Mercurial > hg > sv-dependency-builds
comparison src/zlib-1.2.8/trees.c @ 43:5ea0608b923f
Current zlib source
author | Chris Cannam |
---|---|
date | Tue, 18 Oct 2016 14:33:52 +0100 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
42:2cd0e3b3e1fd | 43:5ea0608b923f |
---|---|
1 /* trees.c -- output deflated data using Huffman coding | |
2 * Copyright (C) 1995-2012 Jean-loup Gailly | |
3 * detect_data_type() function provided freely by Cosmin Truta, 2006 | |
4 * For conditions of distribution and use, see copyright notice in zlib.h | |
5 */ | |
6 | |
7 /* | |
8 * ALGORITHM | |
9 * | |
10 * The "deflation" process uses several Huffman trees. The more | |
11 * common source values are represented by shorter bit sequences. | |
12 * | |
13 * Each code tree is stored in a compressed form which is itself | |
14 * a Huffman encoding of the lengths of all the code strings (in | |
15 * ascending order by source values). The actual code strings are | |
16 * reconstructed from the lengths in the inflate process, as described | |
17 * in the deflate specification. | |
18 * | |
19 * REFERENCES | |
20 * | |
21 * Deutsch, L.P.,"'Deflate' Compressed Data Format Specification". | |
22 * Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc | |
23 * | |
24 * Storer, James A. | |
25 * Data Compression: Methods and Theory, pp. 49-50. | |
26 * Computer Science Press, 1988. ISBN 0-7167-8156-5. | |
27 * | |
28 * Sedgewick, R. | |
29 * Algorithms, p290. | |
30 * Addison-Wesley, 1983. ISBN 0-201-06672-6. | |
31 */ | |
32 | |
33 /* @(#) $Id$ */ | |
34 | |
35 /* #define GEN_TREES_H */ | |
36 | |
37 #include "deflate.h" | |
38 | |
39 #ifdef DEBUG | |
40 # include <ctype.h> | |
41 #endif | |
42 | |
43 /* =========================================================================== | |
44 * Constants | |
45 */ | |
46 | |
47 #define MAX_BL_BITS 7 | |
48 /* Bit length codes must not exceed MAX_BL_BITS bits */ | |
49 | |
50 #define END_BLOCK 256 | |
51 /* end of block literal code */ | |
52 | |
53 #define REP_3_6 16 | |
54 /* repeat previous bit length 3-6 times (2 bits of repeat count) */ | |
55 | |
56 #define REPZ_3_10 17 | |
57 /* repeat a zero length 3-10 times (3 bits of repeat count) */ | |
58 | |
59 #define REPZ_11_138 18 | |
60 /* repeat a zero length 11-138 times (7 bits of repeat count) */ | |
61 | |
62 local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */ | |
63 = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0}; | |
64 | |
65 local const int extra_dbits[D_CODES] /* extra bits for each distance code */ | |
66 = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13}; | |
67 | |
68 local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */ | |
69 = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7}; | |
70 | |
71 local const uch bl_order[BL_CODES] | |
72 = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15}; | |
73 /* The lengths of the bit length codes are sent in order of decreasing | |
74 * probability, to avoid transmitting the lengths for unused bit length codes. | |
75 */ | |
76 | |
77 /* =========================================================================== | |
78 * Local data. These are initialized only once. | |
79 */ | |
80 | |
81 #define DIST_CODE_LEN 512 /* see definition of array dist_code below */ | |
82 | |
83 #if defined(GEN_TREES_H) || !defined(STDC) | |
84 /* non ANSI compilers may not accept trees.h */ | |
85 | |
86 local ct_data static_ltree[L_CODES+2]; | |
87 /* The static literal tree. Since the bit lengths are imposed, there is no | |
88 * need for the L_CODES extra codes used during heap construction. However | |
89 * The codes 286 and 287 are needed to build a canonical tree (see _tr_init | |
90 * below). | |
91 */ | |
92 | |
93 local ct_data static_dtree[D_CODES]; | |
94 /* The static distance tree. (Actually a trivial tree since all codes use | |
95 * 5 bits.) | |
96 */ | |
97 | |
98 uch _dist_code[DIST_CODE_LEN]; | |
99 /* Distance codes. The first 256 values correspond to the distances | |
100 * 3 .. 258, the last 256 values correspond to the top 8 bits of | |
101 * the 15 bit distances. | |
102 */ | |
103 | |
104 uch _length_code[MAX_MATCH-MIN_MATCH+1]; | |
105 /* length code for each normalized match length (0 == MIN_MATCH) */ | |
106 | |
107 local int base_length[LENGTH_CODES]; | |
108 /* First normalized length for each code (0 = MIN_MATCH) */ | |
109 | |
110 local int base_dist[D_CODES]; | |
111 /* First normalized distance for each code (0 = distance of 1) */ | |
112 | |
113 #else | |
114 # include "trees.h" | |
115 #endif /* GEN_TREES_H */ | |
116 | |
117 struct static_tree_desc_s { | |
118 const ct_data *static_tree; /* static tree or NULL */ | |
119 const intf *extra_bits; /* extra bits for each code or NULL */ | |
120 int extra_base; /* base index for extra_bits */ | |
121 int elems; /* max number of elements in the tree */ | |
122 int max_length; /* max bit length for the codes */ | |
123 }; | |
124 | |
125 local static_tree_desc static_l_desc = | |
126 {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS}; | |
127 | |
128 local static_tree_desc static_d_desc = | |
129 {static_dtree, extra_dbits, 0, D_CODES, MAX_BITS}; | |
130 | |
131 local static_tree_desc static_bl_desc = | |
132 {(const ct_data *)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS}; | |
133 | |
134 /* =========================================================================== | |
135 * Local (static) routines in this file. | |
136 */ | |
137 | |
138 local void tr_static_init OF((void)); | |
139 local void init_block OF((deflate_state *s)); | |
140 local void pqdownheap OF((deflate_state *s, ct_data *tree, int k)); | |
141 local void gen_bitlen OF((deflate_state *s, tree_desc *desc)); | |
142 local void gen_codes OF((ct_data *tree, int max_code, ushf *bl_count)); | |
143 local void build_tree OF((deflate_state *s, tree_desc *desc)); | |
144 local void scan_tree OF((deflate_state *s, ct_data *tree, int max_code)); | |
145 local void send_tree OF((deflate_state *s, ct_data *tree, int max_code)); | |
146 local int build_bl_tree OF((deflate_state *s)); | |
