Mercurial > hg > sv-dependency-builds
comparison src/opus-1.3/silk/fixed/burg_modified_FIX.c @ 69:7aeed7906520
Add Opus sources and macOS builds
author | Chris Cannam |
---|---|
date | Wed, 23 Jan 2019 13:48:08 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
68:85d5306e114e | 69:7aeed7906520 |
---|---|
1 /*********************************************************************** | |
2 Copyright (c) 2006-2011, Skype Limited. All rights reserved. | |
3 Redistribution and use in source and binary forms, with or without | |
4 modification, are permitted provided that the following conditions | |
5 are met: | |
6 - Redistributions of source code must retain the above copyright notice, | |
7 this list of conditions and the following disclaimer. | |
8 - Redistributions in binary form must reproduce the above copyright | |
9 notice, this list of conditions and the following disclaimer in the | |
10 documentation and/or other materials provided with the distribution. | |
11 - Neither the name of Internet Society, IETF or IETF Trust, nor the | |
12 names of specific contributors, may be used to endorse or promote | |
13 products derived from this software without specific prior written | |
14 permission. | |
15 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | |
16 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
17 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
18 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | |
19 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | |
20 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | |
21 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | |
22 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | |
23 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | |
24 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | |
25 POSSIBILITY OF SUCH DAMAGE. | |
26 ***********************************************************************/ | |
27 | |
28 #ifdef HAVE_CONFIG_H | |
29 #include "config.h" | |
30 #endif | |
31 | |
32 #include "SigProc_FIX.h" | |
33 #include "define.h" | |
34 #include "tuning_parameters.h" | |
35 #include "pitch.h" | |
36 | |
37 #define MAX_FRAME_SIZE 384 /* subfr_length * nb_subfr = ( 0.005 * 16000 + 16 ) * 4 = 384 */ | |
38 | |
39 #define QA 25 | |
40 #define N_BITS_HEAD_ROOM 3 | |
41 #define MIN_RSHIFTS -16 | |
42 #define MAX_RSHIFTS (32 - QA) | |
43 | |
44 /* Compute reflection coefficients from input signal */ | |
45 void silk_burg_modified_c( | |
46 opus_int32 *res_nrg, /* O Residual energy */ | |
47 opus_int *res_nrg_Q, /* O Residual energy Q value */ | |
48 opus_int32 A_Q16[], /* O Prediction coefficients (length order) */ | |
49 const opus_int16 x[], /* I Input signal, length: nb_subfr * ( D + subfr_length ) */ | |
