variables, 4 constants, and 100 memory accesses | |
543 */ | |
544 #include "q.h" | |
545 | |
546 static void q1_5(R *rio, R *iio, const R *W, stride rs, stride vs, INT mb, INT me, INT ms) | |
547 { | |
548 DK(KP250000000, +0.250000000000000000000000000000000000000000000); | |
549 DK(KP587785252, +0.587785252292473129168705954639072768597652438); | |
550 DK(KP951056516, +0.951056516295153572116439333379382143405698634); | |
551 DK(KP559016994, +0.559016994374947424102293417182819058860154590); | |
552 { | |
553 INT m; | |
554 for (m = mb, W = W + (mb * 8); m < me; m = m + 1, rio = rio + ms, iio = iio + ms, W = W + 8, MAKE_VOLATILE_STRIDE(10, rs), MAKE_VOLATILE_STRIDE(0, vs)) { | |
555 E T1, Ta, TG, Tv, T8, Tb, Tp, Tj, TD, To, Tq, Tr, TN, TW, T1s; | |
556 E T1h, TU, TX, T1b, T15, T1p, T1a, T1c, T1d, T1z, T1I, T2e, T23, T1G, T1J; | |
557 E T1X, T1R, T2b, T1W, T1Y, T1Z, T3v, T3p, T3J, T3u, T3w, T3x, T37, T3g, T3M; | |
558 E T3B, T3e, T3h, T2l, T2u, T30, T2P, T2s, T2v, T2J, T2D, T2X, T2I, T2K, T2L; | |
559 { | |
560 E T7, Tu, T4, Tt; | |
561 T1 = rio[0]; | |
562 { | |
563 E T5, T6, T2, T3; | |
564 T5 = rio[WS(rs, 2)]; | |
565 T6 = rio[WS(rs, 3)]; | |
566 T7 = T5 + T6; | |
567 Tu = T5 - T6; | |
568 T2 = rio[WS(rs, 1)]; | |
569 T3 = rio[WS(rs, 4)]; | |
570 T4 = T2 + T3; | |
571 Tt = T2 - T3; | |
572 } | |
573 Ta = KP559016994 * (T4 - T7); | |
574 TG = FNMS(KP587785252, Tt, KP951056516 * Tu); | |
575 Tv = FMA(KP951056516, Tt, KP587785252 * Tu); | |
576 T8 = T4 + T7; | |
577 Tb = FNMS(KP250000000, T8, T1); | |
578 } | |
579 { | |
580 E Ti, Tn, Tf, Tm; | |
581 Tp = iio[0]; | |
582 { | |
583 E Tg, Th, Td, Te; | |
584 Tg = iio[WS(rs, 2)]; | |
585 Th = iio[WS(rs, 3)]; | |
586 Ti = Tg - Th; | |
587 Tn = Tg + Th; | |
588 Td = iio[WS(rs, 1)]; | |
589 Te = iio[WS(rs, 4)]; | |
590 Tf = Td - Te; | |
591 Tm = Td + Te; | |
592 } | |
593 Tj = FMA(KP951056516, Tf, KP587785252 * Ti); | |
594 TD = FNMS(KP587785252, Tf, KP951056516 * Ti); | |
595 To = KP559016994 * (Tm - Tn); | |
596 Tq = Tm + Tn; | |
597 Tr = FNMS(KP250000000, Tq, Tp); | |
598 } | |
599 { | |
600 E TT, T1g, TQ, T1f; | |
601 TN = rio[WS(vs, 1)]; | |
602 { | |
603 E TR, TS, TO, TP; | |
604 TR = rio[WS(vs, 1) + WS(rs, 2)]; | |
605 TS = rio[WS(vs, 1) + WS(rs, 3)]; | |
