comparison src/fftw-3.3.3/dft/scalar/codelets/n1_20.c @ 95:89f5e221ed7b

Add FFTW3
author Chris Cannam <cannam@all-day-breakfast.com>
date Wed, 20 Mar 2013 15:35:50 +0000
parents
children
comparison
equal deleted inserted replaced
94:d278df1123f9 95:89f5e221ed7b
1 /*
2 * Copyright (c) 2003, 2007-11 Matteo Frigo
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 */
20
21 /* This file was automatically generated --- DO NOT EDIT */
22 /* Generated on Sun Nov 25 07:35:46 EST 2012 */
23
24 #include "codelet-dft.h"
25
26 #ifdef HAVE_FMA
27
28 /* Generated by: ../../../genfft/gen_notw.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 20 -name n1_20 -include n.h */
29
30 /*
31 * This function contains 208 FP additions, 72 FP multiplications,
32 * (or, 136 additions, 0 multiplications, 72 fused multiply/add),
33 * 86 stack variables, 4 constants, and 80 memory accesses
34 */
35 #include "n.h"
36
37 static void n1_20(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
38 {
39 DK(KP951056516, +0.951056516295153572116439333379382143405698634);
40 DK(KP559016994, +0.559016994374947424102293417182819058860154590);
41 DK(KP618033988, +0.618033988749894848204586834365638117720309180);
42 DK(KP250000000, +0.250000000000000000000000000000000000000000000);
43 {
44 INT i;
45 for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(80, is), MAKE_VOLATILE_STRIDE(80, os)) {
46 E T1Y, T1Z, T1W, T1V;
47 {
48 E T1d, TP, TD, T7, T3b, T2N, T2f, T1R, T2U, TB, T2P, T2A, T3d, T37, T3j;
49 E TJ, T2n, T1b, T1T, T1y, T2b, T2h, T1j, T2V, Tm, T2O, T2H, T3c, T34, T1e;
50 E T1f, T3i, TG, T2m, T10, T1S, T1J, T28, T2g;
51 {
52 E T4, T1N, T3, T2L, TN, T5, T1O, T1P, T1h, T1i;
53 {
54 E T1, T2, TL, TM;
55 T1 = ri[0];
56 T2 = ri[WS(is, 10)];
57 TL = ii[0];
58 TM = ii[WS(is, 10)];
59 T4 = ri[WS(is, 5)];
60 T1N = T1 - T2;
61 T3 = T1 + T2;
62 T2L = TL + TM;
63 TN = TL - TM;
64 T5 = ri[WS(is, 15)];
65 T1O = ii[WS(is, 5)];
66 T1P = ii[WS(is, 15)];
67 }
68 {
69 E T1o, Tp, T2u, T13, T14, Ts, T2v, T1r, Tx, T1t, Tw, T2x, T18, Ty, T1u;
70 E T1v;
71 {
72 E Tq, Tr, T1p, T1q;
73 {
74 E Tn, To, T11, T12;
75 Tn = ri[WS(is, 8)];
76 {
77 E TO, T6, T2M, T1Q;
78 TO = T4 - T5;
79 T6 = T4 + T5;
80 T2M = T1O + T1P;
81 T1Q = T1O - T1P;
82 T1d = TO + TN;
83 TP = TN - TO;
84 TD = T3 + T6;
85 T7 = T3 - T6;
86 T3b = T2L + T2M;
87 T2N = T2L - T2M;
88 T2f = T1N + T1Q;