147 local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes, | |
148 int blcodes)); | |
149 local void compress_block OF((deflate_state *s, const ct_data *ltree, | |
150 const ct_data *dtree)); | |
151 local int detect_data_type OF((deflate_state *s)); | |
152 local unsigned bi_reverse OF((unsigned value, int length)); | |
153 local void bi_windup OF((deflate_state *s)); | |
154 local void bi_flush OF((deflate_state *s)); | |
155 local void copy_block OF((deflate_state *s, charf *buf, unsigned len, | |
156 int header)); | |
157 | |
158 #ifdef GEN_TREES_H | |
159 local void gen_trees_header OF((void)); | |
160 #endif | |
161 | |
162 #ifndef DEBUG | |
163 # define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len) | |
164 /* Send a code of the given tree. c and tree must not have side effects */ | |
165 | |
166 #else /* DEBUG */ | |
167 # define send_code(s, c, tree) \ | |
168 { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \ | |
169 send_bits(s, tree[c].Code, tree[c].Len); } | |
170 #endif | |
171 | |
172 /* =========================================================================== | |
173 * Output a short LSB first on the stream. | |
174 * IN assertion: there is enough room in pendingBuf. | |
175 */ | |
176 #define put_short(s, w) { \ | |
177 put_byte(s, (uch)((w) & 0xff)); \ | |
178 put_byte(s, (uch)((ush)(w) >> 8)); \ | |
179 } | |
180 | |
181 /* =========================================================================== | |
182 * Send a value on a given number of bits. | |
183 * IN assertion: length <= 16 and value fits in length bits. | |
184 */ | |
185 #ifdef DEBUG | |
186 local void send_bits OF((deflate_state *s, int value, int length)); | |
187 | |
188 local void send_bits(s, value, length) | |
189 deflate_state *s; | |
190 int value; /* value to send */ | |
191 int length; /* number of bits */ | |
192 { | |
193 Tracevv((stderr," l %2d v %4x ", length, value)); | |
194 Assert(length > 0 && length <= 15, "invalid length"); | |
195 s->bits_sent += (ulg)length; | |
196 | |
197 /* If not enough room in bi_buf, use (valid) bits from bi_buf and | |
198 * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid)) | |
199 * unused bits in value. | |
200 */ | |
201 if (s->bi_valid > (int)Buf_size - length) { | |
202 s->bi_buf |= (ush)value << s->bi_valid; | |
203 put_short(s, s->bi_buf); | |
204 s->bi_buf = (ush)value >> (Buf_size - s->bi_valid); | |
205 s->bi_valid += length - Buf_size; | |
206 } else { | |
207 s->bi_buf |= (ush)value << s->bi_valid; | |
208 s->bi_valid += length; | |
209 } | |
210 } | |
211 #else /* !DEBUG */ | |
212 | |
213 #define send_bits(s, value, length) \ | |
214 { int len = length;\ | |
215 if (s->bi_valid > (int)Buf_size - len) {\ | |
216 int val = value;\ | |
217 s->bi_buf |= (ush)val << s->bi_valid;\ | |
218 put_short(s, s->bi_buf);\ | |
219 s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\ | |
220 s->bi_valid += len - Buf_size;\ | |
221 } else {\ | |
222 s->bi_buf |= (ush)(value) << s->bi_valid;\ | |
223 s->bi_valid += len;\ | |
224 }\ | |
225 } | |
226 #endif /* DEBUG */ | |
227 | |
228 | |
229 /* the arguments must not have side effects */ | |
230 | |
231 /* =========================================================================== | |
232 * Initialize the various 'constant' tables. | |
233 */ | |
234 local void tr_static_init() | |
235 { | |
236 #if defined(GEN_TREES_H) || !defined(STDC) | |
237 static int static_init_done = 0; | |
238 int n; /* iterates over tree elements */ | |
239 int bits; /* bit counter */ | |
240 int length; /* length value */ | |
241 int code; /* code value */ | |
242 int dist; /* distance index */ | |
243 ush bl_count[MAX_BITS+1]; | |
244 /* number of codes at each bit length for an optimal tree */ | |
245 | |
246 if (static_init_done) return; | |
247 | |
248 /* For some embedded targets, global variables are not initialized: */ | |
249 #ifdef NO_INIT_GLOBAL_POINTERS | |
250 static_l_desc.static_tree = static_ltree; | |
251 static_l_desc.extra_bits = extra_lbits; | |
252 static_d_desc.static_tree = static_dtree; | |
253 static_d_desc.extra_bits = extra_dbits; | |
254 static_bl_desc.extra_bits = extra_blbits; | |
255 #endif | |
256 | |
257 /* Initialize the mapping length (0..255) -> length code (0..28) */ | |
258 length = 0; | |
259 for (code = 0; code < LENGTH_CODES-1; code++) { | |
260 base_length[code] = length; | |
261 for (n = 0; n < (1<<extra_lbits[code]); n++) { | |
262 _length_code[length++] = (uch)code; | |
263 } | |
264 } | |
265 Assert (length == 256, "tr_static_init: length != 256"); | |
266 /* Note that the length 255 (match length 258) can be represented | |
267 * in two different ways: code 284 + 5 bits or code 285, so we | |
268 * overwrite length_code[255] to use the best encoding: | |
269 */ | |
270 _length_code[length-1] = (uch)code; | |
271 | |
272 /* Initialize the mapping dist (0..32K) -> dist code (0..29) */ | |
273 dist = 0; | |
274 for (code = 0 ; code < 16; code++) { | |
275 base_dist[code] = dist; | |
276 for (n = 0; n < (1<<extra_dbits[code]); n++) { | |
277 _dist_code[dist++] = (uch)code; | |
278 } | |
279 } | |
280 Assert (dist == 256, "tr_static_init: dist != 256"); | |
281 dist >>= 7; /* from now on, all distances are divided by 128 */ | |
282 for ( ; code < D_CODES; code++) { | |
283 base_dist[code] = dist << 7; | |
284 for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) { | |
285 _dist_code[256 + dist++] = (uch)code; | |
286 } | |
287 } | |
288 Assert (dist == 256, "tr_static_init: 256+dist != 512"); | |
289 | |
290 /* Construct the codes of the static literal tree */ | |
291 for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0; | |
292 n = 0; | |
293 while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++; | |
294 while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++; | |
295 while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++; | |
296 while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++; | |
297 /* Codes 286 and 287 do not exist, but we must include them in the | |
