comparison src/fftw-3.3.5/genfft/util.ml @ 127:7867fa7e1b6b

Current fftw source
author Chris Cannam <cannam@all-day-breakfast.com>
date Tue, 18 Oct 2016 13:40:26 +0100
parents
children
comparison
equal deleted inserted replaced
126:4a7071416412 127:7867fa7e1b6b
1 (*
2 * Copyright (c) 1997-1999 Massachusetts Institute of Technology
3 * Copyright (c) 2003, 2007-14 Matteo Frigo
4 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19 *
20 *)
21
22 (* various utility functions *)
23 open List
24 open Unix
25
26 (*****************************************
27 * Integer operations
28 *****************************************)
29 (* fint the inverse of n modulo m *)
30 let invmod n m =
31 let rec loop i =
32 if ((i * n) mod m == 1) then i
33 else loop (i + 1)
34 in
35 loop 1
36
37 (* Yooklid's algorithm *)
38 let rec gcd n m =
39 if (n > m)
40 then gcd m n
41 else
42 let r = m mod n
43 in
44 if (r == 0) then n
45 else gcd r n
46
47 (* reduce the fraction m/n to lowest terms, modulo factors of n/n *)
48 let lowest_terms n m =
49 if (m mod n == 0) then
50 (1,0)
51 else
52 let nn = (abs n) in let mm = m * (n / nn)
53 in let mpos =
54 if (mm > 0) then (mm mod nn)
55 else (mm + (1 + (abs mm) / nn) * nn) mod nn
56 and d = gcd nn (abs mm)
57 in (nn / d, mpos / d)
58
59 (* find a generator for the multiplicative group mod p
60 (where p must be prime for a generator to exist!!) *)
61
62 exception No_Generator
63
64 let find_generator p =
65 let rec period x prod =
66 if (prod == 1) then 1
67 else 1 + (period x (prod * x mod p))
68 in let rec findgen x =
69 if (x == 0) then raise No_Generator
70 else if ((period x x) == (p - 1)) then x
71 else findgen ((x + 1) mod p)
72 in findgen 1
73
74 (* raise x to a power n modulo p (requires n > 0) (in principle,
75 negative powers would be fine, provided that x and p are relatively
76 prime...we don't need this functionality, though) *)
77
78 exception Negative_Power
79
80 let rec pow_mod x n p =
81 if (n == 0) then 1
82 else if (n < 0) then raise Negative_Power
83 else if (n mod 2 == 0) then pow_mod (x * x mod p) (n / 2) p
84 else x * (pow_mod x (n - 1) p) mod p
85
86 (******************************************
87 * auxiliary functions
88 ******************************************)
89 let rec forall id combiner a b f =
90 if (a >= b) then id
91 else combiner (f a) (forall id combiner (a + 1) b f)
92
93 let sum_list l = fold_right (+) l 0
94 let max_list l = fold_right (max) l (-999999)
95 let min_list l = fold_right (min) l 999999
96 let count pred = fold_left
97 (fun a elem -> if (pred elem) then 1 + a else a) 0
98 let remove elem = List.filter (fun e -> (e != elem))
99 let cons a b = a :: b
100 let null = function
101 [] -> true
102 | _ -> false
103 let for_list l f = List.iter f l
104 let rmap l f = List.map f l
105
106 (* functional composition *)
107 let (@@) f g x = f (g x)
108
109 let forall_flat a b = forall [] (@) a b
110
111 let identity x = x
112
113 let rec minimize f = function
114 [] -> None
115 | elem :: rest ->
116 match minimize f rest with
117 None -> Some elem
118 | Some x -> if (f x) >= (f elem) then Some elem else Some x
119
120
121 let rec find_elem condition = function
122 [] -> None
123 | elem :: rest ->
124 if condition elem then
125 Some elem
126 else
127 find_elem condition rest
128
129
130 (* find x, x >= a, such that (p x) is true *)
131 let rec suchthat a pred =
132 if (pred a) then a else suchthat (a + 1) pred
133
134 (* print an information message *)
135 let info string =
136 if !Magic.verbose then begin
137 let now = Unix.times ()
138 and pid = Unix.getpid () in
139 prerr_string ((string_of_int pid) ^ ": " ^
140 "at t = " ^ (string_of_float now.tms_utime) ^ " : ");
141 prerr_string (string ^ "\n");
142 flush Pervasives.stderr;
143 end
144
145 (* iota n produces the list [0; 1; ...; n - 1] *)
146 let iota n = forall [] cons 0 n identity
147
148 (* interval a b produces the list [a; 1; ...; b - 1] *)
149 let interval a b = List.map ((+) a) (iota (b - a))
150
151 (*
152 * freeze a function, i.e., compute it only once on demand, and
153 * cache it into an array.
154 *)
155 let array n f =
156 let a = Array.init n (fun i -> lazy (f i))
157 in fun i -> Lazy.force a.(i)
158
159
160 let rec take n l =
161 match (n, l) with
162 (0, _) -> []
163 | (n, (a :: b)) -> a :: (take (n - 1) b)
164 | _ -> failwith "take"
165
166 let rec drop n l =
167 match (n, l) with
168 (0, _) -> l
169 | (n, (_ :: b)) -> drop (n - 1) b
170 | _ -> failwith "drop"
171
172
173 let either a b =
174 match a with
175 Some x -> x
176 | _ -> b