Mercurial > hg > sv-dependency-builds
comparison src/opus-1.3/silk/VAD.c @ 69:7aeed7906520
Add Opus sources and macOS builds
author | Chris Cannam |
---|---|
date | Wed, 23 Jan 2019 13:48:08 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
68:85d5306e114e | 69:7aeed7906520 |
---|---|
1 /*********************************************************************** | |
2 Copyright (c) 2006-2011, Skype Limited. All rights reserved. | |
3 Redistribution and use in source and binary forms, with or without | |
4 modification, are permitted provided that the following conditions | |
5 are met: | |
6 - Redistributions of source code must retain the above copyright notice, | |
7 this list of conditions and the following disclaimer. | |
8 - Redistributions in binary form must reproduce the above copyright | |
9 notice, this list of conditions and the following disclaimer in the | |
10 documentation and/or other materials provided with the distribution. | |
11 - Neither the name of Internet Society, IETF or IETF Trust, nor the | |
12 names of specific contributors, may be used to endorse or promote | |
13 products derived from this software without specific prior written | |
14 permission. | |
15 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | |
16 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
17 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
18 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | |
19 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | |
20 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | |
21 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | |
22 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | |
23 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | |
24 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | |
25 POSSIBILITY OF SUCH DAMAGE. | |
26 ***********************************************************************/ | |
27 | |
28 #ifdef HAVE_CONFIG_H | |
29 #include "config.h" | |
30 #endif | |
31 | |
32 #include "main.h" | |
33 #include "stack_alloc.h" | |
34 | |
35 /* Silk VAD noise level estimation */ | |
36 # if !defined(OPUS_X86_MAY_HAVE_SSE4_1) | |
37 static OPUS_INLINE void silk_VAD_GetNoiseLevels( | |
38 const opus_int32 pX[ VAD_N_BANDS ], /* I subband energies */ | |
39 silk_VAD_state *psSilk_VAD /* I/O Pointer to Silk VAD state */ | |
40 ); | |
41 #endif | |
42 | |
43 /**********************************/ | |
44 /* Initialization of the Silk VAD */ | |
45 /**********************************/ | |
46 opus_int silk_VAD_Init( /* O Return value, 0 if success */ | |
47 silk_VAD_state *psSilk_VAD /* I/O Pointer to Silk VAD state */ | |
48 ) | |
49 { | |
50 opus_int b, ret = 0; | |
51 | |
52 /* reset state memory */ | |
53 silk_memset( psSilk_VAD, 0, sizeof( silk_VAD_state ) ); | |
54 | |
55 /* init noise levels */ | |
56 /* Initialize array with approx pink noise levels (psd proportional to inverse of frequency) */ | |
57 for( b = 0; b < VAD_N_BANDS; b++ ) { | |
58 psSilk_VAD->NoiseLevelBias[ b ] = silk_max_32( silk_DIV32_16( VAD_NOISE_LEVELS_BIAS, b + 1 ), 1 ); | |
59 } | |