298 * tree construction to get a canonical Huffman tree (longest code | |
299 * all ones) | |
300 */ | |
301 gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count); | |
302 | |
303 /* The static distance tree is trivial: */ | |
304 for (n = 0; n < D_CODES; n++) { | |
305 static_dtree[n].Len = 5; | |
306 static_dtree[n].Code = bi_reverse((unsigned)n, 5); | |
307 } | |
308 static_init_done = 1; | |
309 | |
310 # ifdef GEN_TREES_H | |
311 gen_trees_header(); | |
312 # endif | |
313 #endif /* defined(GEN_TREES_H) || !defined(STDC) */ | |
314 } | |
315 | |
316 /* =========================================================================== | |
317 * Genererate the file trees.h describing the static trees. | |
318 */ | |
319 #ifdef GEN_TREES_H | |
320 # ifndef DEBUG | |
321 # include <stdio.h> | |
322 # endif | |
323 | |
324 # define SEPARATOR(i, last, width) \ | |
325 ((i) == (last)? "\n};\n\n" : \ | |
326 ((i) % (width) == (width)-1 ? ",\n" : ", ")) | |
327 | |
328 void gen_trees_header() | |
329 { | |
330 FILE *header = fopen("trees.h", "w"); | |
331 int i; | |
332 | |
333 Assert (header != NULL, "Can't open trees.h"); | |
334 fprintf(header, | |
335 "/* header created automatically with -DGEN_TREES_H */\n\n"); | |
336 | |
337 fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n"); | |
338 for (i = 0; i < L_CODES+2; i++) { | |
339 fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code, | |
340 static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5)); | |
341 } | |
342 | |
343 fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n"); | |
344 for (i = 0; i < D_CODES; i++) { | |
345 fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code, | |
346 static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5)); | |
347 } | |
348 | |
349 fprintf(header, "const uch ZLIB_INTERNAL _dist_code[DIST_CODE_LEN] = {\n"); | |
350 for (i = 0; i < DIST_CODE_LEN; i++) { | |
351 fprintf(header, "%2u%s", _dist_code[i], | |
352 SEPARATOR(i, DIST_CODE_LEN-1, 20)); | |
353 } | |
354 | |
355 fprintf(header, | |
356 "const uch ZLIB_INTERNAL _length_code[MAX_MATCH-MIN_MATCH+1]= {\n"); | |
357 for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) { | |
358 fprintf(header, "%2u%s", _length_code[i], | |
359 SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20)); | |
360 } | |
361 | |
362 fprintf(header, "local const int base_length[LENGTH_CODES] = {\n"); | |
363 for (i = 0; i < LENGTH_CODES; i++) { | |
364 fprintf(header, "%1u%s", base_length[i], | |
365 SEPARATOR(i, LENGTH_CODES-1, 20)); | |
366 } | |
367 | |
368 fprintf(header, "local const int base_dist[D_CODES] = {\n"); | |
369 for (i = 0; i < D_CODES; i++) { | |
370 fprintf(header, "%5u%s", base_dist[i], | |
371 SEPARATOR(i, D_CODES-1, 10)); | |
372 } | |
373 | |
374 fclose(header); | |
375 } | |
376 #endif /* GEN_TREES_H */ | |
377 | |
378 /* =========================================================================== | |
379 * Initialize the tree data structures for a new zlib stream. | |
380 */ | |
381 void ZLIB_INTERNAL _tr_init(s) | |
382 deflate_state *s; | |
383 { | |
384 tr_static_init(); | |
385 | |
386 s->l_desc.dyn_tree = s->dyn_ltree; | |
387 s->l_desc.stat_desc = &static_l_desc; | |
388 | |
389 s->d_desc.dyn_tree = s->dyn_dtree; | |
390 s->d_desc.stat_desc = &static_d_desc; | |
391 | |
392 s->bl_desc.dyn_tree = s->bl_tree; | |
393 s->bl_desc.stat_desc = &static_bl_desc; | |
394 | |
395 s->bi_buf = 0; | |
396 s->bi_valid = 0; | |
397 #ifdef DEBUG | |
398 s->compressed_len = 0L; | |
399 s->bits_sent = 0L; | |
400 #endif | |
401 | |
402 /* Initialize the first block of the first file: */ | |
403 init_block(s); | |
404 } | |
405 | |
406 /* =========================================================================== | |
407 * Initialize a new block. | |
408 */ | |
409 local void init_block(s) | |
410 deflate_state *s; | |
411 { | |
412 int n; /* iterates over tree elements */ | |
413 | |
414 /* Initialize the trees. */ | |
415 for (n = 0; n < L_CODES; n++) s->dyn_ltree[n].Freq = 0; | |
416 for (n = 0; n < D_CODES; n++) s->dyn_dtree[n].Freq = 0; | |
417 for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0; | |
418 | |
419 s->dyn_ltree[END_BLOCK].Freq = 1; | |
420 s->opt_len = s->static_len = 0L; | |
421 s->last_lit = s->matches = 0; | |
422 } | |
423 | |
424 #define SMALLEST 1 | |
425 /* Index within the heap array of least frequent node in the Huffman tree */ | |
426 | |
427 | |
428 /* =========================================================================== | |
429 * Remove the smallest element from the heap and recreate the heap with | |
430 * one less element. Updates heap and heap_len. | |
431 */ | |
432 #define pqremove(s, tree, top) \ | |
433 {\ | |
434 top = s->heap[SMALLEST]; \ | |
435 s->heap[SMALLEST] = s->heap[s->heap_len--]; \ | |
436 pqdownheap(s, tree, SMALLEST); \ | |
437 } | |
438 | |
439 /* =========================================================================== | |
440 * Compares to subtrees, using the tree depth as tie breaker when | |
441 * the subtrees have equal frequency. This minimizes the worst case length. | |
442 */ | |
443 #define smaller(tree, n, m, depth) \ | |
444 (tree[n].Freq < tree[m].Freq || \ | |
445 (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m])) | |
446 | |
447 /* =========================================================================== | |
448 * Restore the heap property by moving down the tree starting at node k, | |
449 * exchanging a node with the smallest of its two sons if necessary, stopping | |
450 * when the heap property is re-established (each father smaller than its | |
451 * two sons). | |
452 */ | |
453 local void pqdownheap(s, tree, k) | |
454 deflate_state *s; | |
455 ct_data *tree; /* the tree to restore */ | |
456 int k; /* node to move down */ | |
457 { | |
458 int v = s->heap[k]; | |
459 int j = k << 1; /* left son of k */ | |
460 while (j <= s->heap_len) { | |
461 /* Set j to the smallest of the two sons: */ | |
462 if (j < s->heap_len && | |
463 smaller(tree, s->heap[j+1], s->heap[j], s->depth)) { | |
464 j++; | |
465 } | |
466 /* Exit if v is smaller than both sons */ | |
