Mercurial > hg > sv-dependency-builds
comparison src/opus-1.3/silk/fixed/noise_shape_analysis_FIX.c @ 69:7aeed7906520
Add Opus sources and macOS builds
author | Chris Cannam |
---|---|
date | Wed, 23 Jan 2019 13:48:08 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
68:85d5306e114e | 69:7aeed7906520 |
---|---|
1 /*********************************************************************** | |
2 Copyright (c) 2006-2011, Skype Limited. All rights reserved. | |
3 Redistribution and use in source and binary forms, with or without | |
4 modification, are permitted provided that the following conditions | |
5 are met: | |
6 - Redistributions of source code must retain the above copyright notice, | |
7 this list of conditions and the following disclaimer. | |
8 - Redistributions in binary form must reproduce the above copyright | |
9 notice, this list of conditions and the following disclaimer in the | |
10 documentation and/or other materials provided with the distribution. | |
11 - Neither the name of Internet Society, IETF or IETF Trust, nor the | |
12 names of specific contributors, may be used to endorse or promote | |
13 products derived from this software without specific prior written | |
14 permission. | |
15 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | |
16 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
17 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
18 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | |
19 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | |
20 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | |
21 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | |
22 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | |
23 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | |
24 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | |
25 POSSIBILITY OF SUCH DAMAGE. | |
26 ***********************************************************************/ | |
27 | |
28 #ifdef HAVE_CONFIG_H | |
29 #include "config.h" | |
30 #endif | |
31 | |
32 #include "main_FIX.h" | |
33 #include "stack_alloc.h" | |
34 #include "tuning_parameters.h" | |
35 | |
36 /* Compute gain to make warped filter coefficients have a zero mean log frequency response on a */ | |
37 /* non-warped frequency scale. (So that it can be implemented with a minimum-phase monic filter.) */ | |
38 /* Note: A monic filter is one with the first coefficient equal to 1.0. In Silk we omit the first */ | |
39 /* coefficient in an array of coefficients, for monic filters. */ | |
40 static OPUS_INLINE opus_int32 warped_gain( /* gain in Q16*/ | |
41 const opus_int32 *coefs_Q24, | |
42 opus_int lambda_Q16, | |
43 opus_int order | |
44 ) { | |
45 opus_int i; | |
46 opus_int32 gain_Q24; | |
47 | |
48 lambda_Q16 = -lambda_Q16; | |
49 gain_Q24 = coefs_Q24[ order - 1 ]; | |
50 for( i = order - 2; i >= 0; i-- ) { | |
51 gain_Q24 = silk_SMLAWB( coefs_Q24[ i ], gain_Q24, lambda_Q16 ); | |
52 } | |