50 const opus_int32 minInvGain_Q30, /* I Inverse of max prediction gain */ | |
51 const opus_int subfr_length, /* I Input signal subframe length (incl. D preceding samples) */ | |
52 const opus_int nb_subfr, /* I Number of subframes stacked in x */ | |
53 const opus_int D, /* I Order */ | |
54 int arch /* I Run-time architecture */ | |
55 ) | |
56 { | |
57 opus_int k, n, s, lz, rshifts, reached_max_gain; | |
58 opus_int32 C0, num, nrg, rc_Q31, invGain_Q30, Atmp_QA, Atmp1, tmp1, tmp2, x1, x2; | |
59 const opus_int16 *x_ptr; | |
60 opus_int32 C_first_row[ SILK_MAX_ORDER_LPC ]; | |
61 opus_int32 C_last_row[ SILK_MAX_ORDER_LPC ]; | |
62 opus_int32 Af_QA[ SILK_MAX_ORDER_LPC ]; | |
63 opus_int32 CAf[ SILK_MAX_ORDER_LPC + 1 ]; | |
64 opus_int32 CAb[ SILK_MAX_ORDER_LPC + 1 ]; | |
65 opus_int32 xcorr[ SILK_MAX_ORDER_LPC ]; | |
66 opus_int64 C0_64; | |
67 | |
68 celt_assert( subfr_length * nb_subfr <= MAX_FRAME_SIZE ); | |
69 | |
70 /* Compute autocorrelations, added over subframes */ | |
71 C0_64 = silk_inner_prod16_aligned_64( x, x, subfr_length*nb_subfr, arch ); | |
72 lz = silk_CLZ64(C0_64); | |
73 rshifts = 32 + 1 + N_BITS_HEAD_ROOM - lz; | |
74 if (rshifts > MAX_RSHIFTS) rshifts = MAX_RSHIFTS; | |
75 if (rshifts < MIN_RSHIFTS) rshifts = MIN_RSHIFTS; | |
76 | |
77 if (rshifts > 0) { | |
78 C0 = (opus_int32)silk_RSHIFT64(C0_64, rshifts ); | |
79 } else { | |
80 C0 = silk_LSHIFT32((opus_int32)C0_64, -rshifts ); | |
81 } | |
82 | |
83 CAb[ 0 ] = CAf[ 0 ] = C0 + silk_SMMUL( SILK_FIX_CONST( FIND_LPC_COND_FAC, 32 ), C0 ) + 1; /* Q(-rshifts) */ | |
84 silk_memset( C_first_row, 0, SILK_MAX_ORDER_LPC * sizeof( opus_int32 ) ); | |
85 if( rshifts > 0 ) { | |
86 for( s = 0; s < nb_subfr; s++ ) { | |
87 x_ptr = x + s * subfr_length; | |
88 for( n = 1; n < D + 1; n++ ) { | |
89 C_first_row[ n - 1 ] += (opus_int32)silk_RSHIFT64( | |
90 silk_inner_prod16_aligned_64( x_ptr, x_ptr + n, subfr_length - n, arch ), rshifts ); | |
91 } | |
92 } | |
93 } else { | |
94 for( s = 0; s < nb_subfr; s++ ) { | |
95 int i; | |
96 opus_int32 d; | |
97 x_ptr = x + s * subfr_length; | |
98 celt_pitch_xcorr(x_ptr, x_ptr + 1, xcorr, subfr_length - D, D, arch ); | |
99 for( n = 1; n < D + 1; n++ ) { | |
100 for ( i = n + subfr_length - D, d = 0; i < subfr_length; i++ ) | |
101 d = MAC16_16( d, x_ptr[ i ], x_ptr[ i - n ] ); | |
102 xcorr[ n - 1 ] += d; | |
103 } | |
104 for( n = 1; n < D + 1; n++ ) { | |
105 C_first_row[ n - 1 ] += silk_LSHIFT32( xcorr[ n - 1 ], -rshifts ); | |
106 } | |
107 } | |
108 } | |
109 silk_memcpy( C_last_row, C_first_row, SILK_MAX_ORDER_LPC * sizeof( opus_int32 ) ); | |
110 | |
111 /* Initialize */ | |
112 CAb[ 0 ] = CAf[ 0 ] = C0 + silk_SMMUL( SILK_FIX_CONST( FIND_LPC_COND_FAC, 32 ), C0 ) + 1; /* Q(-rshifts) */ | |
113 | |
114 invGain_Q30 = (opus_int32)1 << 30; | |
