Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.3/dft/scalar/codelets/n1_7.c @ 95:89f5e221ed7b
Add FFTW3
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
94:d278df1123f9 | 95:89f5e221ed7b |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-11 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Sun Nov 25 07:35:42 EST 2012 */ | |
23 | |
24 #include "codelet-dft.h" | |
25 | |
26 #ifdef HAVE_FMA | |
27 | |
28 /* Generated by: ../../../genfft/gen_notw.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 7 -name n1_7 -include n.h */ | |
29 | |
30 /* | |
31 * This function contains 60 FP additions, 42 FP multiplications, | |
32 * (or, 18 additions, 0 multiplications, 42 fused multiply/add), | |
33 * 51 stack variables, 6 constants, and 28 memory accesses | |
34 */ | |
35 #include "n.h" | |
36 | |
37 static void n1_7(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) | |
38 { | |
39 DK(KP974927912, +0.974927912181823607018131682993931217232785801); | |
40 DK(KP900968867, +0.900968867902419126236102319507445051165919162); | |
41 DK(KP801937735, +0.801937735804838252472204639014890102331838324); | |
42 DK(KP692021471, +0.692021471630095869627814897002069140197260599); | |
43 DK(KP356895867, +0.356895867892209443894399510021300583399127187); | |
44 DK(KP554958132, +0.554958132087371191422194871006410481067288862); | |
45 { | |
46 INT i; | |
47 for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(28, is), MAKE_VOLATILE_STRIDE(28, os)) { | |
48 E Tz, TP, Ty, TK, TN, TE, Tw, TF; | |
49 { | |
50 E T1, TI, T4, TG, Ta, TT, Tp, TH, T7, Tk, TJ, TO, Tu, Tb, TB; | |
51 E Tg, Tl, Th, Ti; | |
52 T1 = ri[0]; | |
53 Tz = ii[0]; | |
54 { | |
55 E T5, T6, Te, Tf; | |
56 { | |
57 E T2, T3, T8, T9; | |
58 T2 = ri[WS(is, 1)]; | |
59 T3 = ri[WS(is, 6)]; | |
60 T8 = ri[WS(is, 3)]; | |
61 T9 = ri[WS(is, 4)]; | |
62 T5 = ri[WS(is, 2)]; | |
63 TI = T3 - T2; | |
64 T4 = T2 + T3; | |
65 TG = T9 - T8; | |
66 Ta = T8 + T9; | |
67 T6 = ri[WS(is, 5)]; | |
68 } | |
69 Te = ii[WS(is, 2)]; | |
70 TT = FMA(KP554958132, TG, TI); | |
71 Tp = FNMS(KP356895867, T4, Ta); | |
72 TH = T6 - T5; | |
73 T7 = T5 + T6; | |
74 Tf = ii[WS(is, 5)]; | |
75 Tk = ii[WS(is, 3)]; | |
76 TJ = FNMS(KP554958132, TI, TH); | |
77 TO = FMA(KP554958132, TH, TG); | |
78 Tu = FNMS(KP356895867, Ta, T7); | |
79 Tb = FNMS(KP356895867, T7, T4); | |
80 TB = Te + Tf; | |
81 Tg = Te - Tf; | |
82 Tl = ii[WS(is, 4)]; | |
83 Th = ii[WS(is, 1)]; | |
84 Ti = ii[WS(is, 6)]; | |
85 } | |
86 { | |
87 E Tm, TA, Tj, TD, Ts, TL, Tx, TU, To, TR, Td, TM, Tv; | |
88 { | |
89 E TC, TQ, Tn, Tc; | |
90 ro[0] = T1 + T4 + T7 + Ta; | |
91 TC = Tk + Tl; | |
92 Tm = Tk - Tl; | |
93 TA = Th + Ti; | |
94 Tj = Th - Ti; | |
95 TD = FNMS(KP356895867, TC, TB); | |
96 Ts = FMA(KP554958132, Tg, Tm); | |
