Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.5/simd-support/simd-generic256.h @ 127:7867fa7e1b6b
Current fftw source
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Tue, 18 Oct 2016 13:40:26 +0100 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
126:4a7071416412 | 127:7867fa7e1b6b |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-11 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology | |
4 * | |
5 * Generic256d added by Romain Dolbeau, and turned into simd-generic256.h | |
6 * with single & double precision by Erik Lindahl. | |
7 * Romain Dolbeau hereby places his modifications in the public domain. | |
8 * Erik Lindahl hereby places his modifications in the public domain. | |
9 * | |
10 * This program is free software; you can redistribute it and/or modify | |
11 * it under the terms of the GNU General Public License as published by | |
12 * the Free Software Foundation; either version 2 of the License, or | |
13 * (at your option) any later version. | |
14 * | |
15 * This program is distributed in the hope that it will be useful, | |
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
18 * GNU General Public License for more details. | |
19 * | |
20 * You should have received a copy of the GNU General Public License | |
21 * along with this program; if not, write to the Free Software | |
22 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
23 * | |
24 */ | |
25 | |
26 #if defined(FFTW_LDOUBLE) || defined(FFTW_QUAD) | |
27 # error "Generic simd256 only works in single or double precision" | |
28 #endif | |
29 | |
30 #define SIMD_SUFFIX _generic_simd256 /* for renaming */ | |
31 | |
32 #ifdef FFTW_SINGLE | |
33 # define DS(d,s) s /* single-precision option */ | |
34 # define VDUPL(x) {x[0],x[0],x[2],x[2],x[4],x[4],x[6],x[6]} | |
35 # define VDUPH(x) {x[1],x[1],x[3],x[3],x[5],x[5],x[7],x[7]} | |
36 # define DVK(var, val) V var = {val,val,val,val,val,val,val,val} | |
37 #else | |
38 # define DS(d,s) d /* double-precision option */ | |
39 # define VDUPL(x) {x[0],x[0],x[2],x[2]} | |
40 # define VDUPH(x) {x[1],x[1],x[3],x[3]} | |
41 # define DVK(var, val) V var = {val, val, val, val} | |
42 #endif | |
43 | |
44 #define VL DS(2,4) /* SIMD vector length, in term of complex numbers */ | |
45 #define SIMD_VSTRIDE_OKA(x) DS(1,((x) == 2)) | |
46 #define SIMD_STRIDE_OKPAIR SIMD_STRIDE_OK | |
47 | |
48 typedef DS(double,float) V __attribute__ ((vector_size(32))); | |
49 | |
50 #define VADD(a,b) ((a)+(b)) | |
51 #define VSUB(a,b) ((a)-(b)) | |
52 #define VMUL(a,b) ((a)*(b)) | |
53 | |
54 #define LDK(x) x | |
55 | |
56 static inline V LDA(const R *x, INT ivs, const R *aligned_like) | |
57 { | |
58 V var; | |
59 (void)aligned_like; /* UNUSED */ | |
60 return *(const V *)x; | |