89 T1R = T1N - T1Q;
90 To = ri[WS(is, 18)];
91 }
92 T11 = ii[WS(is, 8)];
93 T12 = ii[WS(is, 18)];
94 Tq = ri[WS(is, 13)];
95 T1o = Tn - To;
96 Tp = Tn + To;
97 T2u = T11 + T12;
98 T13 = T11 - T12;
99 Tr = ri[WS(is, 3)];
100 T1p = ii[WS(is, 13)];
101 T1q = ii[WS(is, 3)];
102 }
103 {
104 E Tu, Tv, T16, T17;
105 Tu = ri[WS(is, 12)];
106 T14 = Tq - Tr;
107 Ts = Tq + Tr;
108 T2v = T1p + T1q;
109 T1r = T1p - T1q;
110 Tv = ri[WS(is, 2)];
111 T16 = ii[WS(is, 12)];
112 T17 = ii[WS(is, 2)];
113 Tx = ri[WS(is, 17)];
114 T1t = Tu - Tv;
115 Tw = Tu + Tv;
116 T2x = T16 + T17;
117 T18 = T16 - T17;
118 Ty = ri[WS(is, 7)];
119 T1u = ii[WS(is, 17)];
120 T1v = ii[WS(is, 7)];
121 }
122 }
123 {
124 E TH, T19, T1w, TI;
125 {
126 E Tt, T2w, T35, TA, T2z, T36, Tz, T2y;
127 TH = Tp + Ts;
128 Tt = Tp - Ts;
129 T19 = Tx - Ty;
130 Tz = Tx + Ty;
131 T2y = T1u + T1v;
132 T1w = T1u - T1v;
133 T2w = T2u - T2v;
134 T35 = T2u + T2v;
135 TI = Tw + Tz;
136 TA = Tw - Tz;
137 T2z = T2x - T2y;
138 T36 = T2x + T2y;
139 T2U = Tt - TA;
140 TB = Tt + TA;
141 T2P = T2w + T2z;
142 T2A = T2w - T2z;
143 T3d = T35 + T36;
144 T37 = T35 - T36;
145 }
146 {
147 E T1s, T29, T1x, T2a, T15, T1a;
148 T15 = T13 - T14;
149 T1h = T14 + T13;
150 T1i = T19 + T18;
151 T1a = T18 - T19;
152 T1s = T1o - T1r;
153 T29 = T1o + T1r;
154 T3j = TH - TI;
155 TJ = TH + TI;
156 T1x = T1t - T1w;
157 T2a = T1t + T1w;
158 T2n = T15 - T1a;
159 T1b = T15 + T1a;
160 T1T = T1s + T1x;
161 T1y = T1s - T1x;
162 T2b = T29 - T2a;
163 T2h = T29 + T2a;
164 }
165 }
166 }
167 {
168 E Ta, T1z, T2B, TS, TT, Td, T2C, T1C, Ti, T1E, Th, T2E, TX, Tj, T1F;
169 E T1G;
170 {
171 E Tb, Tc, T1A, T1B;
172 {
173 E TQ, TR, T8, T9;
174 T8 = ri[WS(is, 4)];
175 T9 = ri[WS(is, 14)];
176 T1j = T1h + T1i;
177 T1Y = T1h - T1i;
178 TQ = ii[WS(is, 4)];
179 TR = ii[WS(is, 14)];
180 Ta = T8 + T9;
181 T1z = T8 - T9;
182 Tb = ri[WS(is, 9)];
183 T2B = TQ + TR;
184 TS = TQ - TR;
185 Tc = ri[WS(is, 19)];
186 T1A = ii[WS(is, 9)];
187 T1B = ii[WS(is, 19)];
188 }
189 {
190 E Tf, Tg, TV, TW;
191 Tf = ri[WS(is, 16)];
192 TT = Tb - Tc;
193 Td = Tb + Tc;
194 T2C = T1A + T1B;
195 T1C = T1A - T1B;
196 Tg = ri[WS(is, 6)];
197 TV = ii[WS(is, 16)];
198 TW = ii[WS(is, 6)];
199 Ti = ri[WS(is, 1)];
200 T1E = Tf - Tg;
201 Th = Tf + Tg;
202 T2E = TV + TW;
203 TX = TV - TW;
204 Tj = ri[WS(is, 11)];
205 T1F = ii[WS(is, 1)];
206 T1G = ii[WS(is, 11)];
207 }