467 if (smaller(tree, v, s->heap[j], s->depth)) break; | |
468 | |
469 /* Exchange v with the smallest son */ | |
470 s->heap[k] = s->heap[j]; k = j; | |
471 | |
472 /* And continue down the tree, setting j to the left son of k */ | |
473 j <<= 1; | |
474 } | |
475 s->heap[k] = v; | |
476 } | |
477 | |
478 /* =========================================================================== | |
479 * Compute the optimal bit lengths for a tree and update the total bit length | |
480 * for the current block. | |
481 * IN assertion: the fields freq and dad are set, heap[heap_max] and | |
482 * above are the tree nodes sorted by increasing frequency. | |
483 * OUT assertions: the field len is set to the optimal bit length, the | |
484 * array bl_count contains the frequencies for each bit length. | |
485 * The length opt_len is updated; static_len is also updated if stree is | |
486 * not null. | |
487 */ | |
488 local void gen_bitlen(s, desc) | |
489 deflate_state *s; | |
490 tree_desc *desc; /* the tree descriptor */ | |
491 { | |
492 ct_data *tree = desc->dyn_tree; | |
493 int max_code = desc->max_code; | |
494 const ct_data *stree = desc->stat_desc->static_tree; | |
495 const intf *extra = desc->stat_desc->extra_bits; | |
496 int base = desc->stat_desc->extra_base; | |
497 int max_length = desc->stat_desc->max_length; | |
498 int h; /* heap index */ | |
499 int n, m; /* iterate over the tree elements */ | |
500 int bits; /* bit length */ | |
501 int xbits; /* extra bits */ | |
502 ush f; /* frequency */ | |
503 int overflow = 0; /* number of elements with bit length too large */ | |
504 | |
505 for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0; | |
506 | |
507 /* In a first pass, compute the optimal bit lengths (which may | |
508 * overflow in the case of the bit length tree). | |
509 */ | |
510 tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */ | |
511 | |
512 for (h = s->heap_max+1; h < HEAP_SIZE; h++) { | |
513 n = s->heap[h]; | |
514 bits = tree[tree[n].Dad].Len + 1; | |
515 if (bits > max_length) bits = max_length, overflow++; | |
516 tree[n].Len = (ush)bits; | |
517 /* We overwrite tree[n].Dad which is no longer needed */ | |
518 | |
519 if (n > max_code) continue; /* not a leaf node */ | |
520 | |
521 s->bl_count[bits]++; | |
522 xbits = 0; | |
523 if (n >= base) xbits = extra[n-base]; | |
524 f = tree[n].Freq; | |
525 s->opt_len += (ulg)f * (bits + xbits); | |
526 if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits); | |
527 } | |
528 if (overflow == 0) return; | |
529 | |
530 Trace((stderr,"\nbit length overflow\n")); | |
531 /* This happens for example on obj2 and pic of the Calgary corpus */ | |
532 | |
533 /* Find the first bit length which could increase: */ | |
534 do { | |
535 bits = max_length-1; | |
536 while (s->bl_count[bits] == 0) bits--; | |
537 s->bl_count[bits]--; /* move one leaf down the tree */ | |
538 s->bl_count[bits+1] += 2; /* move one overflow item as its brother */ | |
539 s->bl_count[max_length]--; | |
540 /* The brother of the overflow item also moves one step up, | |
541 * but this does not affect bl_count[max_length] | |
542 */ | |
543 overflow -= 2; | |
544 } while (overflow > 0); | |
545 | |
546 /* Now recompute all bit lengths, scanning in increasing frequency. | |
547 * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all | |
548 * lengths instead of fixing only the wrong ones. This idea is taken | |
549 * from 'ar' written by Haruhiko Okumura.) | |
550 */ | |
551 for (bits = max_length; bits != 0; bits--) { | |
552 n = s->bl_count[bits]; | |
553 while (n != 0) { | |
554 m = s->heap[--h]; | |
555 if (m > max_code) continue; | |
556 if ((unsigned) tree[m].Len != (unsigned) bits) { | |
557 Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits)); | |
558 s->opt_len += ((long)bits - (long)tree[m].Len) | |
559 *(long)tree[m].Freq; | |
560 tree[m].Len = (ush)bits; | |
561 } | |
562 n--; | |
563 } | |
564 } | |
565 } | |
566 | |
567 /* =========================================================================== | |
568 * Generate the codes for a given tree and bit counts (which need not be | |
569 * optimal). | |
570 * IN assertion: the array bl_count contains the bit length statistics for | |
571 * the given tree and the field len is set for all tree elements. | |
572 * OUT assertion: the field code is set for all tree elements of non | |
573 * zero code length. | |
574 */ | |
575 local void gen_codes (tree, max_code, bl_count) | |
576 ct_data *tree; /* the tree to decorate */ | |
577 int max_code; /* largest code with non zero frequency */ | |
578 ushf *bl_count; /* number of codes at each bit length */ | |
579 { | |
580 ush next_code[MAX_BITS+1]; /* next code value for each bit length */ | |
581 ush code = 0; /* running code value */ | |
582 int bits; /* bit index */ | |
583 int n; /* code index */ | |
584 | |
585 /* The distribution counts are first used to generate the code values | |
586 * without bit reversal. | |
587 */ | |
588 for (bits = 1; bits <= MAX_BITS; bits++) { | |
589 next_code[bits] = code = (code + bl_count[bits-1]) << 1; | |
590 } | |
591 /* Check that the bit counts in bl_count are consistent. The last code | |
592 * must be all ones. | |
593 */ | |
594 Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1, | |
595 "inconsistent bit counts"); | |
596 Tracev((stderr,"\ngen_codes: max_code %d ", max_code)); | |
597 | |
598 for (n = 0; n <= max_code; n++) { | |
599 int len = tree[n].Len; | |
600 if (len == 0) continue; | |
601 /* Now reverse the bits */ | |
602 tree[n].Code = bi_reverse(next_code[len]++, len); | |
603 | |
604 Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ", | |
605 n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1)); | |
606 } | |
607 } | |
608 | |
609 /* =========================================================================== | |
610 * Construct one Huffman tree and assigns the code bit strings and lengths. | |
611 * Update the total bit length for the current block. | |
612 * IN assertion: the field freq is set for all tree elements. | |