61 } | |
62 | |
63 static inline void STA(R *x, V v, INT ovs, const R *aligned_like) | |
64 { | |
65 (void)aligned_like; /* UNUSED */ | |
66 (void)ovs; /* UNUSED */ | |
67 *(V *)x = v; | |
68 } | |
69 | |
70 static inline V LD(const R *x, INT ivs, const R *aligned_like) | |
71 { | |
72 V var; | |
73 (void)aligned_like; /* UNUSED */ | |
74 var[0] = x[0]; | |
75 var[1] = x[1]; | |
76 var[2] = x[ivs]; | |
77 var[3] = x[ivs+1]; | |
78 #ifdef FFTW_SINGLE | |
79 var[4] = x[2*ivs]; | |
80 var[5] = x[2*ivs+1]; | |
81 var[6] = x[3*ivs]; | |
82 var[7] = x[3*ivs+1]; | |
83 #endif | |
84 return var; | |
85 } | |
86 | |
87 | |
88 /* ST has to be separate due to the storage hack requiring reverse order */ | |
89 | |
90 static inline void ST(R *x, V v, INT ovs, const R *aligned_like) | |
91 { | |
92 (void)aligned_like; /* UNUSED */ | |
93 #ifdef FFTW_SINGLE | |
94 *(x + 3*ovs ) = v[6]; | |
95 *(x + 3*ovs + 1) = v[7]; | |
96 *(x + 2*ovs ) = v[4]; | |
97 *(x + 2*ovs + 1) = v[5]; | |
98 *(x + ovs ) = v[2]; | |
99 *(x + ovs + 1) = v[3]; | |
100 *(x ) = v[0]; | |
101 *(x + 1) = v[1]; | |
102 #else | |
103 *(x + ovs ) = v[2]; | |
104 *(x + ovs + 1) = v[3]; | |
105 *(x ) = v[0]; | |
106 *(x + 1) = v[1]; | |
107 #endif | |
108 } | |
109 | |
110 #ifdef FFTW_SINGLE | |
111 #define STM2(x, v, ovs, a) /* no-op */ | |
112 static inline void STN2(R *x, V v0, V v1, INT ovs) | |
113 { | |
114 x[ 0] = v0[0]; | |
115 x[ 1] = v0[1]; | |
116 x[ 2] = v1[0]; | |
117 x[ 3] = v1[1]; | |
118 x[ ovs ] = v0[2]; | |
119 x[ ovs + 1] = v0[3]; | |
120 x[ ovs + 2] = v1[2]; | |
121 x[ ovs + 3] = v1[3]; | |
122 x[2*ovs ] = v0[4]; | |
123 x[2*ovs + 1] = v0[5]; | |
124 x[2*ovs + 2] = v1[4]; | |
125 x[2*ovs + 3] = v1[5]; | |
126 x[3*ovs ] = v0[6]; | |
127 x[3*ovs + 1] = v0[7]; | |
128 x[3*ovs + 2] = v1[6]; | |
129 x[3*ovs + 3] = v1[7]; | |
130 } | |
131 | |
132 # define STM4(x, v, ovs, aligned_like) /* no-op */ | |
133 static inline void STN4(R *x, V v0, V v1, V v2, V v3, INT ovs) | |
134 { | |
135 *(x ) = v0[0]; | |
136 *(x + 1) = v1[0]; | |
137 *(x + 2) = v2[0]; | |
138 *(x + 3) = v3[0]; | |
139 *(x + ovs ) = v0[1]; | |
140 *(x + ovs + 1) = v1[1]; | |
141 *(x + ovs + 2) = v2[1]; | |
142 *(x + ovs + 3) = v3[1]; | |
143 *(x + 2 * ovs ) = v0[2]; | |
144 *(x + 2 * ovs + 1) = v1[2]; | |
145 *(x + 2 * ovs + 2) = v2[2]; | |
146 *(x + 2 * ovs + 3) = v3[2]; | |
147 *(x + 3 * ovs ) = v0[3]; | |
148 *(x + 3 * ovs + 1) = v1[3]; | |
149 *(x + 3 * ovs + 2) = v2[3]; | |
150 *(x + 3 * ovs + 3) = v3[3]; | |
151 *(x + 4 * ovs ) = v0[4]; | |
152 *(x + 4 * ovs + 1) = v1[4]; | |
153 *(x + 4 * ovs + 2) = v2[4]; | |
154 *(x + 4 * ovs + 3) = v3[4]; | |
155 *(x + 5 * ovs ) = v0[5]; | |
156 *(x + 5 * ovs + 1) = v1[5]; | |
157 *(x + 5 * ovs + 2) = v2[5]; | |
