Mercurial > hg > sv-dependency-builds
comparison src/zlib-1.2.8/crc32.c @ 43:5ea0608b923f
Current zlib source
author | Chris Cannam |
---|---|
date | Tue, 18 Oct 2016 14:33:52 +0100 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
42:2cd0e3b3e1fd | 43:5ea0608b923f |
---|---|
1 /* crc32.c -- compute the CRC-32 of a data stream | |
2 * Copyright (C) 1995-2006, 2010, 2011, 2012 Mark Adler | |
3 * For conditions of distribution and use, see copyright notice in zlib.h | |
4 * | |
5 * Thanks to Rodney Brown <rbrown64@csc.com.au> for his contribution of faster | |
6 * CRC methods: exclusive-oring 32 bits of data at a time, and pre-computing | |
7 * tables for updating the shift register in one step with three exclusive-ors | |
8 * instead of four steps with four exclusive-ors. This results in about a | |
9 * factor of two increase in speed on a Power PC G4 (PPC7455) using gcc -O3. | |
10 */ | |
11 | |
12 /* @(#) $Id$ */ | |
13 | |
14 /* | |
15 Note on the use of DYNAMIC_CRC_TABLE: there is no mutex or semaphore | |
16 protection on the static variables used to control the first-use generation | |
17 of the crc tables. Therefore, if you #define DYNAMIC_CRC_TABLE, you should | |
18 first call get_crc_table() to initialize the tables before allowing more than | |
19 one thread to use crc32(). | |
20 | |
21 DYNAMIC_CRC_TABLE and MAKECRCH can be #defined to write out crc32.h. | |
22 */ | |
23 | |
24 #ifdef MAKECRCH | |
25 # include <stdio.h> | |
26 # ifndef DYNAMIC_CRC_TABLE | |
27 # define DYNAMIC_CRC_TABLE | |
28 # endif /* !DYNAMIC_CRC_TABLE */ | |
29 #endif /* MAKECRCH */ | |
30 | |
31 #include "zutil.h" /* for STDC and FAR definitions */ | |
32 | |
33 #define local static | |
34 | |
35 /* Definitions for doing the crc four data bytes at a time. */ | |
36 #if !defined(NOBYFOUR) && defined(Z_U4) | |
37 # define BYFOUR | |
38 #endif | |
39 #ifdef BYFOUR | |
40 local unsigned long crc32_little OF((unsigned long, | |
41 const unsigned char FAR *, unsigned)); | |
42 local unsigned long crc32_big OF((unsigned long, | |
43 const unsigned char FAR *, unsigned)); | |
44 # define TBLS 8 | |
45 #else | |
46 # define TBLS 1 | |
47 #endif /* BYFOUR */ | |
48 | |
49 /* Local functions for crc concatenation */ | |
50 local unsigned long gf2_matrix_times OF((unsigned long *mat, | |
51 unsigned long vec)); | |
52 local void gf2_matrix_square OF((unsigned long *square, unsigned long *mat)); | |
53 local uLong crc32_combine_ OF((uLong crc1, uLong crc2, z_off64_t len2)); | |
54 | |
55 | |
56 #ifdef DYNAMIC_CRC_TABLE | |
57 | |
58 local volatile int crc_table_empty = 1; | |
59 local z_crc_t FAR crc_table[TBLS][256]; | |
60 local void make_crc_table OF((void)); | |
61 #ifdef MAKECRCH | |
62 local void write_table OF((FILE *, const z_crc_t FAR *)); | |
63 #endif /* MAKECRCH */ | |
64 /* | |
65 Generate tables for a byte-wise 32-bit CRC calculation on the polynomial: | |
66 x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1. | |
67 | |
68 Polynomials over GF(2) are represented in binary, one bit per coefficient, | |
69 with the lowest powers in the most significant bit. Then adding polynomials | |
70 is just exclusive-or, and multiplying a polynomial by x is a right shift by | |
71 one. If we call the above polynomial p, and represent a byte as the | |
72 polynomial q, also with the lowest power in the most significant bit (so the | |
73 byte 0xb1 is the polynomial x^7+x^3+x+1), then the CRC is (q*x^32) mod p, | |
74 where a mod b means the remainder after dividing a by b. | |
75 | |
76 This calculation is done using the shift-register method of multiplying and | |
77 taking the remainder. The register is initialized to zero, and for each | |
78 incoming bit, x^32 is added mod p to the register if the bit is a one (where | |
79 x^32 mod p is p+x^32 = x^26+...+1), and the register is multiplied mod p by | |