115 reached_max_gain = 0; | |
116 for( n = 0; n < D; n++ ) { | |
117 /* Update first row of correlation matrix (without first element) */ | |
118 /* Update last row of correlation matrix (without last element, stored in reversed order) */ | |
119 /* Update C * Af */ | |
120 /* Update C * flipud(Af) (stored in reversed order) */ | |
121 if( rshifts > -2 ) { | |
122 for( s = 0; s < nb_subfr; s++ ) { | |
123 x_ptr = x + s * subfr_length; | |
124 x1 = -silk_LSHIFT32( (opus_int32)x_ptr[ n ], 16 - rshifts ); /* Q(16-rshifts) */ | |
125 x2 = -silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n - 1 ], 16 - rshifts ); /* Q(16-rshifts) */ | |
126 tmp1 = silk_LSHIFT32( (opus_int32)x_ptr[ n ], QA - 16 ); /* Q(QA-16) */ | |
127 tmp2 = silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n - 1 ], QA - 16 ); /* Q(QA-16) */ | |
128 for( k = 0; k < n; k++ ) { | |
129 C_first_row[ k ] = silk_SMLAWB( C_first_row[ k ], x1, x_ptr[ n - k - 1 ] ); /* Q( -rshifts ) */ | |
130 C_last_row[ k ] = silk_SMLAWB( C_last_row[ k ], x2, x_ptr[ subfr_length - n + k ] ); /* Q( -rshifts ) */ | |
131 Atmp_QA = Af_QA[ k ]; | |
132 tmp1 = silk_SMLAWB( tmp1, Atmp_QA, x_ptr[ n - k - 1 ] ); /* Q(QA-16) */ | |
133 tmp2 = silk_SMLAWB( tmp2, Atmp_QA, x_ptr[ subfr_length - n + k ] ); /* Q(QA-16) */ | |
134 } | |
135 tmp1 = silk_LSHIFT32( -tmp1, 32 - QA - rshifts ); /* Q(16-rshifts) */ | |
136 tmp2 = silk_LSHIFT32( -tmp2, 32 - QA - rshifts ); /* Q(16-rshifts) */ | |
137 for( k = 0; k <= n; k++ ) { | |
138 CAf[ k ] = silk_SMLAWB( CAf[ k ], tmp1, x_ptr[ n - k ] ); /* Q( -rshift ) */ | |
139 CAb[ k ] = silk_SMLAWB( CAb[ k ], tmp2, x_ptr[ subfr_length - n + k - 1 ] ); /* Q( -rshift ) */ | |
140 } | |
141 } | |
142 } else { | |
143 for( s = 0; s < nb_subfr; s++ ) { | |
144 x_ptr = x + s * subfr_length; | |
145 x1 = -silk_LSHIFT32( (opus_int32)x_ptr[ n ], -rshifts ); /* Q( -rshifts ) */ | |
146 x2 = -silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n - 1 ], -rshifts ); /* Q( -rshifts ) */ | |
147 tmp1 = silk_LSHIFT32( (opus_int32)x_ptr[ n ], 17 ); /* Q17 */ | |
148 tmp2 = silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n - 1 ], 17 ); /* Q17 */ | |
149 for( k = 0; k < n; k++ ) { | |
150 C_first_row[ k ] = silk_MLA( C_first_row[ k ], x1, x_ptr[ n - k - 1 ] ); /* Q( -rshifts ) */ | |
151 C_last_row[ k ] = silk_MLA( C_last_row[ k ], x2, x_ptr[ subfr_length - n + k ] ); /* Q( -rshifts ) */ | |
152 Atmp1 = silk_RSHIFT_ROUND( Af_QA[ k ], QA - 17 ); /* Q17 */ | |
153 /* We sometimes have get overflows in the multiplications (even beyond +/- 2^32), | |
154 but they cancel each other and the real result seems to always fit in a 32-bit | |
155 signed integer. This was determined experimentally, not theoretically (unfortunately). */ | |