613 * OUT assertions: the fields len and code are set to the optimal bit length | |
614 * and corresponding code. The length opt_len is updated; static_len is | |
615 * also updated if stree is not null. The field max_code is set. | |
616 */ | |
617 local void build_tree(s, desc) | |
618 deflate_state *s; | |
619 tree_desc *desc; /* the tree descriptor */ | |
620 { | |
621 ct_data *tree = desc->dyn_tree; | |
622 const ct_data *stree = desc->stat_desc->static_tree; | |
623 int elems = desc->stat_desc->elems; | |
624 int n, m; /* iterate over heap elements */ | |
625 int max_code = -1; /* largest code with non zero frequency */ | |
626 int node; /* new node being created */ | |
627 | |
628 /* Construct the initial heap, with least frequent element in | |
629 * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1]. | |
630 * heap[0] is not used. | |
631 */ | |
632 s->heap_len = 0, s->heap_max = HEAP_SIZE; | |
633 | |
634 for (n = 0; n < elems; n++) { | |
635 if (tree[n].Freq != 0) { | |
636 s->heap[++(s->heap_len)] = max_code = n; | |
637 s->depth[n] = 0; | |
638 } else { | |
639 tree[n].Len = 0; | |
640 } | |
641 } | |
642 | |
643 /* The pkzip format requires that at least one distance code exists, | |
644 * and that at least one bit should be sent even if there is only one | |
645 * possible code. So to avoid special checks later on we force at least | |
646 * two codes of non zero frequency. | |
647 */ | |
648 while (s->heap_len < 2) { | |
649 node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0); | |
650 tree[node].Freq = 1; | |
651 s->depth[node] = 0; | |
652 s->opt_len--; if (stree) s->static_len -= stree[node].Len; | |
653 /* node is 0 or 1 so it does not have extra bits */ | |
654 } | |
655 desc->max_code = max_code; | |
656 | |
657 /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree, | |
658 * establish sub-heaps of increasing lengths: | |
659 */ | |
660 for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n); | |
661 | |
662 /* Construct the Huffman tree by repeatedly combining the least two | |
663 * frequent nodes. | |
664 */ | |
665 node = elems; /* next internal node of the tree */ | |
666 do { | |
667 pqremove(s, tree, n); /* n = node of least frequency */ | |
668 m = s->heap[SMALLEST]; /* m = node of next least frequency */ | |
669 | |
670 s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */ | |
671 s->heap[--(s->heap_max)] = m; | |
672 | |
673 /* Create a new node father of n and m */ | |
674 tree[node].Freq = tree[n].Freq + tree[m].Freq; | |
675 s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ? | |
676 s->depth[n] : s->depth[m]) + 1); | |
677 tree[n].Dad = tree[m].Dad = (ush)node; | |
678 #ifdef DUMP_BL_TREE | |
679 if (tree == s->bl_tree) { | |
680 fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)", | |
681 node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq); | |
682 } | |
683 #endif | |
684 /* and insert the new node in the heap */ | |
685 s->heap[SMALLEST] = node++; | |
686 pqdownheap(s, tree, SMALLEST); | |
687 | |
688 } while (s->heap_len >= 2); | |
689 | |
690 s->heap[--(s->heap_max)] = s->heap[SMALLEST]; | |
691 | |
692 /* At this point, the fields freq and dad are set. We can now | |
693 * generate the bit lengths. | |
694 */ | |
695 gen_bitlen(s, (tree_desc *)desc); | |
696 | |
697 /* The field len is now set, we can generate the bit codes */ | |
698 gen_codes ((ct_data *)tree, max_code, s->bl_count); | |
699 } | |
700 | |
701 /* =========================================================================== | |
702 * Scan a literal or distance tree to determine the frequencies of the codes | |
703 * in the bit length tree. | |
704 */ | |
705 local void scan_tree (s, tree, max_code) | |
706 deflate_state *s; | |
707 ct_data *tree; /* the tree to be scanned */ | |
708 int max_code; /* and its largest code of non zero frequency */ | |
709 { | |
710 int n; /* iterates over all tree elements */ | |
711 int prevlen = -1; /* last emitted length */ | |
712 int curlen; /* length of current code */ | |
713 int nextlen = tree[0].Len; /* length of next code */ | |
714 int count = 0; /* repeat count of the current code */ | |
715 int max_count = 7; /* max repeat count */ | |
716 int min_count = 4; /* min repeat count */ | |
717 | |
718 if (nextlen == 0) max_count = 138, min_count = 3; | |
719 tree[max_code+1].Len = (ush)0xffff; /* guard */ | |
720 | |
721 for (n = 0; n <= max_code; n++) { | |
722 curlen = nextlen; nextlen = tree[n+1].Len; | |
723 if (++count < max_count && curlen == nextlen) { | |
724 continue; | |
725 } else if (count < min_count) { | |
726 s->bl_tree[curlen].Freq += count; | |
727 } else if (curlen != 0) { | |
728 if (curlen != prevlen) s->bl_tree[curlen].Freq++; | |
729 s->bl_tree[REP_3_6].Freq++; | |
730 } else if (count <= 10) { | |
731 s->bl_tree[REPZ_3_10].Freq++; | |
732 } else { | |
733 s->bl_tree[REPZ_11_138].Freq++; | |
734 } | |
735 count = 0; prevlen = curlen; | |
736 if (nextlen == 0) { | |
737 max_count = 138, min_count = 3; | |
738 } else if (curlen == nextlen) { | |
739 max_count = 6, min_count = 3; | |
740 } else { | |
741 max_count = 7, min_count = 4; | |
742 } | |
743 } | |
744 } | |
745 | |
746 /* =========================================================================== | |
747 * Send a literal or distance tree in compressed form, using the codes in | |
748 * bl_tree. | |
749 */ | |
750 local void send_tree (s, tree, max_code) | |
751 deflate_state *s; | |
752 ct_data *tree; /* the tree to be scanned */ | |
753 int max_code; /* and its largest code of non zero frequency */ | |
754 { | |
755 int n; /* iterates over all tree elements */ | |
756 int prevlen = -1; /* last emitted length */ | |
757 int curlen; /* length of current code */ | |
758 int nextlen = tree[0].Len; /* length of next code */ | |
759 int count = 0; /* repeat count of the current code */ | |
760 int max_count = 7; /* max repeat count */ | |
761 int min_count = 4; /* min repeat count */ | |
762 | |
763 /* tree[max_code+1].Len = -1; */ /* guard already set */ | |
764 if (nextlen == 0) max_count = 138, min_count = 3; | |