53 gain_Q24 = silk_SMLAWB( SILK_FIX_CONST( 1.0, 24 ), gain_Q24, -lambda_Q16 ); | |
54 return silk_INVERSE32_varQ( gain_Q24, 40 ); | |
55 } | |
56 | |
57 /* Convert warped filter coefficients to monic pseudo-warped coefficients and limit maximum */ | |
58 /* amplitude of monic warped coefficients by using bandwidth expansion on the true coefficients */ | |
59 static OPUS_INLINE void limit_warped_coefs( | |
60 opus_int32 *coefs_Q24, | |
61 opus_int lambda_Q16, | |
62 opus_int32 limit_Q24, | |
63 opus_int order | |
64 ) { | |
65 opus_int i, iter, ind = 0; | |
66 opus_int32 tmp, maxabs_Q24, chirp_Q16, gain_Q16; | |
67 opus_int32 nom_Q16, den_Q24; | |
68 opus_int32 limit_Q20, maxabs_Q20; | |
69 | |
70 /* Convert to monic coefficients */ | |
71 lambda_Q16 = -lambda_Q16; | |
72 for( i = order - 1; i > 0; i-- ) { | |
73 coefs_Q24[ i - 1 ] = silk_SMLAWB( coefs_Q24[ i - 1 ], coefs_Q24[ i ], lambda_Q16 ); | |
74 } | |
75 lambda_Q16 = -lambda_Q16; | |
76 nom_Q16 = silk_SMLAWB( SILK_FIX_CONST( 1.0, 16 ), -(opus_int32)lambda_Q16, lambda_Q16 ); | |
77 den_Q24 = silk_SMLAWB( SILK_FIX_CONST( 1.0, 24 ), coefs_Q24[ 0 ], lambda_Q16 ); | |
78 gain_Q16 = silk_DIV32_varQ( nom_Q16, den_Q24, 24 ); | |
79 for( i = 0; i < order; i++ ) { | |
80 coefs_Q24[ i ] = silk_SMULWW( gain_Q16, coefs_Q24[ i ] ); | |
81 } | |
82 limit_Q20 = silk_RSHIFT(limit_Q24, 4); | |
83 for( iter = 0; iter < 10; iter++ ) { | |
84 /* Find maximum absolute value */ | |
85 maxabs_Q24 = -1; | |
86 for( i = 0; i < order; i++ ) { | |
87 tmp = silk_abs_int32( coefs_Q24[ i ] ); | |
88 if( tmp > maxabs_Q24 ) { | |
89 maxabs_Q24 = tmp; | |
90 ind = i; | |
91 } | |
92 } | |
93 /* Use Q20 to avoid any overflow when multiplying by (ind + 1) later. */ | |
94 maxabs_Q20 = silk_RSHIFT(maxabs_Q24, 4); | |
95 if( maxabs_Q20 <= limit_Q20 ) { | |
96 /* Coefficients are within range - done */ | |
97 return; | |
98 } | |
99 | |
100 /* Convert back to true warped coefficients */ | |
101 for( i = 1; i < order; i++ ) { | |
102 coefs_Q24[ i - 1 ] = silk_SMLAWB( coefs_Q24[ i - 1 ], coefs_Q24[ i ], lambda_Q16 ); | |
103 } | |
104 gain_Q16 = silk_INVERSE32_varQ( gain_Q16, 32 ); | |
105 for( i = 0; i < order; i++ ) { | |
106 coefs_Q24[ i ] = silk_SMULWW( gain_Q16, coefs_Q24[ i ] ); | |
107 } | |
108 | |
109 /* Apply bandwidth expansion */ | |
110 chirp_Q16 = SILK_FIX_CONST( 0.99, 16 ) - silk_DIV32_varQ( | |
111 silk_SMULWB( maxabs_Q20 - limit_Q20, silk_SMLABB( SILK_FIX_CONST( 0.8, 10 ), SILK_FIX_CONST( 0.1, 10 ), iter ) ), | |
112 silk_MUL( maxabs_Q20, ind + 1 ), 22 ); | |
113 silk_bwexpander_32( coefs_Q24, order, chirp_Q16 ); | |
114 | |
115 /* Convert to monic warped coefficients */ | |
116 lambda_Q16 = -lambda_Q16; | |
117 for( i = order - 1; i > 0; i-- ) { | |
118 coefs_Q24[ i - 1 ] = silk_SMLAWB( coefs_Q24[ i - 1 ], coefs_Q24[ i ], lambda_Q16 ); | |
119 } | |
120 lambda_Q16 = -lambda_Q16; | |
121 nom_Q16 = silk_SMLAWB( SILK_FIX_CONST( 1.0, 16 ), -(opus_int32)lambda_Q16, lambda_Q16 ); | |
122 den_Q24 = silk_SMLAWB( SILK_FIX_CONST( 1.0, 24 ), coefs_Q24[ 0 ], lambda_Q16 ); | |
