Mercurial > hg > sv-dependency-builds
comparison src/opus-1.3/silk/NLSF2A.c @ 69:7aeed7906520
Add Opus sources and macOS builds
author | Chris Cannam |
---|---|
date | Wed, 23 Jan 2019 13:48:08 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
68:85d5306e114e | 69:7aeed7906520 |
---|---|
1 /*********************************************************************** | |
2 Copyright (c) 2006-2011, Skype Limited. All rights reserved. | |
3 Redistribution and use in source and binary forms, with or without | |
4 modification, are permitted provided that the following conditions | |
5 are met: | |
6 - Redistributions of source code must retain the above copyright notice, | |
7 this list of conditions and the following disclaimer. | |
8 - Redistributions in binary form must reproduce the above copyright | |
9 notice, this list of conditions and the following disclaimer in the | |
10 documentation and/or other materials provided with the distribution. | |
11 - Neither the name of Internet Society, IETF or IETF Trust, nor the | |
12 names of specific contributors, may be used to endorse or promote | |
13 products derived from this software without specific prior written | |
14 permission. | |
15 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | |
16 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
17 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
18 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | |
19 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | |
20 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | |
21 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | |
22 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | |
23 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | |
24 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | |
25 POSSIBILITY OF SUCH DAMAGE. | |
26 ***********************************************************************/ | |
27 | |
28 #ifdef HAVE_CONFIG_H | |
29 #include "config.h" | |
30 #endif | |
31 | |
32 /* conversion between prediction filter coefficients and LSFs */ | |
33 /* order should be even */ | |
34 /* a piecewise linear approximation maps LSF <-> cos(LSF) */ | |
35 /* therefore the result is not accurate LSFs, but the two */ | |
36 /* functions are accurate inverses of each other */ | |
37 | |
38 #include "SigProc_FIX.h" | |
39 #include "tables.h" | |
40 | |
41 #define QA 16 | |
42 | |
43 /* helper function for NLSF2A(..) */ | |
44 static OPUS_INLINE void silk_NLSF2A_find_poly( | |
45 opus_int32 *out, /* O intermediate polynomial, QA [dd+1] */ | |
46 const opus_int32 *cLSF, /* I vector of interleaved 2*cos(LSFs), QA [d] */ | |
47 opus_int dd /* I polynomial order (= 1/2 * filter order) */ | |
48 ) | |
49 { | |
50 opus_int k, n; | |
51 opus_int32 ftmp; | |
52 | |
53 out[0] = silk_LSHIFT( 1, QA ); | |
54 out[1] = -cLSF[0]; | |
55 for( k = 1; k < dd; k++ ) { | |
56 ftmp = cLSF[2*k]; /* QA*/ | |
57 out[k+1] = silk_LSHIFT( out[k-1], 1 ) - (opus_int32)silk_RSHIFT_ROUND64( silk_SMULL( ftmp, out[k] ), QA ); | |
58 for( n = k; n > 1; n-- ) { | |
59 out[n] += out[n-2] - (opus_int32)silk_RSHIFT_ROUND64( silk_SMULL( ftmp, out[n-1] ), QA ); | |
60 } | |
61 out[1] -= ftmp; | |
62 } | |
63 } | |
64 | |
65 /* compute whitening filter coefficients from normalized line spectral frequencies */ | |