60 | |
61 /* Initialize state */ | |
62 for( b = 0; b < VAD_N_BANDS; b++ ) { | |
63 psSilk_VAD->NL[ b ] = silk_MUL( 100, psSilk_VAD->NoiseLevelBias[ b ] ); | |
64 psSilk_VAD->inv_NL[ b ] = silk_DIV32( silk_int32_MAX, psSilk_VAD->NL[ b ] ); | |
65 } | |
66 psSilk_VAD->counter = 15; | |
67 | |
68 /* init smoothed energy-to-noise ratio*/ | |
69 for( b = 0; b < VAD_N_BANDS; b++ ) { | |
70 psSilk_VAD->NrgRatioSmth_Q8[ b ] = 100 * 256; /* 100 * 256 --> 20 dB SNR */ | |
71 } | |
72 | |
73 return( ret ); | |
74 } | |
75 | |
76 /* Weighting factors for tilt measure */ | |
77 static const opus_int32 tiltWeights[ VAD_N_BANDS ] = { 30000, 6000, -12000, -12000 }; | |
78 | |
79 /***************************************/ | |
80 /* Get the speech activity level in Q8 */ | |
81 /***************************************/ | |
82 opus_int silk_VAD_GetSA_Q8_c( /* O Return value, 0 if success */ | |
83 silk_encoder_state *psEncC, /* I/O Encoder state */ | |
84 const opus_int16 pIn[] /* I PCM input */ | |
85 ) | |
86 { | |
87 opus_int SA_Q15, pSNR_dB_Q7, input_tilt; | |
88 opus_int decimated_framelength1, decimated_framelength2; | |
89 opus_int decimated_framelength; | |
90 opus_int dec_subframe_length, dec_subframe_offset, SNR_Q7, i, b, s; | |
91 opus_int32 sumSquared, smooth_coef_Q16; | |
92 opus_int16 HPstateTmp; | |
93 VARDECL( opus_int16, X ); | |
94 opus_int32 Xnrg[ VAD_N_BANDS ]; | |
95 opus_int32 NrgToNoiseRatio_Q8[ VAD_N_BANDS ]; | |
96 opus_int32 speech_nrg, x_tmp; | |
97 opus_int X_offset[ VAD_N_BANDS ]; | |
98 opus_int ret = 0; | |
99 silk_VAD_state *psSilk_VAD = &psEncC->sVAD; | |
100 SAVE_STACK; | |
101 | |
102 /* Safety checks */ | |
103 silk_assert( VAD_N_BANDS == 4 ); | |
104 celt_assert( MAX_FRAME_LENGTH >= psEncC->frame_length ); | |
105 celt_assert( psEncC->frame_length <= 512 ); | |
106 celt_assert( psEncC->frame_length == 8 * silk_RSHIFT( psEncC->frame_length, 3 ) ); | |
107 | |
108 /***********************/ | |
109 /* Filter and Decimate */ | |
110 /***********************/ | |
111 decimated_framelength1 = silk_RSHIFT( psEncC->frame_length, 1 ); | |
112 decimated_framelength2 = silk_RSHIFT( psEncC->frame_length, 2 ); | |
113 decimated_framelength = silk_RSHIFT( psEncC->frame_length, 3 ); | |
114 /* Decimate into 4 bands: | |
115 0 L 3L L 3L 5L | |
116 - -- - -- -- | |
117 8 8 2 4 4 | |
118 | |
119 [0-1 kHz| temp. |1-2 kHz| 2-4 kHz | 4-8 kHz | | |
120 | |
121 They're arranged to allow the minimal ( frame_length / 4 ) extra | |
122 scratch space during the downsampling process */ | |
123 X_offset[ 0 ] = 0; | |
124 X_offset[ 1 ] = decimated_framelength + decimated_framelength2; | |
125 X_offset[ 2 ] = X_offset[ 1 ] + decimated_framelength; | |
126 X_offset[ 3 ] = X_offset[ 2 ] + decimated_framelength2; | |
127 ALLOC( X, X_offset[ 3 ] + decimated_framelength1, opus_int16 ); | |
128 | |
129 /* 0-8 kHz to 0-4 kHz and 4-8 kHz */ | |
130 silk_ana_filt_bank_1( pIn, &psSilk_VAD->AnaState[ 0 ], | |
131 X, &X[ X_offset[ 3 ] ], psEncC->frame_length ); | |
132 | |
133 /* 0-4 kHz to 0-2 kHz and 2-4 kHz */ | |
134 silk_ana_filt_bank_1( X, &psSilk_VAD->AnaState1[ 0 ], | |