156 tmp1 = silk_MLA_ovflw( tmp1, x_ptr[ n - k - 1 ], Atmp1 ); /* Q17 */ | |
157 tmp2 = silk_MLA_ovflw( tmp2, x_ptr[ subfr_length - n + k ], Atmp1 ); /* Q17 */ | |
158 } | |
159 tmp1 = -tmp1; /* Q17 */ | |
160 tmp2 = -tmp2; /* Q17 */ | |
161 for( k = 0; k <= n; k++ ) { | |
162 CAf[ k ] = silk_SMLAWW( CAf[ k ], tmp1, | |
163 silk_LSHIFT32( (opus_int32)x_ptr[ n - k ], -rshifts - 1 ) ); /* Q( -rshift ) */ | |
164 CAb[ k ] = silk_SMLAWW( CAb[ k ], tmp2, | |
165 silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n + k - 1 ], -rshifts - 1 ) ); /* Q( -rshift ) */ | |
166 } | |
167 } | |
168 } | |
169 | |
170 /* Calculate nominator and denominator for the next order reflection (parcor) coefficient */ | |
171 tmp1 = C_first_row[ n ]; /* Q( -rshifts ) */ | |
172 tmp2 = C_last_row[ n ]; /* Q( -rshifts ) */ | |
173 num = 0; /* Q( -rshifts ) */ | |
174 nrg = silk_ADD32( CAb[ 0 ], CAf[ 0 ] ); /* Q( 1-rshifts ) */ | |
175 for( k = 0; k < n; k++ ) { | |
176 Atmp_QA = Af_QA[ k ]; | |
177 lz = silk_CLZ32( silk_abs( Atmp_QA ) ) - 1; | |
178 lz = silk_min( 32 - QA, lz ); | |
179 Atmp1 = silk_LSHIFT32( Atmp_QA, lz ); /* Q( QA + lz ) */ | |
180 | |
181 tmp1 = silk_ADD_LSHIFT32( tmp1, silk_SMMUL( C_last_row[ n - k - 1 ], Atmp1 ), 32 - QA - lz ); /* Q( -rshifts ) */ | |
182 tmp2 = silk_ADD_LSHIFT32( tmp2, silk_SMMUL( C_first_row[ n - k - 1 ], Atmp1 ), 32 - QA - lz ); /* Q( -rshifts ) */ | |
183 num = silk_ADD_LSHIFT32( num, silk_SMMUL( CAb[ n - k ], Atmp1 ), 32 - QA - lz ); /* Q( -rshifts ) */ | |
184 nrg = silk_ADD_LSHIFT32( nrg, silk_SMMUL( silk_ADD32( CAb[ k + 1 ], CAf[ k + 1 ] ), | |
185 Atmp1 ), 32 - QA - lz ); /* Q( 1-rshifts ) */ | |
186 } | |
187 CAf[ n + 1 ] = tmp1; /* Q( -rshifts ) */ | |
188 CAb[ n + 1 ] = tmp2; /* Q( -rshifts ) */ | |
189 num = silk_ADD32( num, tmp2 ); /* Q( -rshifts ) */ | |
190 num = silk_LSHIFT32( -num, 1 ); /* Q( 1-rshifts ) */ | |
191 | |
192 /* Calculate the next order reflection (parcor) coefficient */ | |
193 if( silk_abs( num ) < nrg ) { | |
194 rc_Q31 = silk_DIV32_varQ( num, nrg, 31 ); | |
195 } else { | |
196 rc_Q31 = ( num > 0 ) ? silk_int32_MAX : silk_int32_MIN; | |
197 } | |
198 | |
199 /* Update inverse prediction gain */ | |
200 tmp1 = ( (opus_int32)1 << 30 ) - silk_SMMUL( rc_Q31, rc_Q31 ); | |
201 tmp1 = silk_LSHIFT( silk_SMMUL( invGain_Q30, tmp1 ), 2 ); | |
202 if( tmp1 <= minInvGain_Q30 ) { | |
203 /* Max prediction gain exceeded; set reflection coefficient such that max prediction gain is exactly hit */ | |
204 tmp2 = ( (opus_int32)1 << 30 ) - silk_DIV32_varQ( minInvGain_Q30, invGain_Q30, 30 ); /* Q30 */ | |
205 rc_Q31 = silk_SQRT_APPROX( tmp2 ); /* Q15 */ | |
206 if( rc_Q31 > 0 ) { | |
207 /* Newton-Raphson iteration */ | |
208 rc_Q31 = silk_RSHIFT32( rc_Q31 + silk_DIV32( tmp2, rc_Q31 ), 1 ); /* Q15 */ | |