208 }
209 {
210 E TE, TY, T1H, TF;
211 {
212 E Te, T2D, T32, Tl, T2G, T33, Tk, T2F;
213 TE = Ta + Td;
214 Te = Ta - Td;
215 TY = Ti - Tj;
216 Tk = Ti + Tj;
217 T2F = T1F + T1G;
218 T1H = T1F - T1G;
219 T2D = T2B - T2C;
220 T32 = T2B + T2C;
221 TF = Th + Tk;
222 Tl = Th - Tk;
223 T2G = T2E - T2F;
224 T33 = T2E + T2F;
225 T2V = Te - Tl;
226 Tm = Te + Tl;
227 T2O = T2D + T2G;
228 T2H = T2D - T2G;
229 T3c = T32 + T33;
230 T34 = T32 - T33;
231 }
232 {
233 E T1D, T26, T1I, T27, TU, TZ;
234 TU = TS - TT;
235 T1e = TT + TS;
236 T1f = TY + TX;
237 TZ = TX - TY;
238 T1D = T1z - T1C;
239 T26 = T1z + T1C;
240 T3i = TE - TF;
241 TG = TE + TF;
242 T1I = T1E - T1H;
243 T27 = T1E + T1H;
244 T2m = TU - TZ;
245 T10 = TU + TZ;
246 T1S = T1D + T1I;
247 T1J = T1D - T1I;
248 T28 = T26 - T27;
249 T2g = T26 + T27;
250 }
251 }
252 }
253 }
254 {
255 E T1g, T3g, T3f, T2S, T2R, T2k, T2j;
256 {
257 E T2s, T2r, TC, T2Q;
258 T2s = Tm - TB;
259 TC = Tm + TB;
260 T1g = T1e + T1f;
261 T1Z = T1e - T1f;
262 T2r = FNMS(KP250000000, TC, T7);
263 ro[WS(os, 10)] = T7 + TC;
264 T2Q = T2O + T2P;
265 T2S = T2O - T2P;
266 {
267 E T2K, T2I, T2t, T2J;
268 T2K = FMA(KP618033988, T2A, T2H);
269 T2I = FNMS(KP618033988, T2H, T2A);
270 T2t = FNMS(KP559016994, T2s, T2r);
271 T2J = FMA(KP559016994, T2s, T2r);
272 ro[WS(os, 18)] = FMA(KP951056516, T2I, T2t);
273 ro[WS(os, 2)] = FNMS(KP951056516, T2I, T2t);
274 ro[WS(os, 6)] = FMA(KP951056516, T2K, T2J);
275 ro[WS(os, 14)] = FNMS(KP951056516, T2K, T2J);
276 T2R = FNMS(KP250000000, T2Q, T2N);
277 }
278 io[WS(os, 10)] = T2N + T2Q;
279 }
280 {
281 E T30, T2Z, TK, T3e;
282 TK = TG + TJ;
283 T30 = TG - TJ;
284 {
285 E T2T, T2X, T2Y, T2W;
286 T2T = FNMS(KP559016994, T2S, T2R);
287 T2X = FMA(KP559016994, T2S, T2R);
288 T2Y = FMA(KP618033988, T2U, T2V);
289 T2W = FNMS(KP618033988, T2V, T2U);
290 io[WS(os, 14)] = FMA(KP951056516, T2Y, T2X);
291 io[WS(os, 6)] = FNMS(KP951056516, T2Y, T2X);
292 io[WS(os, 18)] = FNMS(KP951056516, T2W, T2T);
293 io[WS(os, 2)] = FMA(KP951056516, T2W, T2T);
294 T2Z = FNMS(KP250000000, TK, TD);
295 }
296 ro[0] = TD + TK;
297 T3e = T3c + T3d;
298 T3g = T3c - T3d;
299 {
300 E T31, T39, T3a, T38;
301 T31 = FMA(KP559016994, T30, T2Z);
302 T39 = FNMS(KP559016994, T30, T2Z);
303 T3a = FNMS(KP618033988, T34, T37);
304 T38 = FMA(KP618033988, T37, T34);
305 ro[WS(os, 8)] = FMA(KP951056516, T3a, T39);