66 void silk_NLSF2A( | |
67 opus_int16 *a_Q12, /* O monic whitening filter coefficients in Q12, [ d ] */ | |
68 const opus_int16 *NLSF, /* I normalized line spectral frequencies in Q15, [ d ] */ | |
69 const opus_int d, /* I filter order (should be even) */ | |
70 int arch /* I Run-time architecture */ | |
71 ) | |
72 { | |
73 /* This ordering was found to maximize quality. It improves numerical accuracy of | |
74 silk_NLSF2A_find_poly() compared to "standard" ordering. */ | |
75 static const unsigned char ordering16[16] = { | |
76 0, 15, 8, 7, 4, 11, 12, 3, 2, 13, 10, 5, 6, 9, 14, 1 | |
77 }; | |
78 static const unsigned char ordering10[10] = { | |
79 0, 9, 6, 3, 4, 5, 8, 1, 2, 7 | |
80 }; | |
81 const unsigned char *ordering; | |
82 opus_int k, i, dd; | |
83 opus_int32 cos_LSF_QA[ SILK_MAX_ORDER_LPC ]; | |
84 opus_int32 P[ SILK_MAX_ORDER_LPC / 2 + 1 ], Q[ SILK_MAX_ORDER_LPC / 2 + 1 ]; | |
85 opus_int32 Ptmp, Qtmp, f_int, f_frac, cos_val, delta; | |
86 opus_int32 a32_QA1[ SILK_MAX_ORDER_LPC ]; | |
87 | |
88 silk_assert( LSF_COS_TAB_SZ_FIX == 128 ); | |
89 celt_assert( d==10 || d==16 ); | |
90 | |
91 /* convert LSFs to 2*cos(LSF), using piecewise linear curve from table */ | |
92 ordering = d == 16 ? ordering16 : ordering10; | |
93 for( k = 0; k < d; k++ ) { | |
94 silk_assert( NLSF[k] >= 0 ); | |
95 | |
96 /* f_int on a scale 0-127 (rounded down) */ | |
97 f_int = silk_RSHIFT( NLSF[k], 15 - 7 ); | |
98 | |
99 /* f_frac, range: 0..255 */ | |
100 f_frac = NLSF[k] - silk_LSHIFT( f_int, 15 - 7 ); | |
101 | |
102 silk_assert(f_int >= 0); | |
103 silk_assert(f_int < LSF_COS_TAB_SZ_FIX ); | |
104 | |
105 /* Read start and end value from table */ | |
106 cos_val = silk_LSFCosTab_FIX_Q12[ f_int ]; /* Q12 */ | |
107 delta = silk_LSFCosTab_FIX_Q12[ f_int + 1 ] - cos_val; /* Q12, with a range of 0..200 */ | |
108 | |
109 /* Linear interpolation */ | |
110 cos_LSF_QA[ordering[k]] = silk_RSHIFT_ROUND( silk_LSHIFT( cos_val, 8 ) + silk_MUL( delta, f_frac ), 20 - QA ); /* QA */ | |
111 } | |
112 | |
113 dd = silk_RSHIFT( d, 1 ); | |
114 | |
115 /* generate even and odd polynomials using convolution */ | |
116 silk_NLSF2A_find_poly( P, &cos_LSF_QA[ 0 ], dd ); | |
117 silk_NLSF2A_find_poly( Q, &cos_LSF_QA[ 1 ], dd ); | |
118 | |
119 /* convert even and odd polynomials to opus_int32 Q12 filter coefs */ | |
120 for( k = 0; k < dd; k++ ) { | |
121 Ptmp = P[ k+1 ] + P[ k ]; | |
122 Qtmp = Q[ k+1 ] - Q[ k ]; | |
123 | |
124 /* the Ptmp and Qtmp values at this stage need to fit in int32 */ | |
125 a32_QA1[ k ] = -Qtmp - Ptmp; /* QA+1 */ | |
126 a32_QA1[ d-k-1 ] = Qtmp - Ptmp; /* QA+1 */ | |
127 } | |
128 | |
129 /* Convert int32 coefficients to Q12 int16 coefs */ | |
130 silk_LPC_fit( a_Q12, a32_QA1, 12, QA + 1, d ); | |
131 | |
132 for( i = 0; silk_LPC_inverse_pred_gain( a_Q12, d, arch ) == 0 && i < MAX_LPC_STABILIZE_ITERATIONS; i++ ) { | |
133 /* Prediction coefficients are (too close to) unstable; apply bandwidth expansion */ | |
134 /* on the unscaled coefficients, convert to Q12 and measure again */ | |
135 silk_bwexpander_32( a32_QA1, d, 65536 - silk_LSHIFT( 2, i ) ); | |
136 for( k = 0; k < d; k++ ) { | |
137 a_Q12[ k ] = (opus_int16)silk_RSHIFT_ROUND( a32_QA1[ k ], QA + 1 - 12 ); /* QA+1 -> Q12 */ | |
138 } | |
139 } | |
140 } | |
141 |