123 gain_Q16 = silk_DIV32_varQ( nom_Q16, den_Q24, 24 ); | |
124 for( i = 0; i < order; i++ ) { | |
125 coefs_Q24[ i ] = silk_SMULWW( gain_Q16, coefs_Q24[ i ] ); | |
126 } | |
127 } | |
128 silk_assert( 0 ); | |
129 } | |
130 | |
131 /* Disable MIPS version until it's updated. */ | |
132 #if 0 && defined(MIPSr1_ASM) | |
133 #include "mips/noise_shape_analysis_FIX_mipsr1.h" | |
134 #endif | |
135 | |
136 /**************************************************************/ | |
137 /* Compute noise shaping coefficients and initial gain values */ | |
138 /**************************************************************/ | |
139 #ifndef OVERRIDE_silk_noise_shape_analysis_FIX | |
140 void silk_noise_shape_analysis_FIX( | |
141 silk_encoder_state_FIX *psEnc, /* I/O Encoder state FIX */ | |
142 silk_encoder_control_FIX *psEncCtrl, /* I/O Encoder control FIX */ | |
143 const opus_int16 *pitch_res, /* I LPC residual from pitch analysis */ | |
144 const opus_int16 *x, /* I Input signal [ frame_length + la_shape ] */ | |
145 int arch /* I Run-time architecture */ | |
146 ) | |
147 { | |
148 silk_shape_state_FIX *psShapeSt = &psEnc->sShape; | |
149 opus_int k, i, nSamples, nSegs, Qnrg, b_Q14, warping_Q16, scale = 0; | |
150 opus_int32 SNR_adj_dB_Q7, HarmShapeGain_Q16, Tilt_Q16, tmp32; | |
151 opus_int32 nrg, log_energy_Q7, log_energy_prev_Q7, energy_variation_Q7; | |
152 opus_int32 BWExp_Q16, gain_mult_Q16, gain_add_Q16, strength_Q16, b_Q8; | |
153 opus_int32 auto_corr[ MAX_SHAPE_LPC_ORDER + 1 ]; | |
154 opus_int32 refl_coef_Q16[ MAX_SHAPE_LPC_ORDER ]; | |
155 opus_int32 AR_Q24[ MAX_SHAPE_LPC_ORDER ]; | |
156 VARDECL( opus_int16, x_windowed ); | |
157 const opus_int16 *x_ptr, *pitch_res_ptr; | |
158 SAVE_STACK; | |
159 | |
160 /* Point to start of first LPC analysis block */ | |
161 x_ptr = x - psEnc->sCmn.la_shape; | |
162 | |
163 /****************/ | |
164 /* GAIN CONTROL */ | |
165 /****************/ | |
166 SNR_adj_dB_Q7 = psEnc->sCmn.SNR_dB_Q7; | |
167 | |
168 /* Input quality is the average of the quality in the lowest two VAD bands */ | |
169 psEncCtrl->input_quality_Q14 = ( opus_int )silk_RSHIFT( (opus_int32)psEnc->sCmn.input_quality_bands_Q15[ 0 ] | |
170 + psEnc->sCmn.input_quality_bands_Q15[ 1 ], 2 ); | |
171 | |
172 /* Coding quality level, between 0.0_Q0 and 1.0_Q0, but in Q14 */ | |
173 psEncCtrl->coding_quality_Q14 = silk_RSHIFT( silk_sigm_Q15( silk_RSHIFT_ROUND( SNR_adj_dB_Q7 - | |
174 SILK_FIX_CONST( 20.0, 7 ), 4 ) ), 1 ); | |
175 | |
176 /* Reduce coding SNR during low speech activity */ | |
177 if( psEnc->sCmn.useCBR == 0 ) { | |
178 b_Q8 = SILK_FIX_CONST( 1.0, 8 ) - psEnc->sCmn.speech_activity_Q8; | |
179 b_Q8 = silk_SMULWB( silk_LSHIFT( b_Q8, 8 ), b_Q8 ); | |
180 SNR_adj_dB_Q7 = silk_SMLAWB( SNR_adj_dB_Q7, | |
181 silk_SMULBB( SILK_FIX_CONST( -BG_SNR_DECR_dB, 7 ) >> ( 4 + 1 ), b_Q8 ), /* Q11*/ | |
182 silk_SMULWB( SILK_FIX_CONST( 1.0, 14 ) + psEncCtrl->input_quality_Q14, psEncCtrl->coding_quality_Q14 ) ); /* Q12*/ | |