306 ro[WS(os, 12)] = FNMS(KP951056516, T3a, T39);
307 ro[WS(os, 16)] = FMA(KP951056516, T38, T31);
308 ro[WS(os, 4)] = FNMS(KP951056516, T38, T31);
309 T3f = FNMS(KP250000000, T3e, T3b);
310 }
311 io[0] = T3b + T3e;
312 }
313 {
314 E T24, T23, T1c, T2i;
315 T1c = T10 + T1b;
316 T24 = T10 - T1b;
317 {
318 E T3h, T3l, T3m, T3k;
319 T3h = FMA(KP559016994, T3g, T3f);
320 T3l = FNMS(KP559016994, T3g, T3f);
321 T3m = FNMS(KP618033988, T3i, T3j);
322 T3k = FMA(KP618033988, T3j, T3i);
323 io[WS(os, 12)] = FMA(KP951056516, T3m, T3l);
324 io[WS(os, 8)] = FNMS(KP951056516, T3m, T3l);
325 io[WS(os, 16)] = FNMS(KP951056516, T3k, T3h);
326 io[WS(os, 4)] = FMA(KP951056516, T3k, T3h);
327 T23 = FNMS(KP250000000, T1c, TP);
328 }
329 io[WS(os, 5)] = TP + T1c;
330 T2i = T2g + T2h;
331 T2k = T2g - T2h;
332 {
333 E T25, T2d, T2e, T2c;
334 T25 = FMA(KP559016994, T24, T23);
335 T2d = FNMS(KP559016994, T24, T23);
336 T2e = FNMS(KP618033988, T28, T2b);
337 T2c = FMA(KP618033988, T2b, T28);
338 io[WS(os, 17)] = FMA(KP951056516, T2e, T2d);
339 io[WS(os, 13)] = FNMS(KP951056516, T2e, T2d);
340 io[WS(os, 9)] = FMA(KP951056516, T2c, T25);
341 io[WS(os, 1)] = FNMS(KP951056516, T2c, T25);
342 T2j = FNMS(KP250000000, T2i, T2f);
343 }
344 ro[WS(os, 5)] = T2f + T2i;
345 }
346 {
347 E T1m, T1l, T1k, T1U;
348 T1k = T1g + T1j;
349 T1m = T1g - T1j;
350 {
351 E T2l, T2p, T2q, T2o;
352 T2l = FMA(KP559016994, T2k, T2j);
353 T2p = FNMS(KP559016994, T2k, T2j);
354 T2q = FNMS(KP618033988, T2m, T2n);
355 T2o = FMA(KP618033988, T2n, T2m);
356 ro[WS(os, 17)] = FNMS(KP951056516, T2q, T2p);
357 ro[WS(os, 13)] = FMA(KP951056516, T2q, T2p);
358 ro[WS(os, 9)] = FNMS(KP951056516, T2o, T2l);
359 ro[WS(os, 1)] = FMA(KP951056516, T2o, T2l);
360 T1l = FNMS(KP250000000, T1k, T1d);
361 }
362 io[WS(os, 15)] = T1d + T1k;
363 T1U = T1S + T1T;
364 T1W = T1S - T1T;
365 {
366 E T1n, T1L, T1M, T1K;
367 T1n = FNMS(KP559016994, T1m, T1l);
368 T1L = FMA(KP559016994, T1m, T1l);
369 T1M = FMA(KP618033988, T1y, T1J);
370 T1K = FNMS(KP618033988, T1J, T1y);
371 io[WS(os, 19)] = FMA(KP951056516, T1M, T1L);
372 io[WS(os, 11)] = FNMS(KP951056516, T1M, T1L);
373 io[WS(os, 7)] = FMA(KP951056516, T1K, T1n);
374 io[WS(os, 3)] = FNMS(KP951056516, T1K, T1n);
375 T1V = FNMS(KP250000000, T1U, T1R);
376 }
377 ro[WS(os, 15)] = T1R + T1U;
378 }
379 }
380 }
381 {
382 E T21, T1X, T20, T22;
383 T21 = FMA(KP559016994, T1W, T1V);