765 | |
766 for (n = 0; n <= max_code; n++) { | |
767 curlen = nextlen; nextlen = tree[n+1].Len; | |
768 if (++count < max_count && curlen == nextlen) { | |
769 continue; | |
770 } else if (count < min_count) { | |
771 do { send_code(s, curlen, s->bl_tree); } while (--count != 0); | |
772 | |
773 } else if (curlen != 0) { | |
774 if (curlen != prevlen) { | |
775 send_code(s, curlen, s->bl_tree); count--; | |
776 } | |
777 Assert(count >= 3 && count <= 6, " 3_6?"); | |
778 send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2); | |
779 | |
780 } else if (count <= 10) { | |
781 send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3); | |
782 | |
783 } else { | |
784 send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7); | |
785 } | |
786 count = 0; prevlen = curlen; | |
787 if (nextlen == 0) { | |
788 max_count = 138, min_count = 3; | |
789 } else if (curlen == nextlen) { | |
790 max_count = 6, min_count = 3; | |
791 } else { | |
792 max_count = 7, min_count = 4; | |
793 } | |
794 } | |
795 } | |
796 | |
797 /* =========================================================================== | |
798 * Construct the Huffman tree for the bit lengths and return the index in | |
799 * bl_order of the last bit length code to send. | |
800 */ | |
801 local int build_bl_tree(s) | |
802 deflate_state *s; | |
803 { | |
804 int max_blindex; /* index of last bit length code of non zero freq */ | |
805 | |
806 /* Determine the bit length frequencies for literal and distance trees */ | |
807 scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code); | |
808 scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code); | |
809 | |
810 /* Build the bit length tree: */ | |
811 build_tree(s, (tree_desc *)(&(s->bl_desc))); | |
812 /* opt_len now includes the length of the tree representations, except | |
813 * the lengths of the bit lengths codes and the 5+5+4 bits for the counts. | |
814 */ | |
815 | |
816 /* Determine the number of bit length codes to send. The pkzip format | |
817 * requires that at least 4 bit length codes be sent. (appnote.txt says | |
818 * 3 but the actual value used is 4.) | |
819 */ | |
820 for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) { | |
821 if (s->bl_tree[bl_order[max_blindex]].Len != 0) break; | |
822 } | |
823 /* Update opt_len to include the bit length tree and counts */ | |
824 s->opt_len += 3*(max_blindex+1) + 5+5+4; | |
825 Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld", | |
826 s->opt_len, s->static_len)); | |
827 | |
828 return max_blindex; | |
829 } | |
830 | |
831 /* =========================================================================== | |
832 * Send the header for a block using dynamic Huffman trees: the counts, the | |
833 * lengths of the bit length codes, the literal tree and the distance tree. | |
834 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4. | |
835 */ | |
836 local void send_all_trees(s, lcodes, dcodes, blcodes) | |
837 deflate_state *s; | |
838 int lcodes, dcodes, blcodes; /* number of codes for each tree */ | |
839 { | |
840 int rank; /* index in bl_order */ | |
841 | |
842 Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes"); | |
843 Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES, | |
844 "too many codes"); | |
845 Tracev((stderr, "\nbl counts: ")); | |
846 send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */ | |
847 send_bits(s, dcodes-1, 5); | |
848 send_bits(s, blcodes-4, 4); /* not -3 as stated in appnote.txt */ | |
849 for (rank = 0; rank < blcodes; rank++) { | |
850 Tracev((stderr, "\nbl code %2d ", bl_order[rank])); | |
851 send_bits(s, s->bl_tree[bl_order[rank]].Len, 3); | |
852 } | |
853 Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent)); | |
854 | |
855 send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */ | |
856 Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent)); | |
857 | |
858 send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */ | |
859 Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent)); | |
860 } | |
861 | |
862 /* =========================================================================== | |
863 * Send a stored block | |
864 */ | |
865 void ZLIB_INTERNAL _tr_stored_block(s, buf, stored_len, last) | |
866 deflate_state *s; | |
867 charf *buf; /* input block */ | |
868 ulg stored_len; /* length of input block */ | |
869 int last; /* one if this is the last block for a file */ | |
870 { | |
871 send_bits(s, (STORED_BLOCK<<1)+last, 3); /* send block type */ | |
872 #ifdef DEBUG | |
873 s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L; | |
874 s->compressed_len += (stored_len + 4) << 3; | |
875 #endif | |
876 copy_block(s, buf, (unsigned)stored_len, 1); /* with header */ | |
877 } | |
878 | |
879 /* =========================================================================== | |
880 * Flush the bits in the bit buffer to pending output (leaves at most 7 bits) | |
881 */ | |
882 void ZLIB_INTERNAL _tr_flush_bits(s) | |
883 deflate_state *s; | |
884 { | |
885 bi_flush(s); | |
886 } | |
887 | |
888 /* =========================================================================== | |
889 * Send one empty static block to give enough lookahead for inflate. | |
890 * This takes 10 bits, of which 7 may remain in the bit buffer. | |
891 */ | |
892 void ZLIB_INTERNAL _tr_align(s) | |
893 deflate_state *s; | |
894 { | |
895 send_bits(s, STATIC_TREES<<1, 3); | |
896 send_code(s, END_BLOCK, static_ltree); | |
897 #ifdef DEBUG | |
898 s->compressed_len += 10L; /* 3 for block type, 7 for EOB */ | |
899 #endif | |
900 bi_flush(s); | |
901 } | |
902 | |
903 /* =========================================================================== | |
904 * Determine the best encoding for the current block: dynamic trees, static | |
905 * trees or store, and output the encoded block to the zip file. | |
906 */ | |
907 void ZLIB_INTERNAL _tr_flush_block(s, buf, stored_len, last) | |
908 deflate_state *s; | |
909 charf *buf; /* input block, or NULL if too old */ | |
910 ulg stored_len; /* length of input block */ | |