97 TL = FNMS(KP356895867, TA, TC); | |
98 TQ = FNMS(KP356895867, TB, TA); | |
99 Tx = FNMS(KP554958132, Tj, Tg); | |
100 Tn = FMA(KP554958132, Tm, Tj); | |
101 io[0] = Tz + TA + TB + TC; | |
102 Tc = FNMS(KP692021471, Tb, Ta); | |
103 TU = FMA(KP801937735, TT, TH); | |
104 To = FMA(KP801937735, Tn, Tg); | |
105 TR = FNMS(KP692021471, TQ, TC); | |
106 Td = FNMS(KP900968867, Tc, T1); | |
107 } | |
108 { | |
109 E Tt, Tr, TS, Tq; | |
110 Tt = FNMS(KP801937735, Ts, Tj); | |
111 Tq = FNMS(KP692021471, Tp, T7); | |
112 TS = FNMS(KP900968867, TR, Tz); | |
113 ro[WS(os, 1)] = FMA(KP974927912, To, Td); | |
114 ro[WS(os, 6)] = FNMS(KP974927912, To, Td); | |
115 Tr = FNMS(KP900968867, Tq, T1); | |
116 io[WS(os, 6)] = FNMS(KP974927912, TU, TS); | |
117 io[WS(os, 1)] = FMA(KP974927912, TU, TS); | |
118 TP = FNMS(KP801937735, TO, TI); | |
119 ro[WS(os, 2)] = FMA(KP974927912, Tt, Tr); | |
120 ro[WS(os, 5)] = FNMS(KP974927912, Tt, Tr); | |
121 TM = FNMS(KP692021471, TL, TB); | |
122 } | |
123 Ty = FNMS(KP801937735, Tx, Tm); | |
124 Tv = FNMS(KP692021471, Tu, T4); | |
125 TK = FNMS(KP801937735, TJ, TG); | |
126 TN = FNMS(KP900968867, TM, Tz); | |
127 TE = FNMS(KP692021471, TD, TA); | |
128 Tw = FNMS(KP900968867, Tv, T1); | |
129 } | |
130 } | |
131 io[WS(os, 5)] = FNMS(KP974927912, TP, TN); | |
132 io[WS(os, 2)] = FMA(KP974927912, TP, TN); | |
133 TF = FNMS(KP900968867, TE, Tz); | |
134 ro[WS(os, 3)] = FMA(KP974927912, Ty, Tw); | |
135 ro[WS(os, 4)] = FNMS(KP974927912, Ty, Tw); | |
136 io[WS(os, 4)] = FNMS(KP974927912, TK, TF); | |
137 io[WS(os, 3)] = FMA(KP974927912, TK, TF); | |
138 } | |
139 } | |
140 } | |
141 | |
142 static const kdft_desc desc = { 7, "n1_7", {18, 0, 42, 0}, &GENUS, 0, 0, 0, 0 }; | |
143 | |
144 void X(codelet_n1_7) (planner *p) { | |
145 X(kdft_register) (p, n1_7, &desc); | |
146 } | |
147 | |
148 #else /* HAVE_FMA */ | |
149 | |
150 /* Generated by: ../../../genfft/gen_notw.native -compact -variables 4 -pipeline-latency 4 -n 7 -name n1_7 -include n.h */ | |
151 | |
152 /* | |
153 * This function contains 60 FP additions, 36 FP multiplications, | |
154 * (or, 36 additions, 12 multiplications, 24 fused multiply/add), | |
155 * 25 stack variables, 6 constants, and 28 memory accesses | |
156 */ | |
157 #include "n.h" | |
158 | |
159 static void n1_7(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) | |
160 { | |
161 DK(KP222520933, +0.222520933956314404288902564496794759466355569); | |
162 DK(KP900968867, +0.900968867902419126236102319507445051165919162); | |
163 DK(KP623489801, +0.623489801858733530525004884004239810632274731); | |
164 DK(KP433883739, +0.433883739117558120475768332848358754609990728); | |
165 DK(KP781831482, +0.781831482468029808708444526674057750232334519); | |
166 DK(KP974927912, +0.974927912181823607018131682993931217232785801); | |