606 TT = TR + TS; | |
607 T1g = TR - TS; | |
608 TO = rio[WS(vs, 1) + WS(rs, 1)]; | |
609 TP = rio[WS(vs, 1) + WS(rs, 4)]; | |
610 TQ = TO + TP; | |
611 T1f = TO - TP; | |
612 } | |
613 TW = KP559016994 * (TQ - TT); | |
614 T1s = FNMS(KP587785252, T1f, KP951056516 * T1g); | |
615 T1h = FMA(KP951056516, T1f, KP587785252 * T1g); | |
616 TU = TQ + TT; | |
617 TX = FNMS(KP250000000, TU, TN); | |
618 } | |
619 { | |
620 E T14, T19, T11, T18; | |
621 T1b = iio[WS(vs, 1)]; | |
622 { | |
623 E T12, T13, TZ, T10; | |
624 T12 = iio[WS(vs, 1) + WS(rs, 2)]; | |
625 T13 = iio[WS(vs, 1) + WS(rs, 3)]; | |
626 T14 = T12 - T13; | |
627 T19 = T12 + T13; | |
628 TZ = iio[WS(vs, 1) + WS(rs, 1)]; | |
629 T10 = iio[WS(vs, 1) + WS(rs, 4)]; | |
630 T11 = TZ - T10; | |
631 T18 = TZ + T10; | |
632 } | |
633 T15 = FMA(KP951056516, T11, KP587785252 * T14); | |
634 T1p = FNMS(KP587785252, T11, KP951056516 * T14); | |
635 T1a = KP559016994 * (T18 - T19); | |
636 T1c = T18 + T19; | |
637 T1d = FNMS(KP250000000, T1c, T1b); | |
638 } | |
639 { | |
640 E T1F, T22, T1C, T21; | |
641 T1z = rio[WS(vs, 2)]; | |
642 { | |
643 E T1D, T1E, T1A, T1B; | |
644 T1D = rio[WS(vs, 2) + WS(rs, 2)]; | |
645 T1E = rio[WS(vs, 2) + WS(rs, 3)]; | |
646 T1F = T1D + T1E; | |
647 T22 = T1D - T1E; | |
648 T1A = rio[WS(vs, 2) + WS(rs, 1)]; | |
649 T1B = rio[WS(vs, 2) + WS(rs, 4)]; | |
650 T1C = T1A + T1B; | |
651 T21 = T1A - T1B; | |
652 } | |
653 T1I = KP559016994 * (T1C - T1F); | |
654 T2e = FNMS(KP587785252, T21, KP951056516 * T22); | |
655 T23 = FMA(KP951056516, T21, KP587785252 * T22); | |
656 T1G = T1C + T1F; | |
657 T1J = FNMS(KP250000000, T1G, T1z); | |
658 } | |
659 { | |
660 E T1Q, T1V, T1N, T1U; | |
661 T1X = iio[WS(vs, 2)]; | |
662 { | |
663 E T1O, T1P, T1L, T1M; | |
664 T1O = iio[WS(vs, 2) + WS(rs, 2)]; | |
665 T1P = iio[WS(vs, 2) + WS(rs, 3)]; | |
666 T1Q = T1O - T1P; | |
667 T1V = T1O + T1P; | |
668 T1L = iio[WS(vs, 2) + WS(rs, 1)]; | |
669 T1M = iio[WS(vs, 2) + WS(rs, 4)]; | |
670 T1N = T1L - T1M; | |
671 T1U = T1L + T1M; | |
672 } | |
673 T1R = FMA(KP951056516, T1N, KP587785252 * T1Q); | |
674 T2b = FNMS(KP587785252, T1N, KP951056516 * T1Q); | |
675 T1W = KP559016994 * (T1U - T1V); | |
676 T1Y = T1U + T1V; | |
677 T1Z = FNMS(KP250000000, T1Y, T1X); | |