911 int last; /* one if this is the last block for a file */ | |
912 { | |
913 ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */ | |
914 int max_blindex = 0; /* index of last bit length code of non zero freq */ | |
915 | |
916 /* Build the Huffman trees unless a stored block is forced */ | |
917 if (s->level > 0) { | |
918 | |
919 /* Check if the file is binary or text */ | |
920 if (s->strm->data_type == Z_UNKNOWN) | |
921 s->strm->data_type = detect_data_type(s); | |
922 | |
923 /* Construct the literal and distance trees */ | |
924 build_tree(s, (tree_desc *)(&(s->l_desc))); | |
925 Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len, | |
926 s->static_len)); | |
927 | |
928 build_tree(s, (tree_desc *)(&(s->d_desc))); | |
929 Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len, | |
930 s->static_len)); | |
931 /* At this point, opt_len and static_len are the total bit lengths of | |
932 * the compressed block data, excluding the tree representations. | |
933 */ | |
934 | |
935 /* Build the bit length tree for the above two trees, and get the index | |
936 * in bl_order of the last bit length code to send. | |
937 */ | |
938 max_blindex = build_bl_tree(s); | |
939 | |
940 /* Determine the best encoding. Compute the block lengths in bytes. */ | |
941 opt_lenb = (s->opt_len+3+7)>>3; | |
942 static_lenb = (s->static_len+3+7)>>3; | |
943 | |
944 Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ", | |
945 opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len, | |
946 s->last_lit)); | |
947 | |
948 if (static_lenb <= opt_lenb) opt_lenb = static_lenb; | |
949 | |
950 } else { | |
951 Assert(buf != (char*)0, "lost buf"); | |
952 opt_lenb = static_lenb = stored_len + 5; /* force a stored block */ | |
953 } | |
954 | |
955 #ifdef FORCE_STORED | |
956 if (buf != (char*)0) { /* force stored block */ | |
957 #else | |
958 if (stored_len+4 <= opt_lenb && buf != (char*)0) { | |
959 /* 4: two words for the lengths */ | |
960 #endif | |
961 /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE. | |
962 * Otherwise we can't have processed more than WSIZE input bytes since | |
963 * the last block flush, because compression would have been | |
964 * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to | |
965 * transform a block into a stored block. | |
966 */ | |
967 _tr_stored_block(s, buf, stored_len, last); | |
968 | |
969 #ifdef FORCE_STATIC | |
970 } else if (static_lenb >= 0) { /* force static trees */ | |
971 #else | |
972 } else if (s->strategy == Z_FIXED || static_lenb == opt_lenb) { | |
973 #endif | |
974 send_bits(s, (STATIC_TREES<<1)+last, 3); | |
975 compress_block(s, (const ct_data *)static_ltree, | |
976 (const ct_data *)static_dtree); | |
977 #ifdef DEBUG | |
978 s->compressed_len += 3 + s->static_len; | |
979 #endif | |
980 } else { | |
981 send_bits(s, (DYN_TREES<<1)+last, 3); | |
982 send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1, | |
983 max_blindex+1); | |
984 compress_block(s, (const ct_data *)s->dyn_ltree, | |
985 (const ct_data *)s->dyn_dtree); | |
986 #ifdef DEBUG | |
987 s->compressed_len += 3 + s->opt_len; | |
988 #endif | |
989 } | |
990 Assert (s->compressed_len == s->bits_sent, "bad compressed size"); | |
991 /* The above check is made mod 2^32, for files larger than 512 MB | |
992 * and uLong implemented on 32 bits. | |
993 */ | |
994 init_block(s); | |
995 | |
996 if (last) { | |
997 bi_windup(s); | |
998 #ifdef DEBUG | |
999 s->compressed_len += 7; /* align on byte boundary */ | |
1000 #endif | |
1001 } | |
1002 Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3, | |
1003 s->compressed_len-7*last)); | |
1004 } | |
1005 | |
1006 /* =========================================================================== | |
1007 * Save the match info and tally the frequency counts. Return true if | |
1008 * the current block must be flushed. | |
1009 */ | |
1010 int ZLIB_INTERNAL _tr_tally (s, dist, lc) | |
1011 deflate_state *s; | |
1012 unsigned dist; /* distance of matched string */ | |
1013 unsigned lc; /* match length-MIN_MATCH or unmatched char (if dist==0) */ | |
1014 { | |
1015 s->d_buf[s->last_lit] = (ush)dist; | |
1016 s->l_buf[s->last_lit++] = (uch)lc; | |
1017 if (dist == 0) { | |
1018 /* lc is the unmatched char */ | |
1019 s->dyn_ltree[lc].Freq++; | |
1020 } else { | |
1021 s->matches++; | |
1022 /* Here, lc is the match length - MIN_MATCH */ | |
1023 dist--; /* dist = match distance - 1 */ | |
1024 Assert((ush)dist < (ush)MAX_DIST(s) && | |
1025 (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) && | |
1026 (ush)d_code(dist) < (ush)D_CODES, "_tr_tally: bad match"); | |
1027 | |
1028 s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++; | |
1029 s->dyn_dtree[d_code(dist)].Freq++; | |
1030 } | |
1031 | |
1032 #ifdef TRUNCATE_BLOCK | |
1033 /* Try to guess if it is profitable to stop the current block here */ | |
1034 if ((s->last_lit & 0x1fff) == 0 && s->level > 2) { | |
1035 /* Compute an upper bound for the compressed length */ | |
1036 ulg out_length = (ulg)s->last_lit*8L; | |
1037 ulg in_length = (ulg)((long)s->strstart - s->block_start); | |
1038 int dcode; | |
1039 for (dcode = 0; dcode < D_CODES; dcode++) { | |
1040 out_length += (ulg)s->dyn_dtree[dcode].Freq * | |
1041 (5L+extra_dbits[dcode]); | |
1042 } | |
1043 out_length >>= 3; | |
1044 Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ", | |
1045 s->last_lit, in_length, out_length, | |
1046 100L - out_length*100L/in_length)); | |
1047 if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1; | |
1048 } | |
1049 #endif | |
1050 return (s->last_lit == s->lit_bufsize-1); | |
1051 /* We avoid equality with lit_bufsize because of wraparound at 64K | |
1052 * on 16 bit machines and because stored blocks are restricted to | |
1053 * 64K-1 bytes. | |
1054 */ | |
1055 } | |
1056 | |
1057 /* =========================================================================== | |
1058 * Send the block data compressed using the given Huffman trees | |
1059 */ | |
1060 local void compress_block(s, ltree, dtree) | |
1061 deflate_state *s; | |