384 T1X = FNMS(KP559016994, T1W, T1V);
385 T20 = FNMS(KP618033988, T1Z, T1Y);
386 T22 = FMA(KP618033988, T1Y, T1Z);
387 ro[WS(os, 19)] = FNMS(KP951056516, T22, T21);
388 ro[WS(os, 11)] = FMA(KP951056516, T22, T21);
389 ro[WS(os, 7)] = FNMS(KP951056516, T20, T1X);
390 ro[WS(os, 3)] = FMA(KP951056516, T20, T1X);
391 }
392 }
393 }
394 }
395
396 static const kdft_desc desc = { 20, "n1_20", {136, 0, 72, 0}, &GENUS, 0, 0, 0, 0 };
397
398 void X(codelet_n1_20) (planner *p) {
399 X(kdft_register) (p, n1_20, &desc);
400 }
401
402 #else /* HAVE_FMA */
403
404 /* Generated by: ../../../genfft/gen_notw.native -compact -variables 4 -pipeline-latency 4 -n 20 -name n1_20 -include n.h */
405
406 /*
407 * This function contains 208 FP additions, 48 FP multiplications,
408 * (or, 184 additions, 24 multiplications, 24 fused multiply/add),
409 * 81 stack variables, 4 constants, and 80 memory accesses
410 */
411 #include "n.h"
412
413 static void n1_20(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
414 {
415 DK(KP587785252, +0.587785252292473129168705954639072768597652438);
416 DK(KP951056516, +0.951056516295153572116439333379382143405698634);
417 DK(KP250000000, +0.250000000000000000000000000000000000000000000);
418 DK(KP559016994, +0.559016994374947424102293417182819058860154590);
419 {
420 INT i;
421 for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(80, is), MAKE_VOLATILE_STRIDE(80, os)) {
422 E T7, T2Q, T3h, TD, TP, T1U, T2l, T1d, Tt, TA, TB, T2w, T2z, T2S, T35;
423 E T36, T3f, TH, TI, TJ, T15, T1a, T1b, T1s, T1x, T1W, T29, T2a, T2j, T1h;
424 E T1i, T1j, Te, Tl, Tm, T2D, T2G, T2R, T32, T33, T3e, TE, TF, TG, TU;
425 E TZ, T10, T1D, T1I, T1V, T26, T27, T2i, T1e, T1f, T1g;
426 {
427 E T3, T1Q, TN, T2O, T6, TO, T1T, T2P;
428 {
429 E T1, T2, TL, TM;
430 T1 = ri[0];
431 T2 = ri[WS(is, 10)];
432 T3 = T1 + T2;
433 T1Q = T1 - T2;
434 TL = ii[0];
435 TM = ii[WS(is, 10)];
436 TN = TL - TM;
437 T2O = TL + TM;
438 }
439 {
440 E T4, T5, T1R, T1S;
441 T4 = ri[WS(is, 5)];
442 T5 = ri[WS(is, 15)];
443 T6 = T4 + T5;
444 TO = T4 - T5;
445 T1R = ii[WS(is, 5)];
446 T1S = ii[WS(is, 15)];
447 T1T = T1R - T1S;
448 T2P = T1R + T1S;
449 }
450 T7 = T3 - T6;
451 T2Q = T2O - T2P;
452 T3h = T2O + T2P;
453 TD = T3 + T6;
454 TP = TN - TO;
455 T1U = T1Q - T1T;
456 T2l = T1Q + T1T;
457 T1d = TO + TN;
458 }
459 {
