comparison src/fftw-3.3.5/doc/html/The-1d-Real_002ddata-DFT.html @ 127:7867fa7e1b6b

Current fftw source
author Chris Cannam <cannam@all-day-breakfast.com>
date Tue, 18 Oct 2016 13:40:26 +0100
parents
children
comparison
equal deleted inserted replaced
126:4a7071416412 127:7867fa7e1b6b
1 <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
2 <html>
3 <!-- This manual is for FFTW
4 (version 3.3.5, 30 July 2016).
5
6 Copyright (C) 2003 Matteo Frigo.
7
8 Copyright (C) 2003 Massachusetts Institute of Technology.
9
10 Permission is granted to make and distribute verbatim copies of this
11 manual provided the copyright notice and this permission notice are
12 preserved on all copies.
13
14 Permission is granted to copy and distribute modified versions of this
15 manual under the conditions for verbatim copying, provided that the
16 entire resulting derived work is distributed under the terms of a
17 permission notice identical to this one.
18
19 Permission is granted to copy and distribute translations of this manual
20 into another language, under the above conditions for modified versions,
21 except that this permission notice may be stated in a translation
22 approved by the Free Software Foundation. -->
23 <!-- Created by GNU Texinfo 5.2, http://www.gnu.org/software/texinfo/ -->
24 <head>
25 <title>FFTW 3.3.5: The 1d Real-data DFT</title>
26
27 <meta name="description" content="FFTW 3.3.5: The 1d Real-data DFT">
28 <meta name="keywords" content="FFTW 3.3.5: The 1d Real-data DFT">
29 <meta name="resource-type" content="document">
30 <meta name="distribution" content="global">
31 <meta name="Generator" content="makeinfo">
32 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
33 <link href="index.html#Top" rel="start" title="Top">
34 <link href="Concept-Index.html#Concept-Index" rel="index" title="Concept Index">
35 <link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
36 <link href="What-FFTW-Really-Computes.html#What-FFTW-Really-Computes" rel="up" title="What FFTW Really Computes">
37 <link href="1d-Real_002deven-DFTs-_0028DCTs_0029.html#g_t1d-Real_002deven-DFTs-_0028DCTs_0029" rel="next" title="1d Real-even DFTs (DCTs)">
38 <link href="The-1d-Discrete-Fourier-Transform-_0028DFT_0029.html#The-1d-Discrete-Fourier-Transform-_0028DFT_0029" rel="prev" title="The 1d Discrete Fourier Transform (DFT)">
39 <style type="text/css">
40 <!--
41 a.summary-letter {text-decoration: none}
42 blockquote.smallquotation {font-size: smaller}
43 div.display {margin-left: 3.2em}
44 div.example {margin-left: 3.2em}
45 div.indentedblock {margin-left: 3.2em}
46 div.lisp {margin-left: 3.2em}
47 div.smalldisplay {margin-left: 3.2em}
48 div.smallexample {margin-left: 3.2em}
49 div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
50 div.smalllisp {margin-left: 3.2em}
51 kbd {font-style:oblique}
52 pre.display {font-family: inherit}
53 pre.format {font-family: inherit}
54 pre.menu-comment {font-family: serif}
55 pre.menu-preformatted {font-family: serif}
56 pre.smalldisplay {font-family: inherit; font-size: smaller}
57 pre.smallexample {font-size: smaller}
58 pre.smallformat {font-family: inherit; font-size: smaller}
59 pre.smalllisp {font-size: smaller}
60 span.nocodebreak {white-space:nowrap}
61 span.nolinebreak {white-space:nowrap}
62 span.roman {font-family:serif; font-weight:normal}
63 span.sansserif {font-family:sans-serif; font-weight:normal}
64 ul.no-bullet {list-style: none}
65 -->
66 </style>
67
68
69 </head>
70
71 <body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
72 <a name="The-1d-Real_002ddata-DFT"></a>
73 <div class="header">
74 <p>
75 Next: <a href="1d-Real_002deven-DFTs-_0028DCTs_0029.html#g_t1d-Real_002deven-DFTs-_0028DCTs_0029" accesskey="n" rel="next">1d Real-even DFTs (DCTs)</a>, Previous: <a href="The-1d-Discrete-Fourier-Transform-_0028DFT_0029.html#The-1d-Discrete-Fourier-Transform-_0028DFT_0029" accesskey="p" rel="prev">The 1d Discrete Fourier Transform (DFT)</a>, Up: <a href="What-FFTW-Really-Computes.html#What-FFTW-Really-Computes" accesskey="u" rel="up">What FFTW Really Computes</a> &nbsp; [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
76 </div>
77 <hr>
78 <a name="The-1d-Real_002ddata-DFT-1"></a>
79 <h4 class="subsection">4.8.2 The 1d Real-data DFT</h4>
80
81 <p>The real-input (r2c) DFT in FFTW computes the <em>forward</em> transform
82 <em>Y</em> of the size <code>n</code> real array <em>X</em>, exactly as defined
83 above, i.e.
84 <center><img src="equation-dft.png" align="top">.</center>This output array <em>Y</em> can easily be shown to possess the
85 &ldquo;Hermitian&rdquo; symmetry
86 <a name="index-Hermitian-1"></a>
87 <i>Y<sub>k</sub> = Y<sub>n-k</sub></i><sup>*</sup>,where we take <em>Y</em> to be periodic so that
88 <i>Y<sub>n</sub> = Y</i><sub>0</sub>.</p>
89 <p>As a result of this symmetry, half of the output <em>Y</em> is redundant
90 (being the complex conjugate of the other half), and so the 1d r2c
91 transforms only output elements <em>0</em>&hellip;<em>n/2</em> of <em>Y</em>
92 (<em>n/2+1</em> complex numbers), where the division by <em>2</em> is
93 rounded down.
94 </p>
95 <p>Moreover, the Hermitian symmetry implies that
96 <i>Y</i><sub>0</sub>and, if <em>n</em> is even, the
97 <i>Y</i><sub><i>n</i>/2</sub>element, are purely real. So, for the <code>R2HC</code> r2r transform, the
98 halfcomplex format does not store the imaginary parts of these elements.
99 <a name="index-r2r-2"></a>
100 <a name="index-R2HC"></a>
101 <a name="index-halfcomplex-format-2"></a>
102 </p>
103
104 <p>The c2r and <code>H2RC</code> r2r transforms compute the backward DFT of the
105 <em>complex</em> array <em>X</em> with Hermitian symmetry, stored in the
106 r2c/<code>R2HC</code> output formats, respectively, where the backward
107 transform is defined exactly as for the complex case:
108 <center><img src="equation-idft.png" align="top">.</center>The outputs <code>Y</code> of this transform can easily be seen to be purely
109 real, and are stored as an array of real numbers.
110 </p>
111 <a name="index-normalization-9"></a>
112 <p>Like FFTW&rsquo;s complex DFT, these transforms are unnormalized. In other
113 words, applying the real-to-complex (forward) and then the
114 complex-to-real (backward) transform will multiply the input by
115 <em>n</em>.
116 </p>
117
118
119
120 </body>
121 </html>