209 rc_Q31 = silk_LSHIFT32( rc_Q31, 16 ); /* Q31 */ | |
210 if( num < 0 ) { | |
211 /* Ensure adjusted reflection coefficients has the original sign */ | |
212 rc_Q31 = -rc_Q31; | |
213 } | |
214 } | |
215 invGain_Q30 = minInvGain_Q30; | |
216 reached_max_gain = 1; | |
217 } else { | |
218 invGain_Q30 = tmp1; | |
219 } | |
220 | |
221 /* Update the AR coefficients */ | |
222 for( k = 0; k < (n + 1) >> 1; k++ ) { | |
223 tmp1 = Af_QA[ k ]; /* QA */ | |
224 tmp2 = Af_QA[ n - k - 1 ]; /* QA */ | |
225 Af_QA[ k ] = silk_ADD_LSHIFT32( tmp1, silk_SMMUL( tmp2, rc_Q31 ), 1 ); /* QA */ | |
226 Af_QA[ n - k - 1 ] = silk_ADD_LSHIFT32( tmp2, silk_SMMUL( tmp1, rc_Q31 ), 1 ); /* QA */ | |
227 } | |
228 Af_QA[ n ] = silk_RSHIFT32( rc_Q31, 31 - QA ); /* QA */ | |
229 | |
230 if( reached_max_gain ) { | |
231 /* Reached max prediction gain; set remaining coefficients to zero and exit loop */ | |
232 for( k = n + 1; k < D; k++ ) { | |
233 Af_QA[ k ] = 0; | |
234 } | |
235 break; | |
236 } | |
237 | |
238 /* Update C * Af and C * Ab */ | |
239 for( k = 0; k <= n + 1; k++ ) { | |
240 tmp1 = CAf[ k ]; /* Q( -rshifts ) */ | |
241 tmp2 = CAb[ n - k + 1 ]; /* Q( -rshifts ) */ | |
242 CAf[ k ] = silk_ADD_LSHIFT32( tmp1, silk_SMMUL( tmp2, rc_Q31 ), 1 ); /* Q( -rshifts ) */ | |
243 CAb[ n - k + 1 ] = silk_ADD_LSHIFT32( tmp2, silk_SMMUL( tmp1, rc_Q31 ), 1 ); /* Q( -rshifts ) */ | |
244 } | |
245 } | |
246 | |
247 if( reached_max_gain ) { | |
248 for( k = 0; k < D; k++ ) { | |
249 /* Scale coefficients */ | |
250 A_Q16[ k ] = -silk_RSHIFT_ROUND( Af_QA[ k ], QA - 16 ); | |
251 } | |
252 /* Subtract energy of preceding samples from C0 */ | |
253 if( rshifts > 0 ) { | |
254 for( s = 0; s < nb_subfr; s++ ) { | |
255 x_ptr = x + s * subfr_length; | |
256 C0 -= (opus_int32)silk_RSHIFT64( silk_inner_prod16_aligned_64( x_ptr, x_ptr, D, arch ), rshifts ); | |
257 } | |
258 } else { | |
259 for( s = 0; s < nb_subfr; s++ ) { | |
260 x_ptr = x + s * subfr_length; | |
261 C0 -= silk_LSHIFT32( silk_inner_prod_aligned( x_ptr, x_ptr, D, arch), -rshifts); | |
262 } | |
263 } | |
264 /* Approximate residual energy */ | |
265 *res_nrg = silk_LSHIFT( silk_SMMUL( invGain_Q30, C0 ), 2 ); | |
266 *res_nrg_Q = -rshifts; | |
267 } else { | |
268 /* Return residual energy */ | |
269 nrg = CAf[ 0 ]; /* Q( -rshifts ) */ | |
270 tmp1 = (opus_int32)1 << 16; /* Q16 */ | |
271 for( k = 0; k < D; k++ ) { | |
272 Atmp1 = silk_RSHIFT_ROUND( Af_QA[ k ], QA - 16 ); /* Q16 */ | |
273 nrg = silk_SMLAWW( nrg, CAf[ k + 1 ], Atmp1 ); /* Q( -rshifts ) */ | |
274 tmp1 = silk_SMLAWW( tmp1, Atmp1, Atmp1 ); /* Q16 */ | |
275 A_Q16[ k ] = -Atmp1; | |
276 } | |
277 *res_nrg = silk_SMLAWW( nrg, silk_SMMUL( SILK_FIX_CONST( FIND_LPC_COND_FAC, 32 ), C0 ), -tmp1 );/* Q( -rshifts ) */ | |
278 *res_nrg_Q = -rshifts; | |
279 } | |
280 } |