460 E Tp, T1o, T13, T2u, Ts, T14, T1r, T2v, Tw, T1t, T18, T2x, Tz, T19, T1w;
461 E T2y;
462 {
463 E Tn, To, T11, T12;
464 Tn = ri[WS(is, 8)];
465 To = ri[WS(is, 18)];
466 Tp = Tn + To;
467 T1o = Tn - To;
468 T11 = ii[WS(is, 8)];
469 T12 = ii[WS(is, 18)];
470 T13 = T11 - T12;
471 T2u = T11 + T12;
472 }
473 {
474 E Tq, Tr, T1p, T1q;
475 Tq = ri[WS(is, 13)];
476 Tr = ri[WS(is, 3)];
477 Ts = Tq + Tr;
478 T14 = Tq - Tr;
479 T1p = ii[WS(is, 13)];
480 T1q = ii[WS(is, 3)];
481 T1r = T1p - T1q;
482 T2v = T1p + T1q;
483 }
484 {
485 E Tu, Tv, T16, T17;
486 Tu = ri[WS(is, 12)];
487 Tv = ri[WS(is, 2)];
488 Tw = Tu + Tv;
489 T1t = Tu - Tv;
490 T16 = ii[WS(is, 12)];
491 T17 = ii[WS(is, 2)];
492 T18 = T16 - T17;
493 T2x = T16 + T17;
494 }
495 {
496 E Tx, Ty, T1u, T1v;
497 Tx = ri[WS(is, 17)];
498 Ty = ri[WS(is, 7)];
499 Tz = Tx + Ty;
500 T19 = Tx - Ty;
501 T1u = ii[WS(is, 17)];
502 T1v = ii[WS(is, 7)];
503 T1w = T1u - T1v;
504 T2y = T1u + T1v;
505 }
506 Tt = Tp - Ts;
507 TA = Tw - Tz;
508 TB = Tt + TA;
509 T2w = T2u - T2v;
510 T2z = T2x - T2y;
511 T2S = T2w + T2z;
512 T35 = T2u + T2v;
513 T36 = T2x + T2y;
514 T3f = T35 + T36;
515 TH = Tp + Ts;
516 TI = Tw + Tz;
517 TJ = TH + TI;
518 T15 = T13 - T14;
519 T1a = T18 - T19;
520 T1b = T15 + T1a;
521 T1s = T1o - T1r;
522 T1x = T1t - T1w;
523 T1W = T1s + T1x;
524 T29 = T1o + T1r;
525 T2a = T1t + T1w;
526 T2j = T29 + T2a;
527 T1h = T14 + T13;
528 T1i = T19 + T18;
529 T1j = T1h + T1i;
530 }
531 {
532 E Ta, T1z, TS, T2B, Td, TT, T1C, T2C, Th, T1E, TX, T2E, Tk, TY, T1H;
533 E T2F;
534 {
535 E T8, T9, TQ, TR;
536 T8 = ri[WS(is, 4)];
537 T9 = ri[WS(is, 14)];
538 Ta = T8 + T9;
539 T1z = T8 - T9;
540 TQ = ii[WS(is, 4)];
541 TR = ii[WS(is, 14)];
542 TS = TQ - TR;
543 T2B = TQ + TR;
544 }
545 {
546 E Tb, Tc, T1A, T1B;
547 Tb = ri[WS(is, 9)];
548 Tc = ri[WS(is, 19)];
549 Td = Tb + Tc;
550 TT = Tb - Tc;
551 T1A = ii[WS(is, 9)];
552 T1B = ii[WS(is, 19)];
553 T1C = T1A - T1B;
554 T2C = T1A + T1B;
555 }
556 {
557 E Tf, Tg, TV, TW;
558 Tf = ri[WS(is, 16)];
559 Tg = ri[WS(is, 6)];
560 Th = Tf + Tg;
561 T1E = Tf - Tg;
562 TV = ii[WS(is, 16)];
563 TW = ii[WS(is, 6)];
564 TX = TV - TW;
565 T2E = TV + TW;
566 }
567 {
568 E Ti, Tj, T1F, T1G;
569 Ti = ri[WS(is, 1)];
570 Tj = ri[WS(is, 11)];
571 Tk = Ti + Tj;
572 TY = Ti - Tj;
573 T1F = ii[WS(is, 1)];
574 T1G = ii[WS(is, 11)];
575 T1H = T1F - T1G;
576 T2F = T1F + T1G;
577 }