183 } | |
184 | |
185 if( psEnc->sCmn.indices.signalType == TYPE_VOICED ) { | |
186 /* Reduce gains for periodic signals */ | |
187 SNR_adj_dB_Q7 = silk_SMLAWB( SNR_adj_dB_Q7, SILK_FIX_CONST( HARM_SNR_INCR_dB, 8 ), psEnc->LTPCorr_Q15 ); | |
188 } else { | |
189 /* For unvoiced signals and low-quality input, adjust the quality slower than SNR_dB setting */ | |
190 SNR_adj_dB_Q7 = silk_SMLAWB( SNR_adj_dB_Q7, | |
191 silk_SMLAWB( SILK_FIX_CONST( 6.0, 9 ), -SILK_FIX_CONST( 0.4, 18 ), psEnc->sCmn.SNR_dB_Q7 ), | |
192 SILK_FIX_CONST( 1.0, 14 ) - psEncCtrl->input_quality_Q14 ); | |
193 } | |
194 | |
195 /*************************/ | |
196 /* SPARSENESS PROCESSING */ | |
197 /*************************/ | |
198 /* Set quantizer offset */ | |
199 if( psEnc->sCmn.indices.signalType == TYPE_VOICED ) { | |
200 /* Initially set to 0; may be overruled in process_gains(..) */ | |
201 psEnc->sCmn.indices.quantOffsetType = 0; | |
202 } else { | |
203 /* Sparseness measure, based on relative fluctuations of energy per 2 milliseconds */ | |
204 nSamples = silk_LSHIFT( psEnc->sCmn.fs_kHz, 1 ); | |
205 energy_variation_Q7 = 0; | |
206 log_energy_prev_Q7 = 0; | |
207 pitch_res_ptr = pitch_res; | |
208 nSegs = silk_SMULBB( SUB_FRAME_LENGTH_MS, psEnc->sCmn.nb_subfr ) / 2; | |
209 for( k = 0; k < nSegs; k++ ) { | |
210 silk_sum_sqr_shift( &nrg, &scale, pitch_res_ptr, nSamples ); | |
211 nrg += silk_RSHIFT( nSamples, scale ); /* Q(-scale)*/ | |
212 | |
213 log_energy_Q7 = silk_lin2log( nrg ); | |
214 if( k > 0 ) { | |
215 energy_variation_Q7 += silk_abs( log_energy_Q7 - log_energy_prev_Q7 ); | |
216 } | |
217 log_energy_prev_Q7 = log_energy_Q7; | |
218 pitch_res_ptr += nSamples; | |
219 } | |
220 | |
221 /* Set quantization offset depending on sparseness measure */ | |
222 if( energy_variation_Q7 > SILK_FIX_CONST( ENERGY_VARIATION_THRESHOLD_QNT_OFFSET, 7 ) * (nSegs-1) ) { | |
223 psEnc->sCmn.indices.quantOffsetType = 0; | |
224 } else { | |
225 psEnc->sCmn.indices.quantOffsetType = 1; | |
226 } | |
227 } | |
228 | |
229 /*******************************/ | |
230 /* Control bandwidth expansion */ | |
231 /*******************************/ | |
232 /* More BWE for signals with high prediction gain */ | |
233 strength_Q16 = silk_SMULWB( psEncCtrl->predGain_Q16, SILK_FIX_CONST( FIND_PITCH_WHITE_NOISE_FRACTION, 16 ) ); | |
234 BWExp_Q16 = silk_DIV32_varQ( SILK_FIX_CONST( BANDWIDTH_EXPANSION, 16 ), | |
235 silk_SMLAWW( SILK_FIX_CONST( 1.0, 16 ), strength_Q16, strength_Q16 ), 16 ); | |
236 | |
237 if( psEnc->sCmn.warping_Q16 > 0 ) { | |
238 /* Slightly more warping in analysis will move quantization noise up in frequency, where it's better masked */ | |
239 warping_Q16 = silk_SMLAWB( psEnc->sCmn.warping_Q16, (opus_int32)psEncCtrl->coding_quality_Q14, SILK_FIX_CONST( 0.01, 18 ) ); | |
240 } else { | |
241 warping_Q16 = 0; | |
242 } | |
243 | |
244 /********************************************/ | |
245 /* Compute noise shaping AR coefs and gains */ | |