678 } | |
679 { | |
680 E T3o, T3t, T3l, T3s; | |
681 T3v = iio[WS(vs, 4)]; | |
682 { | |
683 E T3m, T3n, T3j, T3k; | |
684 T3m = iio[WS(vs, 4) + WS(rs, 2)]; | |
685 T3n = iio[WS(vs, 4) + WS(rs, 3)]; | |
686 T3o = T3m - T3n; | |
687 T3t = T3m + T3n; | |
688 T3j = iio[WS(vs, 4) + WS(rs, 1)]; | |
689 T3k = iio[WS(vs, 4) + WS(rs, 4)]; | |
690 T3l = T3j - T3k; | |
691 T3s = T3j + T3k; | |
692 } | |
693 T3p = FMA(KP951056516, T3l, KP587785252 * T3o); | |
694 T3J = FNMS(KP587785252, T3l, KP951056516 * T3o); | |
695 T3u = KP559016994 * (T3s - T3t); | |
696 T3w = T3s + T3t; | |
697 T3x = FNMS(KP250000000, T3w, T3v); | |
698 } | |
699 { | |
700 E T3d, T3A, T3a, T3z; | |
701 T37 = rio[WS(vs, 4)]; | |
702 { | |
703 E T3b, T3c, T38, T39; | |
704 T3b = rio[WS(vs, 4) + WS(rs, 2)]; | |
705 T3c = rio[WS(vs, 4) + WS(rs, 3)]; | |
706 T3d = T3b + T3c; | |
707 T3A = T3b - T3c; | |
708 T38 = rio[WS(vs, 4) + WS(rs, 1)]; | |
709 T39 = rio[WS(vs, 4) + WS(rs, 4)]; | |
710 T3a = T38 + T39; | |
711 T3z = T38 - T39; | |
712 } | |
713 T3g = KP559016994 * (T3a - T3d); | |
714 T3M = FNMS(KP587785252, T3z, KP951056516 * T3A); | |
715 T3B = FMA(KP951056516, T3z, KP587785252 * T3A); | |
716 T3e = T3a + T3d; | |
717 T3h = FNMS(KP250000000, T3e, T37); | |
718 } | |
719 { | |
720 E T2r, T2O, T2o, T2N; | |
721 T2l = rio[WS(vs, 3)]; | |
722 { | |
723 E T2p, T2q, T2m, T2n; | |
724 T2p = rio[WS(vs, 3) + WS(rs, 2)]; | |
725 T2q = rio[WS(vs, 3) + WS(rs, 3)]; | |
726 T2r = T2p + T2q; | |
727 T2O = T2p - T2q; | |
728 T2m = rio[WS(vs, 3) + WS(rs, 1)]; | |
729 T2n = rio[WS(vs, 3) + WS(rs, 4)]; | |
730 T2o = T2m + T2n; | |
731 T2N = T2m - T2n; | |
732 } | |
733 T2u = KP559016994 * (T2o - T2r); | |
734 T30 = FNMS(KP587785252, T2N, KP951056516 * T2O); | |
735 T2P = FMA(KP951056516, T2N, KP587785252 * T2O); | |
736 T2s = T2o + T2r; | |
737 T2v = FNMS(KP250000000, T2s, T2l); | |
738 } | |
739 { | |
740 E T2C, T2H, T2z, T2G; | |
741 T2J = iio[WS(vs, 3)]; | |
742 { | |
743 E T2A, T2B, T2x, T2y; | |
744 T2A = iio[WS(vs, 3) + WS(rs, 2)]; | |
745 T2B = iio[WS(vs, 3) + WS(rs, 3)]; | |
746 T2C = T2A - T2B; | |
747 T2H = T2A + T2B; | |
748 T2x = iio[WS(vs, 3) + WS(rs, 1)]; | |
749 T2y = iio[WS(vs, 3) + WS(rs, 4)]; | |
750 T2z = T2x - T2y; | |