1062 const ct_data *ltree; /* literal tree */ | |
1063 const ct_data *dtree; /* distance tree */ | |
1064 { | |
1065 unsigned dist; /* distance of matched string */ | |
1066 int lc; /* match length or unmatched char (if dist == 0) */ | |
1067 unsigned lx = 0; /* running index in l_buf */ | |
1068 unsigned code; /* the code to send */ | |
1069 int extra; /* number of extra bits to send */ | |
1070 | |
1071 if (s->last_lit != 0) do { | |
1072 dist = s->d_buf[lx]; | |
1073 lc = s->l_buf[lx++]; | |
1074 if (dist == 0) { | |
1075 send_code(s, lc, ltree); /* send a literal byte */ | |
1076 Tracecv(isgraph(lc), (stderr," '%c' ", lc)); | |
1077 } else { | |
1078 /* Here, lc is the match length - MIN_MATCH */ | |
1079 code = _length_code[lc]; | |
1080 send_code(s, code+LITERALS+1, ltree); /* send the length code */ | |
1081 extra = extra_lbits[code]; | |
1082 if (extra != 0) { | |
1083 lc -= base_length[code]; | |
1084 send_bits(s, lc, extra); /* send the extra length bits */ | |
1085 } | |
1086 dist--; /* dist is now the match distance - 1 */ | |
1087 code = d_code(dist); | |
1088 Assert (code < D_CODES, "bad d_code"); | |
1089 | |
1090 send_code(s, code, dtree); /* send the distance code */ | |
1091 extra = extra_dbits[code]; | |
1092 if (extra != 0) { | |
1093 dist -= base_dist[code]; | |
1094 send_bits(s, dist, extra); /* send the extra distance bits */ | |
1095 } | |
1096 } /* literal or match pair ? */ | |
1097 | |
1098 /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */ | |
1099 Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx, | |
1100 "pendingBuf overflow"); | |
1101 | |
1102 } while (lx < s->last_lit); | |
1103 | |
1104 send_code(s, END_BLOCK, ltree); | |
1105 } | |
1106 | |
1107 /* =========================================================================== | |
1108 * Check if the data type is TEXT or BINARY, using the following algorithm: | |
1109 * - TEXT if the two conditions below are satisfied: | |
1110 * a) There are no non-portable control characters belonging to the | |
1111 * "black list" (0..6, 14..25, 28..31). | |
1112 * b) There is at least one printable character belonging to the | |
1113 * "white list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255). | |
1114 * - BINARY otherwise. | |
1115 * - The following partially-portable control characters form a | |
1116 * "gray list" that is ignored in this detection algorithm: | |
1117 * (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}). | |
1118 * IN assertion: the fields Freq of dyn_ltree are set. | |
1119 */ | |
1120 local int detect_data_type(s) | |
1121 deflate_state *s; | |
1122 { | |
1123 /* black_mask is the bit mask of black-listed bytes | |
1124 * set bits 0..6, 14..25, and 28..31 | |
1125 * 0xf3ffc07f = binary 11110011111111111100000001111111 | |
1126 */ | |
1127 unsigned long black_mask = 0xf3ffc07fUL; | |
1128 int n; | |
1129 | |
1130 /* Check for non-textual ("black-listed") bytes. */ | |
1131 for (n = 0; n <= 31; n++, black_mask >>= 1) | |
1132 if ((black_mask & 1) && (s->dyn_ltree[n].Freq != 0)) | |
1133 return Z_BINARY; | |
1134 | |
1135 /* Check for textual ("white-listed") bytes. */ | |
1136 if (s->dyn_ltree[9].Freq != 0 || s->dyn_ltree[10].Freq != 0 | |
1137 || s->dyn_ltree[13].Freq != 0) | |
1138 return Z_TEXT; | |
1139 for (n = 32; n < LITERALS; n++) | |
1140 if (s->dyn_ltree[n].Freq != 0) | |
1141 return Z_TEXT; | |
1142 | |
1143 /* There are no "black-listed" or "white-listed" bytes: | |
1144 * this stream either is empty or has tolerated ("gray-listed") bytes only. | |
1145 */ | |
1146 return Z_BINARY; | |
1147 } | |
1148 | |
1149 /* =========================================================================== | |
1150 * Reverse the first len bits of a code, using straightforward code (a faster | |
1151 * method would use a table) | |
1152 * IN assertion: 1 <= len <= 15 | |
1153 */ | |
1154 local unsigned bi_reverse(code, len) | |
1155 unsigned code; /* the value to invert */ | |
1156 int len; /* its bit length */ | |
1157 { | |
1158 register unsigned res = 0; | |
1159 do { | |
1160 res |= code & 1; | |
1161 code >>= 1, res <<= 1; | |
1162 } while (--len > 0); | |
1163 return res >> 1; | |
1164 } | |
1165 | |
1166 /* =========================================================================== | |
1167 * Flush the bit buffer, keeping at most 7 bits in it. | |
1168 */ | |
1169 local void bi_flush(s) | |
1170 deflate_state *s; | |
1171 { | |
1172 if (s->bi_valid == 16) { | |
1173 put_short(s, s->bi_buf); | |
1174 s->bi_buf = 0; | |
1175 s->bi_valid = 0; | |
1176 } else if (s->bi_valid >= 8) { | |
1177 put_byte(s, (Byte)s->bi_buf); | |
1178 s->bi_buf >>= 8; | |
1179 s->bi_valid -= 8; | |
1180 } | |
1181 } | |
1182 | |
1183 /* =========================================================================== | |
1184 * Flush the bit buffer and align the output on a byte boundary | |
1185 */ | |
1186 local void bi_windup(s) | |
1187 deflate_state *s; | |
1188 { | |
1189 if (s->bi_valid > 8) { | |
1190 put_short(s, s->bi_buf); | |
1191 } else if (s->bi_valid > 0) { | |
1192 put_byte(s, (Byte)s->bi_buf); | |
1193 } | |
1194 s->bi_buf = 0; | |
1195 s->bi_valid = 0; | |
1196 #ifdef DEBUG | |
1197 s->bits_sent = (s->bits_sent+7) & ~7; | |
1198 #endif | |
1199 } | |
1200 | |
1201 /* =========================================================================== | |
1202 * Copy a stored block, storing first the length and its | |
1203 * one's complement if requested. | |
1204 */ | |
1205 local void copy_block(s, buf, len, header) | |
1206 deflate_state *s; | |
1207 charf *buf; /* the input data */ | |
1208 unsigned len; /* its length */ | |
1209 int header; /* true if block header must be written */ | |
1210 { | |
1211 bi_windup(s); /* align on byte boundary */ | |
1212 | |
1213 if (header) { | |
1214 put_short(s, (ush)len); | |
1215 put_short(s, (ush)~len); | |
1216 #ifdef DEBUG | |
1217 s->bits_sent += 2*16; | |
1218 #endif | |
1219 } | |
1220 #ifdef DEBUG | |
1221 s->bits_sent += (ulg)len<<3; | |
1222 #endif | |
1223 while (len--) { | |
1224 put_byte(s, *buf++); | |
1225 } | |
1226 } |