246 /********************************************/ | |
247 ALLOC( x_windowed, psEnc->sCmn.shapeWinLength, opus_int16 ); | |
248 for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) { | |
249 /* Apply window: sine slope followed by flat part followed by cosine slope */ | |
250 opus_int shift, slope_part, flat_part; | |
251 flat_part = psEnc->sCmn.fs_kHz * 3; | |
252 slope_part = silk_RSHIFT( psEnc->sCmn.shapeWinLength - flat_part, 1 ); | |
253 | |
254 silk_apply_sine_window( x_windowed, x_ptr, 1, slope_part ); | |
255 shift = slope_part; | |
256 silk_memcpy( x_windowed + shift, x_ptr + shift, flat_part * sizeof(opus_int16) ); | |
257 shift += flat_part; | |
258 silk_apply_sine_window( x_windowed + shift, x_ptr + shift, 2, slope_part ); | |
259 | |
260 /* Update pointer: next LPC analysis block */ | |
261 x_ptr += psEnc->sCmn.subfr_length; | |
262 | |
263 if( psEnc->sCmn.warping_Q16 > 0 ) { | |
264 /* Calculate warped auto correlation */ | |
265 silk_warped_autocorrelation_FIX( auto_corr, &scale, x_windowed, warping_Q16, psEnc->sCmn.shapeWinLength, psEnc->sCmn.shapingLPCOrder, arch ); | |
266 } else { | |
267 /* Calculate regular auto correlation */ | |
268 silk_autocorr( auto_corr, &scale, x_windowed, psEnc->sCmn.shapeWinLength, psEnc->sCmn.shapingLPCOrder + 1, arch ); | |
269 } | |
270 | |
271 /* Add white noise, as a fraction of energy */ | |
272 auto_corr[0] = silk_ADD32( auto_corr[0], silk_max_32( silk_SMULWB( silk_RSHIFT( auto_corr[ 0 ], 4 ), | |
273 SILK_FIX_CONST( SHAPE_WHITE_NOISE_FRACTION, 20 ) ), 1 ) ); | |
274 | |
275 /* Calculate the reflection coefficients using schur */ | |
276 nrg = silk_schur64( refl_coef_Q16, auto_corr, psEnc->sCmn.shapingLPCOrder ); | |
277 silk_assert( nrg >= 0 ); | |
278 | |
279 /* Convert reflection coefficients to prediction coefficients */ | |
280 silk_k2a_Q16( AR_Q24, refl_coef_Q16, psEnc->sCmn.shapingLPCOrder ); | |
281 | |
282 Qnrg = -scale; /* range: -12...30*/ | |
283 silk_assert( Qnrg >= -12 ); | |
284 silk_assert( Qnrg <= 30 ); | |
285 | |
286 /* Make sure that Qnrg is an even number */ | |
287 if( Qnrg & 1 ) { | |
288 Qnrg -= 1; | |
289 nrg >>= 1; | |
290 } | |
291 | |
292 tmp32 = silk_SQRT_APPROX( nrg ); | |
293 Qnrg >>= 1; /* range: -6...15*/ | |
294 | |
295 psEncCtrl->Gains_Q16[ k ] = silk_LSHIFT_SAT32( tmp32, 16 - Qnrg ); | |
296 | |
297 if( psEnc->sCmn.warping_Q16 > 0 ) { | |
298 /* Adjust gain for warping */ | |
299 gain_mult_Q16 = warped_gain( AR_Q24, warping_Q16, psEnc->sCmn.shapingLPCOrder ); | |
300 silk_assert( psEncCtrl->Gains_Q16[ k ] > 0 ); | |
301 if( psEncCtrl->Gains_Q16[ k ] < SILK_FIX_CONST( 0.25, 16 ) ) { | |
302 psEncCtrl->Gains_Q16[ k ] = silk_SMULWW( psEncCtrl->Gains_Q16[ k ], gain_mult_Q16 ); | |
303 } else { | |
304 psEncCtrl->Gains_Q16[ k ] = silk_SMULWW( silk_RSHIFT_ROUND( psEncCtrl->Gains_Q16[ k ], 1 ), gain_mult_Q16 ); | |
305 if ( psEncCtrl->Gains_Q16[ k ] >= ( silk_int32_MAX >> 1 ) ) { | |
306 psEncCtrl->Gains_Q16[ k ] = silk_int32_MAX; | |