751 T2G = T2x + T2y; | |
752 } | |
753 T2D = FMA(KP951056516, T2z, KP587785252 * T2C); | |
754 T2X = FNMS(KP587785252, T2z, KP951056516 * T2C); | |
755 T2I = KP559016994 * (T2G - T2H); | |
756 T2K = T2G + T2H; | |
757 T2L = FNMS(KP250000000, T2K, T2J); | |
758 } | |
759 rio[0] = T1 + T8; | |
760 iio[0] = Tp + Tq; | |
761 rio[WS(rs, 1)] = TN + TU; | |
762 iio[WS(rs, 1)] = T1b + T1c; | |
763 rio[WS(rs, 2)] = T1z + T1G; | |
764 iio[WS(rs, 2)] = T1X + T1Y; | |
765 iio[WS(rs, 4)] = T3v + T3w; | |
766 rio[WS(rs, 4)] = T37 + T3e; | |
767 rio[WS(rs, 3)] = T2l + T2s; | |
768 iio[WS(rs, 3)] = T2J + T2K; | |
769 { | |
770 E Tk, Ty, Tw, TA, Tc, Ts; | |
771 Tc = Ta + Tb; | |
772 Tk = Tc + Tj; | |
773 Ty = Tc - Tj; | |
774 Ts = To + Tr; | |
775 Tw = Ts - Tv; | |
776 TA = Tv + Ts; | |
777 { | |
778 E T9, Tl, Tx, Tz; | |
779 T9 = W[0]; | |
780 Tl = W[1]; | |
781 rio[WS(vs, 1)] = FMA(T9, Tk, Tl * Tw); | |
782 iio[WS(vs, 1)] = FNMS(Tl, Tk, T9 * Tw); | |
783 Tx = W[6]; | |
784 Tz = W[7]; | |
785 rio[WS(vs, 4)] = FMA(Tx, Ty, Tz * TA); | |
786 iio[WS(vs, 4)] = FNMS(Tz, Ty, Tx * TA); | |
787 } | |
788 } | |
789 { | |
790 E TE, TK, TI, TM, TC, TH; | |
791 TC = Tb - Ta; | |
792 TE = TC - TD; | |
793 TK = TC + TD; | |
794 TH = Tr - To; | |
795 TI = TG + TH; | |
796 TM = TH - TG; | |
797 { | |
798 E TB, TF, TJ, TL; | |
799 TB = W[2]; | |
800 TF = W[3]; | |
801 rio[WS(vs, 2)] = FMA(TB, TE, TF * TI); | |
802 iio[WS(vs, 2)] = FNMS(TF, TE, TB * TI); | |
803 TJ = W[4]; | |
804 TL = W[5]; | |
805 rio[WS(vs, 3)] = FMA(TJ, TK, TL * TM); | |
806 iio[WS(vs, 3)] = FNMS(TL, TK, TJ * TM); | |
807 } | |
808 } | |
809 { | |
810 E T2c, T2i, T2g, T2k, T2a, T2f; | |
811 T2a = T1J - T1I; | |
812 T2c = T2a - T2b; | |
813 T2i = T2a + T2b; | |
814 T2f = T1Z - T1W; | |
815 T2g = T2e + T2f; | |
816 T2k = T2f - T2e; | |
817 { | |
818 E T29, T2d, T2h, T2j; | |
819 T29 = W[2]; | |
820 T2d = W[3]; | |
821 rio[WS(vs, 2) + WS(rs, 2)] = FMA(T29, T2c, T2d * T2g); | |
822 iio[WS(vs, 2) + WS(rs, 2)] = FNMS(T2d, T2c, T29 * T2g); | |
823 T2h = W[4]; | |
824 T2j = W[5]; | |
825 rio[WS(vs, 3) + WS(rs, 2)] = FMA(T2h, T2i, T2j * T2k); | |
826 iio[WS(vs, 3) + WS(rs, 2)] = FNMS(T2j, T2i, T2h * T2k); | |
827 } | |
828 } | |
829 { | |
830 E T3K, T3Q, T3O, T3S, T3I, T3N; | |