578 Te = Ta - Td;
579 Tl = Th - Tk;
580 Tm = Te + Tl;
581 T2D = T2B - T2C;
582 T2G = T2E - T2F;
583 T2R = T2D + T2G;
584 T32 = T2B + T2C;
585 T33 = T2E + T2F;
586 T3e = T32 + T33;
587 TE = Ta + Td;
588 TF = Th + Tk;
589 TG = TE + TF;
590 TU = TS - TT;
591 TZ = TX - TY;
592 T10 = TU + TZ;
593 T1D = T1z - T1C;
594 T1I = T1E - T1H;
595 T1V = T1D + T1I;
596 T26 = T1z + T1C;
597 T27 = T1E + T1H;
598 T2i = T26 + T27;
599 T1e = TT + TS;
600 T1f = TY + TX;
601 T1g = T1e + T1f;
602 }
603 {
604 E T2s, TC, T2r, T2I, T2K, T2A, T2H, T2J, T2t;
605 T2s = KP559016994 * (Tm - TB);
606 TC = Tm + TB;
607 T2r = FNMS(KP250000000, TC, T7);
608 T2A = T2w - T2z;
609 T2H = T2D - T2G;
610 T2I = FNMS(KP587785252, T2H, KP951056516 * T2A);
611 T2K = FMA(KP951056516, T2H, KP587785252 * T2A);
612 ro[WS(os, 10)] = T7 + TC;
613 T2J = T2s + T2r;
614 ro[WS(os, 14)] = T2J - T2K;
615 ro[WS(os, 6)] = T2J + T2K;
616 T2t = T2r - T2s;
617 ro[WS(os, 2)] = T2t - T2I;
618 ro[WS(os, 18)] = T2t + T2I;
619 }
620 {
621 E T2V, T2T, T2U, T2N, T2Y, T2L, T2M, T2X, T2W;
622 T2V = KP559016994 * (T2R - T2S);
623 T2T = T2R + T2S;
624 T2U = FNMS(KP250000000, T2T, T2Q);
625 T2L = Tt - TA;
626 T2M = Te - Tl;
627 T2N = FNMS(KP587785252, T2M, KP951056516 * T2L);
628 T2Y = FMA(KP951056516, T2M, KP587785252 * T2L);
629 io[WS(os, 10)] = T2Q + T2T;
630 T2X = T2V + T2U;
631 io[WS(os, 6)] = T2X - T2Y;
632 io[WS(os, 14)] = T2Y + T2X;
633 T2W = T2U - T2V;
634 io[WS(os, 2)] = T2N + T2W;
635 io[WS(os, 18)] = T2W - T2N;
636 }
637 {
638 E T2Z, TK, T30, T38, T3a, T34, T37, T39, T31;
639 T2Z = KP559016994 * (TG - TJ);
640 TK = TG + TJ;
641 T30 = FNMS(KP250000000, TK, TD);
642 T34 = T32 - T33;
643 T37 = T35 - T36;
644 T38 = FMA(KP951056516, T34, KP587785252 * T37);
645 T3a = FNMS(KP587785252, T34, KP951056516 * T37);
646 ro[0] = TD + TK;
647 T39 = T30 - T2Z;
648 ro[WS(os, 12)] = T39 - T3a;
649 ro[WS(os, 8)] = T39 + T3a;
650 T31 = T2Z + T30;
651 ro[WS(os, 4)] = T31 - T38;
652 ro[WS(os, 16)] = T31 + T38;
653 }
654 {
655 E T3g, T3i, T3j, T3d, T3m, T3b, T3c, T3l, T3k;
656 T3g = KP559016994 * (T3e - T3f);
657 T3i = T3e + T3f;
658 T3j = FNMS(KP250000000, T3i, T3h);
659 T3b = TE - TF;
660 T3c = TH - TI;
661 T3d = FMA(KP951056516, T3b, KP587785252 * T3c);
662 T3m = FNMS(KP587785252, T3b, KP951056516 * T3c);
663 io[0] = T3h + T3i;
664 T3l = T3j - T3g;
665 io[WS(os, 8)] = T3l - T3m;
666 io[WS(os, 12)] = T3m + T3l;
