comparison src/fftw-3.3.5/genfft/trig.ml @ 127:7867fa7e1b6b

Current fftw source
author Chris Cannam <cannam@all-day-breakfast.com>
date Tue, 18 Oct 2016 13:40:26 +0100
parents
children
comparison
equal deleted inserted replaced
126:4a7071416412 127:7867fa7e1b6b
1 (*
2 * Copyright (c) 1997-1999 Massachusetts Institute of Technology
3 * Copyright (c) 2003, 2007-14 Matteo Frigo
4 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19 *
20 *)
21
22 (* trigonometric transforms *)
23 open Util
24
25 (* DFT of real input *)
26 let rdft sign n input =
27 Fft.dft sign n (Complex.real @@ input)
28
29 (* DFT of hermitian input *)
30 let hdft sign n input =
31 Fft.dft sign n (Complex.hermitian n input)
32
33 (* DFT real transform of vectors of two real numbers,
34 multiplication by (NaN I), and summation *)
35 let dft_via_rdft sign n input =
36 let f = rdft sign n input
37 in fun i ->
38 Complex.plus
39 [Complex.real (f i);
40 Complex.times (Complex.nan Expr.I) (Complex.imag (f i))]
41
42 (* Discrete Hartley Transform *)
43 let dht sign n input =
44 let f = Fft.dft sign n (Complex.real @@ input) in
45 (fun i ->
46 Complex.plus [Complex.real (f i); Complex.imag (f i)])
47
48 let trigI n input =
49 let twon = 2 * n in
50 let input' = Complex.hermitian twon input
51 in
52 Fft.dft 1 twon input'
53
54 let interleave_zero input = fun i ->
55 if (i mod 2) == 0
56 then Complex.zero
57 else
58 input ((i - 1) / 2)
59
60 let trigII n input =
61 let fourn = 4 * n in
62 let input' = Complex.hermitian fourn (interleave_zero input)
63 in
64 Fft.dft 1 fourn input'
65
66 let trigIII n input =
67 let fourn = 4 * n in
68 let twon = 2 * n in
69 let input' = Complex.hermitian fourn
70 (fun i ->
71 if (i == 0) then
72 Complex.real (input 0)
73 else if (i == twon) then
74 Complex.uminus (Complex.real (input 0))
75 else
76 Complex.antihermitian twon input i)
77 in
78 let dft = Fft.dft 1 fourn input'
79 in fun k -> dft (2 * k + 1)
80
81 let zero_extend n input = fun i ->
82 if (i >= 0 && i < n)
83 then input i
84 else Complex.zero
85
86 let trigIV n input =
87 let fourn = 4 * n
88 and eightn = 8 * n in
89 let input' = Complex.hermitian eightn
90 (zero_extend fourn (Complex.antihermitian fourn
91 (interleave_zero input)))
92 in
93 let dft = Fft.dft 1 eightn input'
94 in fun k -> dft (2 * k + 1)
95
96 let make_dct scale nshift trig =
97 fun n input ->
98 trig (n - nshift) (Complex.real @@ (Complex.times scale) @@
99 (zero_extend n input))
100 (*
101 * DCT-I: y[k] = sum x[j] cos(pi * j * k / n)
102 *)
103 let dctI = make_dct Complex.one 1 trigI
104
105 (*
106 * DCT-II: y[k] = sum x[j] cos(pi * (j + 1/2) * k / n)
107 *)
108 let dctII = make_dct Complex.one 0 trigII
109
110 (*
111 * DCT-III: y[k] = sum x[j] cos(pi * j * (k + 1/2) / n)
112 *)
113 let dctIII = make_dct Complex.half 0 trigIII
114
115 (*
116 * DCT-IV y[k] = sum x[j] cos(pi * (j + 1/2) * (k + 1/2) / n)
117 *)
118 let dctIV = make_dct Complex.half 0 trigIV
119
120 let shift s input = fun i -> input (i - s)
121
122 (* DST-x input := TRIG-x (input / i) *)
123 let make_dst scale nshift kshift jshift trig =
124 fun n input ->
125 Complex.real @@
126 (shift (- jshift)
127 (trig (n + nshift) (Complex.uminus @@
128 (Complex.times Complex.i) @@
129 (Complex.times scale) @@
130 Complex.real @@
131 (shift kshift (zero_extend n input)))))
132
133 (*
134 * DST-I: y[k] = sum x[j] sin(pi * j * k / n)
135 *)
136 let dstI = make_dst Complex.one 1 1 1 trigI
137
138 (*
139 * DST-II: y[k] = sum x[j] sin(pi * (j + 1/2) * k / n)
140 *)
141 let dstII = make_dst Complex.one 0 0 1 trigII
142
143 (*
144 * DST-III: y[k] = sum x[j] sin(pi * j * (k + 1/2) / n)
145 *)
146 let dstIII = make_dst Complex.half 0 1 0 trigIII
147
148 (*
149 * DST-IV y[k] = sum x[j] sin(pi * (j + 1/2) * (k + 1/2) / n)
150 *)
151 let dstIV = make_dst Complex.half 0 0 0 trigIV
152