831 T3I = T3h - T3g; | |
832 T3K = T3I - T3J; | |
833 T3Q = T3I + T3J; | |
834 T3N = T3x - T3u; | |
835 T3O = T3M + T3N; | |
836 T3S = T3N - T3M; | |
837 { | |
838 E T3H, T3L, T3P, T3R; | |
839 T3H = W[2]; | |
840 T3L = W[3]; | |
841 rio[WS(vs, 2) + WS(rs, 4)] = FMA(T3H, T3K, T3L * T3O); | |
842 iio[WS(vs, 2) + WS(rs, 4)] = FNMS(T3L, T3K, T3H * T3O); | |
843 T3P = W[4]; | |
844 T3R = W[5]; | |
845 rio[WS(vs, 3) + WS(rs, 4)] = FMA(T3P, T3Q, T3R * T3S); | |
846 iio[WS(vs, 3) + WS(rs, 4)] = FNMS(T3R, T3Q, T3P * T3S); | |
847 } | |
848 } | |
849 { | |
850 E T1S, T26, T24, T28, T1K, T20; | |
851 T1K = T1I + T1J; | |
852 T1S = T1K + T1R; | |
853 T26 = T1K - T1R; | |
854 T20 = T1W + T1Z; | |
855 T24 = T20 - T23; | |
856 T28 = T23 + T20; | |
857 { | |
858 E T1H, T1T, T25, T27; | |
859 T1H = W[0]; | |
860 T1T = W[1]; | |
861 rio[WS(vs, 1) + WS(rs, 2)] = FMA(T1H, T1S, T1T * T24); | |
862 iio[WS(vs, 1) + WS(rs, 2)] = FNMS(T1T, T1S, T1H * T24); | |
863 T25 = W[6]; | |
864 T27 = W[7]; | |
865 rio[WS(vs, 4) + WS(rs, 2)] = FMA(T25, T26, T27 * T28); | |
866 iio[WS(vs, 4) + WS(rs, 2)] = FNMS(T27, T26, T25 * T28); | |
867 } | |
868 } | |
869 { | |
870 E T2E, T2S, T2Q, T2U, T2w, T2M; | |
871 T2w = T2u + T2v; | |
872 T2E = T2w + T2D; | |
873 T2S = T2w - T2D; | |
874 T2M = T2I + T2L; | |
875 T2Q = T2M - T2P; | |
876 T2U = T2P + T2M; | |
877 { | |
878 E T2t, T2F, T2R, T2T; | |
879 T2t = W[0]; | |
880 T2F = W[1]; | |
881 rio[WS(vs, 1) + WS(rs, 3)] = FMA(T2t, T2E, T2F * T2Q); | |
882 iio[WS(vs, 1) + WS(rs, 3)] = FNMS(T2F, T2E, T2t * T2Q); | |
883 T2R = W[6]; | |
884 T2T = W[7]; | |
885 rio[WS(vs, 4) + WS(rs, 3)] = FMA(T2R, T2S, T2T * T2U); | |
886 iio[WS(vs, 4) + WS(rs, 3)] = FNMS(T2T, T2S, T2R * T2U); | |
887 } | |
888 } | |
889 { | |
890 E T2Y, T34, T32, T36, T2W, T31; | |
891 T2W = T2v - T2u; | |
892 T2Y = T2W - T2X; | |
893 T34 = T2W + T2X; | |
894 T31 = T2L - T2I; | |
895 T32 = T30 + T31; | |
896 T36 = T31 - T30; | |
897 { | |
898 E T2V, T2Z, T33, T35; | |
899 T2V = W[2]; | |
900 T2Z = W[3]; | |
901 rio[WS(vs, 2) + WS(rs, 3)] = FMA(T2V, T2Y, T2Z * T32); | |
902 iio[WS(vs, 2) + WS(rs, 3)] = FNMS(T2Z, T2Y, T2V * T32); | |
903 T33 = W[4]; | |
904 T35 = W[5]; | |
905 rio[WS(vs, 3) + WS(rs, 3)] = FMA(T33, T34, T35 * T36); | |