167 { | |
168 INT i; | |
169 for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(28, is), MAKE_VOLATILE_STRIDE(28, os)) { | |
170 E T1, Tu, T4, Tq, Te, Tx, T7, Ts, Tk, Tv, Ta, Tr, Th, Tw; | |
171 T1 = ri[0]; | |
172 Tu = ii[0]; | |
173 { | |
174 E T2, T3, Tc, Td; | |
175 T2 = ri[WS(is, 1)]; | |
176 T3 = ri[WS(is, 6)]; | |
177 T4 = T2 + T3; | |
178 Tq = T3 - T2; | |
179 Tc = ii[WS(is, 1)]; | |
180 Td = ii[WS(is, 6)]; | |
181 Te = Tc - Td; | |
182 Tx = Tc + Td; | |
183 } | |
184 { | |
185 E T5, T6, Ti, Tj; | |
186 T5 = ri[WS(is, 2)]; | |
187 T6 = ri[WS(is, 5)]; | |
188 T7 = T5 + T6; | |
189 Ts = T6 - T5; | |
190 Ti = ii[WS(is, 2)]; | |
191 Tj = ii[WS(is, 5)]; | |
192 Tk = Ti - Tj; | |
193 Tv = Ti + Tj; | |
194 } | |
195 { | |
196 E T8, T9, Tf, Tg; | |
197 T8 = ri[WS(is, 3)]; | |
198 T9 = ri[WS(is, 4)]; | |
199 Ta = T8 + T9; | |
200 Tr = T9 - T8; | |
201 Tf = ii[WS(is, 3)]; | |
202 Tg = ii[WS(is, 4)]; | |
203 Th = Tf - Tg; | |
204 Tw = Tf + Tg; | |
205 } | |
206 ro[0] = T1 + T4 + T7 + Ta; | |
207 io[0] = Tu + Tx + Tv + Tw; | |
208 { | |
209 E Tl, Tb, TB, TC; | |
210 Tl = FNMS(KP781831482, Th, KP974927912 * Te) - (KP433883739 * Tk); | |
211 Tb = FMA(KP623489801, Ta, T1) + FNMA(KP900968867, T7, KP222520933 * T4); | |
212 ro[WS(os, 5)] = Tb - Tl; | |
213 ro[WS(os, 2)] = Tb + Tl; | |
214 TB = FNMS(KP781831482, Tr, KP974927912 * Tq) - (KP433883739 * Ts); | |
215 TC = FMA(KP623489801, Tw, Tu) + FNMA(KP900968867, Tv, KP222520933 * Tx); | |
216 io[WS(os, 2)] = TB + TC; | |
217 io[WS(os, 5)] = TC - TB; | |
218 } | |
219 { | |
220 E Tn, Tm, Tz, TA; | |
221 Tn = FMA(KP781831482, Te, KP974927912 * Tk) + (KP433883739 * Th); | |
222 Tm = FMA(KP623489801, T4, T1) + FNMA(KP900968867, Ta, KP222520933 * T7); | |
223 ro[WS(os, 6)] = Tm - Tn; | |
224 ro[WS(os, 1)] = Tm + Tn; | |
225 Tz = FMA(KP781831482, Tq, KP974927912 * Ts) + (KP433883739 * Tr); | |
226 TA = FMA(KP623489801, Tx, Tu) + FNMA(KP900968867, Tw, KP222520933 * Tv); | |
227 io[WS(os, 1)] = Tz + TA; | |
228 io[WS(os, 6)] = TA - Tz; | |
229 } | |
230 { | |
231 E Tp, To, Tt, Ty; | |
232 Tp = FMA(KP433883739, Te, KP974927912 * Th) - (KP781831482 * Tk); | |
233 To = FMA(KP623489801, T7, T1) + FNMA(KP222520933, Ta, KP900968867 * T4); | |
234 ro[WS(os, 4)] = To - Tp; | |
235 ro[WS(os, 3)] = To + Tp; | |
236 Tt = FMA(KP433883739, Tq, KP974927912 * Tr) - (KP781831482 * Ts); | |
237 Ty = FMA(KP623489801, Tv, Tu) + FNMA(KP222520933, Tw, KP900968867 * Tx); | |
238 io[WS(os, 3)] = Tt + Ty; | |
239 io[WS(os, 4)] = Ty - Tt; | |
240 } | |
241 } | |
242 } | |
243 } | |
244 | |
245 static const kdft_desc desc = { 7, "n1_7", {36, 12, 24, 0}, &GENUS, 0, 0, 0, 0 }; | |
246 | |
247 void X(codelet_n1_7) (planner *p) { | |
248 X(kdft_register) (p, n1_7, &desc); | |
249 } | |
250 | |
251 #endif /* HAVE_FMA */ |