158 *(x + 5 * ovs + 3) = v3[5]; | |
159 *(x + 6 * ovs ) = v0[6]; | |
160 *(x + 6 * ovs + 1) = v1[6]; | |
161 *(x + 6 * ovs + 2) = v2[6]; | |
162 *(x + 6 * ovs + 3) = v3[6]; | |
163 *(x + 7 * ovs ) = v0[7]; | |
164 *(x + 7 * ovs + 1) = v1[7]; | |
165 *(x + 7 * ovs + 2) = v2[7]; | |
166 *(x + 7 * ovs + 3) = v3[7]; | |
167 } | |
168 | |
169 #else | |
170 /* FFTW_DOUBLE */ | |
171 | |
172 #define STM2 ST | |
173 #define STN2(x, v0, v1, ovs) /* nop */ | |
174 #define STM4(x, v, ovs, aligned_like) /* no-op */ | |
175 | |
176 static inline void STN4(R *x, V v0, V v1, V v2, V v3, INT ovs) { | |
177 *(x ) = v0[0]; | |
178 *(x + 1) = v1[0]; | |
179 *(x + 2) = v2[0]; | |
180 *(x + 3) = v3[0]; | |
181 *(x + ovs ) = v0[1]; | |
182 *(x + ovs + 1) = v1[1]; | |
183 *(x + ovs + 2) = v2[1]; | |
184 *(x + ovs + 3) = v3[1]; | |
185 *(x + 2 * ovs ) = v0[2]; | |
186 *(x + 2 * ovs + 1) = v1[2]; | |
187 *(x + 2 * ovs + 2) = v2[2]; | |
188 *(x + 2 * ovs + 3) = v3[2]; | |
189 *(x + 3 * ovs ) = v0[3]; | |
190 *(x + 3 * ovs + 1) = v1[3]; | |
191 *(x + 3 * ovs + 2) = v2[3]; | |
192 *(x + 3 * ovs + 3) = v3[3]; | |
193 } | |
194 #endif | |
195 | |
196 static inline V FLIP_RI(V x) | |
197 { | |
198 #ifdef FFTW_SINGLE | |
199 return (V){x[1],x[0],x[3],x[2],x[5],x[4],x[7],x[6]}; | |
200 #else | |
201 return (V){x[1],x[0],x[3],x[2]}; | |
202 #endif | |
203 } | |
204 | |
205 static inline V VCONJ(V x) | |
206 { | |
207 #ifdef FFTW_SINGLE | |
208 return (x * (V){1.0,-1.0,1.0,-1.0,1.0,-1.0,1.0,-1.0}); | |
209 #else | |
210 return (x * (V){1.0,-1.0,1.0,-1.0}); | |
211 #endif | |
212 } | |
213 | |
214 static inline V VBYI(V x) | |
215 { | |
216 return FLIP_RI(VCONJ(x)); | |
217 } | |
218 | |
219 /* FMA support */ | |
220 #define VFMA(a, b, c) VADD(c, VMUL(a, b)) | |
221 #define VFNMS(a, b, c) VSUB(c, VMUL(a, b)) | |
222 #define VFMS(a, b, c) VSUB(VMUL(a, b), c) | |
223 #define VFMAI(b, c) VADD(c, VBYI(b)) | |
224 #define VFNMSI(b, c) VSUB(c, VBYI(b)) | |
225 #define VFMACONJ(b,c) VADD(VCONJ(b),c) | |
226 #define VFMSCONJ(b,c) VSUB(VCONJ(b),c) | |
227 #define VFNMSCONJ(b,c) VSUB(c, VCONJ(b)) | |
228 | |
229 static inline V VZMUL(V tx, V sr) | |
230 { | |
231 V tr = VDUPL(tx); | |
232 V ti = VDUPH(tx); | |
233 tr = VMUL(sr, tr); | |
234 sr = VBYI(sr); | |
235 return VFMA(ti, sr, tr); | |
236 } | |
237 | |
238 static inline V VZMULJ(V tx, V sr) | |
239 { | |
240 V tr = VDUPL(tx); | |
241 V ti = VDUPH(tx); | |
242 tr = VMUL(sr, tr); | |
243 sr = VBYI(sr); | |
244 return VFNMS(ti, sr, tr); | |
245 } | |
246 | |
247 static inline V VZMULI(V tx, V sr) | |
248 { | |
249 V tr = VDUPL(tx); | |
250 V ti = VDUPH(tx); | |
251 ti = VMUL(ti, sr); | |
252 sr = VBYI(sr); | |
253 return VFMS(tr, sr, ti); | |
254 } | |
255 | |
256 static inline V VZMULIJ(V tx, V sr) | |