906 iio[WS(vs, 3) + WS(rs, 3)] = FNMS(T35, T34, T33 * T36); | |
907 } | |
908 } | |
909 { | |
910 E T3q, T3E, T3C, T3G, T3i, T3y; | |
911 T3i = T3g + T3h; | |
912 T3q = T3i + T3p; | |
913 T3E = T3i - T3p; | |
914 T3y = T3u + T3x; | |
915 T3C = T3y - T3B; | |
916 T3G = T3B + T3y; | |
917 { | |
918 E T3f, T3r, T3D, T3F; | |
919 T3f = W[0]; | |
920 T3r = W[1]; | |
921 rio[WS(vs, 1) + WS(rs, 4)] = FMA(T3f, T3q, T3r * T3C); | |
922 iio[WS(vs, 1) + WS(rs, 4)] = FNMS(T3r, T3q, T3f * T3C); | |
923 T3D = W[6]; | |
924 T3F = W[7]; | |
925 rio[WS(vs, 4) + WS(rs, 4)] = FMA(T3D, T3E, T3F * T3G); | |
926 iio[WS(vs, 4) + WS(rs, 4)] = FNMS(T3F, T3E, T3D * T3G); | |
927 } | |
928 } | |
929 { | |
930 E T1q, T1w, T1u, T1y, T1o, T1t; | |
931 T1o = TX - TW; | |
932 T1q = T1o - T1p; | |
933 T1w = T1o + T1p; | |
934 T1t = T1d - T1a; | |
935 T1u = T1s + T1t; | |
936 T1y = T1t - T1s; | |
937 { | |
938 E T1n, T1r, T1v, T1x; | |
939 T1n = W[2]; | |
940 T1r = W[3]; | |
941 rio[WS(vs, 2) + WS(rs, 1)] = FMA(T1n, T1q, T1r * T1u); | |
942 iio[WS(vs, 2) + WS(rs, 1)] = FNMS(T1r, T1q, T1n * T1u); | |
943 T1v = W[4]; | |
944 T1x = W[5]; | |
945 rio[WS(vs, 3) + WS(rs, 1)] = FMA(T1v, T1w, T1x * T1y); | |
946 iio[WS(vs, 3) + WS(rs, 1)] = FNMS(T1x, T1w, T1v * T1y); | |
947 } | |
948 } | |
949 { | |
950 E T16, T1k, T1i, T1m, TY, T1e; | |
951 TY = TW + TX; | |
952 T16 = TY + T15; | |
953 T1k = TY - T15; | |
954 T1e = T1a + T1d; | |
955 T1i = T1e - T1h; | |
956 T1m = T1h + T1e; | |
957 { | |
958 E TV, T17, T1j, T1l; | |
959 TV = W[0]; | |
960 T17 = W[1]; | |
961 rio[WS(vs, 1) + WS(rs, 1)] = FMA(TV, T16, T17 * T1i); | |
962 iio[WS(vs, 1) + WS(rs, 1)] = FNMS(T17, T16, TV * T1i); | |
963 T1j = W[6]; | |
964 T1l = W[7]; | |
965 rio[WS(vs, 4) + WS(rs, 1)] = FMA(T1j, T1k, T1l * T1m); | |
966 iio[WS(vs, 4) + WS(rs, 1)] = FNMS(T1l, T1k, T1j * T1m); | |
967 } | |
968 } | |
969 } | |
970 } | |
971 } | |
972 | |
973 static const tw_instr twinstr[] = { | |
974 {TW_FULL, 0, 5}, | |
975 {TW_NEXT, 1, 0} | |
976 }; | |
977 | |
978 static const ct_desc desc = { 5, "q1_5", twinstr, &GENUS, {130, 70, 70, 0}, 0, 0, 0 }; | |
979 | |
980 void X(codelet_q1_5) (planner *p) { | |
981 X(kdft_difsq_register) (p, q1_5, &desc); | |
982 } | |
983 #endif /* HAVE_FMA */ |