307 } else { | |
308 psEncCtrl->Gains_Q16[ k ] = silk_LSHIFT32( psEncCtrl->Gains_Q16[ k ], 1 ); | |
309 } | |
310 } | |
311 silk_assert( psEncCtrl->Gains_Q16[ k ] > 0 ); | |
312 } | |
313 | |
314 /* Bandwidth expansion */ | |
315 silk_bwexpander_32( AR_Q24, psEnc->sCmn.shapingLPCOrder, BWExp_Q16 ); | |
316 | |
317 if( psEnc->sCmn.warping_Q16 > 0 ) { | |
318 /* Convert to monic warped prediction coefficients and limit absolute values */ | |
319 limit_warped_coefs( AR_Q24, warping_Q16, SILK_FIX_CONST( 3.999, 24 ), psEnc->sCmn.shapingLPCOrder ); | |
320 | |
321 /* Convert from Q24 to Q13 and store in int16 */ | |
322 for( i = 0; i < psEnc->sCmn.shapingLPCOrder; i++ ) { | |
323 psEncCtrl->AR_Q13[ k * MAX_SHAPE_LPC_ORDER + i ] = (opus_int16)silk_SAT16( silk_RSHIFT_ROUND( AR_Q24[ i ], 11 ) ); | |
324 } | |
325 } else { | |
326 silk_LPC_fit( &psEncCtrl->AR_Q13[ k * MAX_SHAPE_LPC_ORDER ], AR_Q24, 13, 24, psEnc->sCmn.shapingLPCOrder ); | |
327 } | |
328 } | |
329 | |
330 /*****************/ | |
331 /* Gain tweaking */ | |
332 /*****************/ | |
333 /* Increase gains during low speech activity and put lower limit on gains */ | |
334 gain_mult_Q16 = silk_log2lin( -silk_SMLAWB( -SILK_FIX_CONST( 16.0, 7 ), SNR_adj_dB_Q7, SILK_FIX_CONST( 0.16, 16 ) ) ); | |
335 gain_add_Q16 = silk_log2lin( silk_SMLAWB( SILK_FIX_CONST( 16.0, 7 ), SILK_FIX_CONST( MIN_QGAIN_DB, 7 ), SILK_FIX_CONST( 0.16, 16 ) ) ); | |
336 silk_assert( gain_mult_Q16 > 0 ); | |
337 for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) { | |
338 psEncCtrl->Gains_Q16[ k ] = silk_SMULWW( psEncCtrl->Gains_Q16[ k ], gain_mult_Q16 ); | |
339 silk_assert( psEncCtrl->Gains_Q16[ k ] >= 0 ); | |
340 psEncCtrl->Gains_Q16[ k ] = silk_ADD_POS_SAT32( psEncCtrl->Gains_Q16[ k ], gain_add_Q16 ); | |
341 } | |
342 | |
343 | |
344 /************************************************/ | |
345 /* Control low-frequency shaping and noise tilt */ | |
346 /************************************************/ | |
347 /* Less low frequency shaping for noisy inputs */ | |
348 strength_Q16 = silk_MUL( SILK_FIX_CONST( LOW_FREQ_SHAPING, 4 ), silk_SMLAWB( SILK_FIX_CONST( 1.0, 12 ), | |
349 SILK_FIX_CONST( LOW_QUALITY_LOW_FREQ_SHAPING_DECR, 13 ), psEnc->sCmn.input_quality_bands_Q15[ 0 ] - SILK_FIX_CONST( 1.0, 15 ) ) ); | |
350 strength_Q16 = silk_RSHIFT( silk_MUL( strength_Q16, psEnc->sCmn.speech_activity_Q8 ), 8 ); | |
351 if( psEnc->sCmn.indices.signalType == TYPE_VOICED ) { | |
352 /* Reduce low frequencies quantization noise for periodic signals, depending on pitch lag */ | |
353 /*f = 400; freqz([1, -0.98 + 2e-4 * f], [1, -0.97 + 7e-4 * f], 2^12, Fs); axis([0, 1000, -10, 1])*/ | |
354 opus_int fs_kHz_inv = silk_DIV32_16( SILK_FIX_CONST( 0.2, 14 ), psEnc->sCmn.fs_kHz ); | |
355 for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) { | |
356 b_Q14 = fs_kHz_inv + silk_DIV32_16( SILK_FIX_CONST( 3.0, 14 ), psEncCtrl->pitchL[ k ] ); | |
357 /* Pack two coefficients in one int32 */ | |