667 T3k = T3g + T3j;
668 io[WS(os, 4)] = T3d + T3k;
669 io[WS(os, 16)] = T3k - T3d;
670 }
671 {
672 E T23, T1c, T24, T2c, T2e, T28, T2b, T2d, T25;
673 T23 = KP559016994 * (T10 - T1b);
674 T1c = T10 + T1b;
675 T24 = FNMS(KP250000000, T1c, TP);
676 T28 = T26 - T27;
677 T2b = T29 - T2a;
678 T2c = FMA(KP951056516, T28, KP587785252 * T2b);
679 T2e = FNMS(KP587785252, T28, KP951056516 * T2b);
680 io[WS(os, 5)] = TP + T1c;
681 T2d = T24 - T23;
682 io[WS(os, 13)] = T2d - T2e;
683 io[WS(os, 17)] = T2d + T2e;
684 T25 = T23 + T24;
685 io[WS(os, 1)] = T25 - T2c;
686 io[WS(os, 9)] = T25 + T2c;
687 }
688 {
689 E T2k, T2m, T2n, T2h, T2p, T2f, T2g, T2q, T2o;
690 T2k = KP559016994 * (T2i - T2j);
691 T2m = T2i + T2j;
692 T2n = FNMS(KP250000000, T2m, T2l);
693 T2f = TU - TZ;
694 T2g = T15 - T1a;
695 T2h = FMA(KP951056516, T2f, KP587785252 * T2g);
696 T2p = FNMS(KP587785252, T2f, KP951056516 * T2g);
697 ro[WS(os, 5)] = T2l + T2m;
698 T2q = T2n - T2k;
699 ro[WS(os, 13)] = T2p + T2q;
700 ro[WS(os, 17)] = T2q - T2p;
701 T2o = T2k + T2n;
702 ro[WS(os, 1)] = T2h + T2o;
703 ro[WS(os, 9)] = T2o - T2h;
704 }
705 {
706 E T1m, T1k, T1l, T1K, T1M, T1y, T1J, T1L, T1n;
707 T1m = KP559016994 * (T1g - T1j);
708 T1k = T1g + T1j;
709 T1l = FNMS(KP250000000, T1k, T1d);
710 T1y = T1s - T1x;
711 T1J = T1D - T1I;
712 T1K = FNMS(KP587785252, T1J, KP951056516 * T1y);
713 T1M = FMA(KP951056516, T1J, KP587785252 * T1y);
714 io[WS(os, 15)] = T1d + T1k;
715 T1L = T1m + T1l;
716 io[WS(os, 11)] = T1L - T1M;
717 io[WS(os, 19)] = T1L + T1M;
718 T1n = T1l - T1m;
719 io[WS(os, 3)] = T1n - T1K;
720 io[WS(os, 7)] = T1n + T1K;
721 }
722 {
723 E T1Z, T1X, T1Y, T1P, T21, T1N, T1O, T22, T20;
724 T1Z = KP559016994 * (T1V - T1W);
725 T1X = T1V + T1W;
726 T1Y = FNMS(KP250000000, T1X, T1U);
727 T1N = T1h - T1i;
728 T1O = T1e - T1f;
729 T1P = FNMS(KP587785252, T1O, KP951056516 * T1N);
730 T21 = FMA(KP951056516, T1O, KP587785252 * T1N);
731 ro[WS(os, 15)] = T1U + T1X;
732 T22 = T1Z + T1Y;
733 ro[WS(os, 11)] = T21 + T22;
734 ro[WS(os, 19)] = T22 - T21;
735 T20 = T1Y - T1Z;
736 ro[WS(os, 3)] = T1P + T20;
737 ro[WS(os, 7)] = T20 - T1P;
738 }
739 }
740 }
741 }
742
743 static const kdft_desc desc = { 20, "n1_20", {184, 24, 24, 0}, &GENUS, 0, 0, 0, 0 };
744
745 void X(codelet_n1_20) (planner *p) {
746 X(kdft_register) (p, n1_20, &desc);
747 }
748
749 #endif /* HAVE_FMA */