135 X, &X[ X_offset[ 2 ] ], decimated_framelength1 ); | |
136 | |
137 /* 0-2 kHz to 0-1 kHz and 1-2 kHz */ | |
138 silk_ana_filt_bank_1( X, &psSilk_VAD->AnaState2[ 0 ], | |
139 X, &X[ X_offset[ 1 ] ], decimated_framelength2 ); | |
140 | |
141 /*********************************************/ | |
142 /* HP filter on lowest band (differentiator) */ | |
143 /*********************************************/ | |
144 X[ decimated_framelength - 1 ] = silk_RSHIFT( X[ decimated_framelength - 1 ], 1 ); | |
145 HPstateTmp = X[ decimated_framelength - 1 ]; | |
146 for( i = decimated_framelength - 1; i > 0; i-- ) { | |
147 X[ i - 1 ] = silk_RSHIFT( X[ i - 1 ], 1 ); | |
148 X[ i ] -= X[ i - 1 ]; | |
149 } | |
150 X[ 0 ] -= psSilk_VAD->HPstate; | |
151 psSilk_VAD->HPstate = HPstateTmp; | |
152 | |
153 /*************************************/ | |
154 /* Calculate the energy in each band */ | |
155 /*************************************/ | |
156 for( b = 0; b < VAD_N_BANDS; b++ ) { | |
157 /* Find the decimated framelength in the non-uniformly divided bands */ | |
158 decimated_framelength = silk_RSHIFT( psEncC->frame_length, silk_min_int( VAD_N_BANDS - b, VAD_N_BANDS - 1 ) ); | |
159 | |
160 /* Split length into subframe lengths */ | |
161 dec_subframe_length = silk_RSHIFT( decimated_framelength, VAD_INTERNAL_SUBFRAMES_LOG2 ); | |
162 dec_subframe_offset = 0; | |
163 | |
164 /* Compute energy per sub-frame */ | |
165 /* initialize with summed energy of last subframe */ | |
166 Xnrg[ b ] = psSilk_VAD->XnrgSubfr[ b ]; | |
167 for( s = 0; s < VAD_INTERNAL_SUBFRAMES; s++ ) { | |
168 sumSquared = 0; | |
169 for( i = 0; i < dec_subframe_length; i++ ) { | |
170 /* The energy will be less than dec_subframe_length * ( silk_int16_MIN / 8 ) ^ 2. */ | |
171 /* Therefore we can accumulate with no risk of overflow (unless dec_subframe_length > 128) */ | |
172 x_tmp = silk_RSHIFT( | |
173 X[ X_offset[ b ] + i + dec_subframe_offset ], 3 ); | |
174 sumSquared = silk_SMLABB( sumSquared, x_tmp, x_tmp ); | |
175 | |
176 /* Safety check */ | |
177 silk_assert( sumSquared >= 0 ); | |
178 } | |
179 | |
180 /* Add/saturate summed energy of current subframe */ | |
181 if( s < VAD_INTERNAL_SUBFRAMES - 1 ) { | |
182 Xnrg[ b ] = silk_ADD_POS_SAT32( Xnrg[ b ], sumSquared ); | |
183 } else { | |
184 /* Look-ahead subframe */ | |
185 Xnrg[ b ] = silk_ADD_POS_SAT32( Xnrg[ b ], silk_RSHIFT( sumSquared, 1 ) ); | |
186 } | |
187 | |
188 dec_subframe_offset += dec_subframe_length; | |
189 } | |
190 psSilk_VAD->XnrgSubfr[ b ] = sumSquared; | |
191 } | |
192 | |
193 /********************/ | |
194 /* Noise estimation */ | |
195 /********************/ | |
196 silk_VAD_GetNoiseLevels( &Xnrg[ 0 ], psSilk_VAD ); | |
197 | |
198 /***********************************************/ | |
199 /* Signal-plus-noise to noise ratio estimation */ | |
200 /***********************************************/ | |
201 sumSquared = 0; | |
202 input_tilt = 0; | |
203 for( b = 0; b < VAD_N_BANDS; b++ ) { | |
204 speech_nrg = Xnrg[ b ] - psSilk_VAD->NL[ b ]; | |
205 if( speech_nrg > 0 ) { | |