257 { | |
258 V tr = VDUPL(tx); | |
259 V ti = VDUPH(tx); | |
260 ti = VMUL(ti, sr); | |
261 sr = VBYI(sr); | |
262 return VFMA(tr, sr, ti); | |
263 } | |
264 | |
265 /* twiddle storage #1: compact, slower */ | |
266 #ifdef FFTW_SINGLE | |
267 # define VTW1(v,x) {TW_CEXP, v, x}, {TW_CEXP, v+1, x}, {TW_CEXP, v+2, x}, {TW_CEXP, v+3, x} | |
268 #else | |
269 # define VTW1(v,x) {TW_CEXP, v, x}, {TW_CEXP, v+1, x} | |
270 #endif | |
271 #define TWVL1 (VL) | |
272 | |
273 static inline V BYTW1(const R *t, V sr) | |
274 { | |
275 return VZMUL(LDA(t, 2, t), sr); | |
276 } | |
277 | |
278 static inline V BYTWJ1(const R *t, V sr) | |
279 { | |
280 return VZMULJ(LDA(t, 2, t), sr); | |
281 } | |
282 | |
283 /* twiddle storage #2: twice the space, faster (when in cache) */ | |
284 #ifdef FFTW_SINGLE | |
285 # define VTW2(v,x) \ | |
286 {TW_COS, v, x}, {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+1, x}, \ | |
287 {TW_COS, v+2, x}, {TW_COS, v+2, x}, {TW_COS, v+3, x}, {TW_COS, v+3, x}, \ | |
288 {TW_SIN, v, -x}, {TW_SIN, v, x}, {TW_SIN, v+1, -x}, {TW_SIN, v+1, x}, \ | |
289 {TW_SIN, v+2, -x}, {TW_SIN, v+2, x}, {TW_SIN, v+3, -x}, {TW_SIN, v+3, x} | |
290 #else | |
291 # define VTW2(v,x) \ | |
292 {TW_COS, v, x}, {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+1, x}, \ | |
293 {TW_SIN, v, -x}, {TW_SIN, v, x}, {TW_SIN, v+1, -x}, {TW_SIN, v+1, x} | |
294 #endif | |
295 #define TWVL2 (2 * VL) | |
296 | |
297 static inline V BYTW2(const R *t, V sr) | |
298 { | |
299 const V *twp = (const V *)t; | |
300 V si = FLIP_RI(sr); | |
301 V tr = twp[0], ti = twp[1]; | |
302 return VFMA(tr, sr, VMUL(ti, si)); | |
303 } | |
304 | |
305 static inline V BYTWJ2(const R *t, V sr) | |
306 { | |
307 const V *twp = (const V *)t; | |
308 V si = FLIP_RI(sr); | |
309 V tr = twp[0], ti = twp[1]; | |
310 return VFNMS(ti, si, VMUL(tr, sr)); | |
311 } | |
312 | |
313 /* twiddle storage #3 */ | |
314 #define VTW3 VTW1 | |
315 #define TWVL3 TWVL1 | |
316 | |
317 /* twiddle storage for split arrays */ | |
318 #ifdef FFTW_SINGLE | |
319 # define VTWS(v,x) \ | |
320 {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+2, x}, {TW_COS, v+3, x}, \ | |
321 {TW_COS, v+4, x}, {TW_COS, v+5, x}, {TW_COS, v+6, x}, {TW_COS, v+7, x}, \ | |
322 {TW_SIN, v, x}, {TW_SIN, v+1, x}, {TW_SIN, v+2, x}, {TW_SIN, v+3, x}, \ | |
323 {TW_SIN, v+4, x}, {TW_SIN, v+5, x}, {TW_SIN, v+6, x}, {TW_SIN, v+7, x} | |
324 #else | |
325 # define VTWS(v,x) \ | |
326 {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+2, x}, {TW_COS, v+3, x}, \ | |
327 {TW_SIN, v, x}, {TW_SIN, v+1, x}, {TW_SIN, v+2, x}, {TW_SIN, v+3, x} | |
328 #endif | |
329 #define TWVLS (2 * VL) | |
330 | |
331 #define VLEAVE() /* nothing */ | |
332 | |
333 #include "simd-common.h" |