358 psEncCtrl->LF_shp_Q14[ k ] = silk_LSHIFT( SILK_FIX_CONST( 1.0, 14 ) - b_Q14 - silk_SMULWB( strength_Q16, b_Q14 ), 16 ); | |
359 psEncCtrl->LF_shp_Q14[ k ] |= (opus_uint16)( b_Q14 - SILK_FIX_CONST( 1.0, 14 ) ); | |
360 } | |
361 silk_assert( SILK_FIX_CONST( HARM_HP_NOISE_COEF, 24 ) < SILK_FIX_CONST( 0.5, 24 ) ); /* Guarantees that second argument to SMULWB() is within range of an opus_int16*/ | |
362 Tilt_Q16 = - SILK_FIX_CONST( HP_NOISE_COEF, 16 ) - | |
363 silk_SMULWB( SILK_FIX_CONST( 1.0, 16 ) - SILK_FIX_CONST( HP_NOISE_COEF, 16 ), | |
364 silk_SMULWB( SILK_FIX_CONST( HARM_HP_NOISE_COEF, 24 ), psEnc->sCmn.speech_activity_Q8 ) ); | |
365 } else { | |
366 b_Q14 = silk_DIV32_16( 21299, psEnc->sCmn.fs_kHz ); /* 1.3_Q0 = 21299_Q14*/ | |
367 /* Pack two coefficients in one int32 */ | |
368 psEncCtrl->LF_shp_Q14[ 0 ] = silk_LSHIFT( SILK_FIX_CONST( 1.0, 14 ) - b_Q14 - | |
369 silk_SMULWB( strength_Q16, silk_SMULWB( SILK_FIX_CONST( 0.6, 16 ), b_Q14 ) ), 16 ); | |
370 psEncCtrl->LF_shp_Q14[ 0 ] |= (opus_uint16)( b_Q14 - SILK_FIX_CONST( 1.0, 14 ) ); | |
371 for( k = 1; k < psEnc->sCmn.nb_subfr; k++ ) { | |
372 psEncCtrl->LF_shp_Q14[ k ] = psEncCtrl->LF_shp_Q14[ 0 ]; | |
373 } | |
374 Tilt_Q16 = -SILK_FIX_CONST( HP_NOISE_COEF, 16 ); | |
375 } | |
376 | |
377 /****************************/ | |
378 /* HARMONIC SHAPING CONTROL */ | |
379 /****************************/ | |
380 if( USE_HARM_SHAPING && psEnc->sCmn.indices.signalType == TYPE_VOICED ) { | |
381 /* More harmonic noise shaping for high bitrates or noisy input */ | |
382 HarmShapeGain_Q16 = silk_SMLAWB( SILK_FIX_CONST( HARMONIC_SHAPING, 16 ), | |
383 SILK_FIX_CONST( 1.0, 16 ) - silk_SMULWB( SILK_FIX_CONST( 1.0, 18 ) - silk_LSHIFT( psEncCtrl->coding_quality_Q14, 4 ), | |
384 psEncCtrl->input_quality_Q14 ), SILK_FIX_CONST( HIGH_RATE_OR_LOW_QUALITY_HARMONIC_SHAPING, 16 ) ); | |
385 | |
386 /* Less harmonic noise shaping for less periodic signals */ | |
387 HarmShapeGain_Q16 = silk_SMULWB( silk_LSHIFT( HarmShapeGain_Q16, 1 ), | |
388 silk_SQRT_APPROX( silk_LSHIFT( psEnc->LTPCorr_Q15, 15 ) ) ); | |
389 } else { | |
390 HarmShapeGain_Q16 = 0; | |
391 } | |
392 | |
393 /*************************/ | |
394 /* Smooth over subframes */ | |
395 /*************************/ | |
396 for( k = 0; k < MAX_NB_SUBFR; k++ ) { | |
397 psShapeSt->HarmShapeGain_smth_Q16 = | |
398 silk_SMLAWB( psShapeSt->HarmShapeGain_smth_Q16, HarmShapeGain_Q16 - psShapeSt->HarmShapeGain_smth_Q16, SILK_FIX_CONST( SUBFR_SMTH_COEF, 16 ) ); | |
399 psShapeSt->Tilt_smth_Q16 = | |
400 silk_SMLAWB( psShapeSt->Tilt_smth_Q16, Tilt_Q16 - psShapeSt->Tilt_smth_Q16, SILK_FIX_CONST( SUBFR_SMTH_COEF, 16 ) ); | |
401 | |
402 psEncCtrl->HarmShapeGain_Q14[ k ] = ( opus_int )silk_RSHIFT_ROUND( psShapeSt->HarmShapeGain_smth_Q16, 2 ); | |
403 psEncCtrl->Tilt_Q14[ k ] = ( opus_int )silk_RSHIFT_ROUND( psShapeSt->Tilt_smth_Q16, 2 ); | |
404 } | |
405 RESTORE_STACK; | |
406 } | |
407 #endif /* OVERRIDE_silk_noise_shape_analysis_FIX */ |