206 /* Divide, with sufficient resolution */ | |
207 if( ( Xnrg[ b ] & 0xFF800000 ) == 0 ) { | |
208 NrgToNoiseRatio_Q8[ b ] = silk_DIV32( silk_LSHIFT( Xnrg[ b ], 8 ), psSilk_VAD->NL[ b ] + 1 ); | |
209 } else { | |
210 NrgToNoiseRatio_Q8[ b ] = silk_DIV32( Xnrg[ b ], silk_RSHIFT( psSilk_VAD->NL[ b ], 8 ) + 1 ); | |
211 } | |
212 | |
213 /* Convert to log domain */ | |
214 SNR_Q7 = silk_lin2log( NrgToNoiseRatio_Q8[ b ] ) - 8 * 128; | |
215 | |
216 /* Sum-of-squares */ | |
217 sumSquared = silk_SMLABB( sumSquared, SNR_Q7, SNR_Q7 ); /* Q14 */ | |
218 | |
219 /* Tilt measure */ | |
220 if( speech_nrg < ( (opus_int32)1 << 20 ) ) { | |
221 /* Scale down SNR value for small subband speech energies */ | |
222 SNR_Q7 = silk_SMULWB( silk_LSHIFT( silk_SQRT_APPROX( speech_nrg ), 6 ), SNR_Q7 ); | |
223 } | |
224 input_tilt = silk_SMLAWB( input_tilt, tiltWeights[ b ], SNR_Q7 ); | |
225 } else { | |
226 NrgToNoiseRatio_Q8[ b ] = 256; | |
227 } | |
228 } | |
229 | |
230 /* Mean-of-squares */ | |
231 sumSquared = silk_DIV32_16( sumSquared, VAD_N_BANDS ); /* Q14 */ | |
232 | |
233 /* Root-mean-square approximation, scale to dBs, and write to output pointer */ | |
234 pSNR_dB_Q7 = (opus_int16)( 3 * silk_SQRT_APPROX( sumSquared ) ); /* Q7 */ | |
235 | |
236 /*********************************/ | |
237 /* Speech Probability Estimation */ | |
238 /*********************************/ | |
239 SA_Q15 = silk_sigm_Q15( silk_SMULWB( VAD_SNR_FACTOR_Q16, pSNR_dB_Q7 ) - VAD_NEGATIVE_OFFSET_Q5 ); | |
240 | |
241 /**************************/ | |
242 /* Frequency Tilt Measure */ | |
243 /**************************/ | |
244 psEncC->input_tilt_Q15 = silk_LSHIFT( silk_sigm_Q15( input_tilt ) - 16384, 1 ); | |
245 | |
246 /**************************************************/ | |
247 /* Scale the sigmoid output based on power levels */ | |
248 /**************************************************/ | |
249 speech_nrg = 0; | |
250 for( b = 0; b < VAD_N_BANDS; b++ ) { | |
251 /* Accumulate signal-without-noise energies, higher frequency bands have more weight */ | |
252 speech_nrg += ( b + 1 ) * silk_RSHIFT( Xnrg[ b ] - psSilk_VAD->NL[ b ], 4 ); | |
253 } | |
254 | |
255 if( psEncC->frame_length == 20 * psEncC->fs_kHz ) { | |
256 speech_nrg = silk_RSHIFT32( speech_nrg, 1 ); | |
257 } | |
258 /* Power scaling */ | |
259 if( speech_nrg <= 0 ) { | |
260 SA_Q15 = silk_RSHIFT( SA_Q15, 1 ); | |
261 } else if( speech_nrg < 16384 ) { | |
262 speech_nrg = silk_LSHIFT32( speech_nrg, 16 ); | |
263 | |
264 /* square-root */ | |
265 speech_nrg = silk_SQRT_APPROX( speech_nrg ); | |
266 SA_Q15 = silk_SMULWB( 32768 + speech_nrg, SA_Q15 ); | |
267 } | |
268 | |
269 /* Copy the resulting speech activity in Q8 */ | |
270 psEncC->speech_activity_Q8 = silk_min_int( silk_RSHIFT( SA_Q15, 7 ), silk_uint8_MAX ); | |
271 | |
272 /***********************************/ | |
273 /* Energy Level and SNR estimation */ | |
274 /***********************************/ | |
275 /* Smoothing coefficient */ | |
276 smooth_coef_Q16 = silk_SMULWB( VAD_SNR_SMOOTH_COEF_Q18, silk_SMULWB( (opus_int32)SA_Q15, SA_Q15 ) ); | |
277 | |
278 if( psEncC->frame_length == 10 * psEncC->fs_kHz ) { | |
279 smooth_coef_Q16 >>= 1; | |
280 } | |
281 | |
282 for( b = 0; b < VAD_N_BANDS; b++ ) { | |
283 /* compute smoothed energy-to-noise ratio per band */ | |
284 psSilk_VAD->NrgRatioSmth_Q8[ b ] = silk_SMLAWB( psSilk_VAD->NrgRatioSmth_Q8[ b ], | |
285 NrgToNoiseRatio_Q8[ b ] - psSilk_VAD->NrgRatioSmth_Q8[ b ], smooth_coef_Q16 ); | |
286 | |
287 /* signal to noise ratio in dB per band */ | |
288 SNR_Q7 = 3 * ( silk_lin2log( psSilk_VAD->NrgRatioSmth_Q8[b] ) - 8 * 128 ); | |
289 /* quality = sigmoid( 0.25 * ( SNR_dB - 16 ) ); */ | |
290 psEncC->input_quality_bands_Q15[ b ] = silk_sigm_Q15( silk_RSHIFT( SNR_Q7 - 16 * 128, 4 ) ); | |
291 } | |
292 | |
293 RESTORE_STACK; | |
294 return( ret ); | |
295 } | |
296 | |
297 /**************************/ | |
298 /* Noise level estimation */ | |
299 /**************************/ | |
300 # if !defined(OPUS_X86_MAY_HAVE_SSE4_1) | |
301 static OPUS_INLINE | |
302 #endif | |
303 void silk_VAD_GetNoiseLevels( | |
304 const opus_int32 pX[ VAD_N_BANDS ], /* I subband energies */ | |
305 silk_VAD_state *psSilk_VAD /* I/O Pointer to Silk VAD state */ | |
306 ) | |
307 { | |
308 opus_int k; | |
309 opus_int32 nl, nrg, inv_nrg; | |
310 opus_int coef, min_coef; | |
311 | |
312 /* Initially faster smoothing */ | |
313 if( psSilk_VAD->counter < 1000 ) { /* 1000 = 20 sec */ | |
314 min_coef = silk_DIV32_16( silk_int16_MAX, silk_RSHIFT( psSilk_VAD->counter, 4 ) + 1 ); | |
315 /* Increment frame counter */ | |
316 psSilk_VAD->counter++; | |
317 } else { | |
318 min_coef = 0; | |
319 } | |
320 | |
321 for( k = 0; k < VAD_N_BANDS; k++ ) { | |
322 /* Get old noise level estimate for current band */ | |
323 nl = psSilk_VAD->NL[ k ]; | |
324 silk_assert( nl >= 0 ); | |
325 | |
326 /* Add bias */ | |
327 nrg = silk_ADD_POS_SAT32( pX[ k ], psSilk_VAD->NoiseLevelBias[ k ] ); | |
328 silk_assert( nrg > 0 ); | |
329 | |
330 /* Invert energies */ | |
331 inv_nrg = silk_DIV32( silk_int32_MAX, nrg ); | |
332 silk_assert( inv_nrg >= 0 ); | |
333 | |
334 /* Less update when subband energy is high */ | |
335 if( nrg > silk_LSHIFT( nl, 3 ) ) { | |
336 coef = VAD_NOISE_LEVEL_SMOOTH_COEF_Q16 >> 3; | |
337 } else if( nrg < nl ) { | |
338 coef = VAD_NOISE_LEVEL_SMOOTH_COEF_Q16; | |
339 } else { | |
340 coef = silk_SMULWB( silk_SMULWW( inv_nrg, nl ), VAD_NOISE_LEVEL_SMOOTH_COEF_Q16 << 1 ); | |
341 } | |
342 | |
343 /* Initially faster smoothing */ | |
344 coef = silk_max_int( coef, min_coef ); | |
345 | |
346 /* Smooth inverse energies */ | |
347 psSilk_VAD->inv_NL[ k ] = silk_SMLAWB( psSilk_VAD->inv_NL[ k ], inv_nrg - psSilk_VAD->inv_NL[ k ], coef ); | |
348 silk_assert( psSilk_VAD->inv_NL[ k ] >= 0 ); | |
349 | |
350 /* Compute noise level by inverting again */ | |
351 nl = silk_DIV32( silk_int32_MAX, psSilk_VAD->inv_NL[ k ] ); | |
352 silk_assert( nl >= 0 ); | |
353 | |
354 /* Limit noise levels (guarantee 7 bits of head room) */ | |
355 nl = silk_min( nl, 0x00FFFFFF ); | |
356 | |
357 /* Store as part of state */ | |
358 psSilk_VAD->NL[ k ] = nl; | |
359 } | |
360 } |