80 x (which is shifting right by one and adding x^32 mod p if the bit shifted | |
81 out is a one). We start with the highest power (least significant bit) of | |
82 q and repeat for all eight bits of q. | |
83 | |
84 The first table is simply the CRC of all possible eight bit values. This is | |
85 all the information needed to generate CRCs on data a byte at a time for all | |
86 combinations of CRC register values and incoming bytes. The remaining tables | |
87 allow for word-at-a-time CRC calculation for both big-endian and little- | |
88 endian machines, where a word is four bytes. | |
89 */ | |
90 local void make_crc_table() | |
91 { | |
92 z_crc_t c; | |
93 int n, k; | |
94 z_crc_t poly; /* polynomial exclusive-or pattern */ | |
95 /* terms of polynomial defining this crc (except x^32): */ | |
96 static volatile int first = 1; /* flag to limit concurrent making */ | |
97 static const unsigned char p[] = {0,1,2,4,5,7,8,10,11,12,16,22,23,26}; | |
98 | |
99 /* See if another task is already doing this (not thread-safe, but better | |
100 than nothing -- significantly reduces duration of vulnerability in | |
101 case the advice about DYNAMIC_CRC_TABLE is ignored) */ | |
102 if (first) { | |
103 first = 0; | |
104 | |
105 /* make exclusive-or pattern from polynomial (0xedb88320UL) */ | |
106 poly = 0; | |
107 for (n = 0; n < (int)(sizeof(p)/sizeof(unsigned char)); n++) | |
108 poly |= (z_crc_t)1 << (31 - p[n]); | |
109 | |
110 /* generate a crc for every 8-bit value */ | |
111 for (n = 0; n < 256; n++) { | |
112 c = (z_crc_t)n; | |
113 for (k = 0; k < 8; k++) | |
114 c = c & 1 ? poly ^ (c >> 1) : c >> 1; | |
115 crc_table[0][n] = c; | |
116 } | |
117 | |
118 #ifdef BYFOUR | |
119 /* generate crc for each value followed by one, two, and three zeros, | |
120 and then the byte reversal of those as well as the first table */ | |
121 for (n = 0; n < 256; n++) { | |
122 c = crc_table[0][n]; | |
123 crc_table[4][n] = ZSWAP32(c); | |
124 for (k = 1; k < 4; k++) { | |
125 c = crc_table[0][c & 0xff] ^ (c >> 8); | |
126 crc_table[k][n] = c; | |
127 crc_table[k + 4][n] = ZSWAP32(c); | |
128 } | |
129 } | |
130 #endif /* BYFOUR */ | |
131 | |
132 crc_table_empty = 0; | |
133 } | |
134 else { /* not first */ | |
135 /* wait for the other guy to finish (not efficient, but rare) */ | |
136 while (crc_table_empty) | |
137 ; | |
138 } | |
139 | |
140 #ifdef MAKECRCH | |
141 /* write out CRC tables to crc32.h */ | |
142 { | |
143 FILE *out; | |
144 | |
145 out = fopen("crc32.h", "w"); | |
146 if (out == NULL) return; | |
147 fprintf(out, "/* crc32.h -- tables for rapid CRC calculation\n"); | |
148 fprintf(out, " * Generated automatically by crc32.c\n */\n\n"); | |
149 fprintf(out, "local const z_crc_t FAR "); | |
150 fprintf(out, "crc_table[TBLS][256] =\n{\n {\n"); | |
151 write_table(out, crc_table[0]); | |
152 # ifdef BYFOUR | |
153 fprintf(out, "#ifdef BYFOUR\n"); | |
154 for (k = 1; k < 8; k++) { | |
155 fprintf(out, " },\n {\n"); | |
156 write_table(out, crc_table[k]); | |
157 } | |
158 fprintf(out, "#endif\n"); | |
159 # endif /* BYFOUR */ | |
160 fprintf(out, " }\n};\n"); | |
161 fclose(out); | |
162 } | |
163 #endif /* MAKECRCH */ | |
164 } | |
165 | |
166 #ifdef MAKECRCH | |
167 local void write_table(out, table) | |
168 FILE *out; | |
169 const z_crc_t FAR *table; | |
170 { | |
171 int n; | |
172 | |
173 for (n = 0; n < 256; n++) | |
174 fprintf(out, "%s0x%08lxUL%s", n % 5 ? "" : " ", | |
175 (unsigned long)(table[n]), | |
176 n == 255 ? "\n" : (n % 5 == 4 ? ",\n" : ", ")); | |
177 } | |
178 #endif /* MAKECRCH */ | |
179 | |
180 #else /* !DYNAMIC_CRC_TABLE */ | |
181 /* ======================================================================== | |
182 * Tables of CRC-32s of all single-byte values, made by make_crc_table(). | |
183 */ | |
184 #include "crc32.h" | |
185 #endif /* DYNAMIC_CRC_TABLE */ | |
186 | |
187 /* ========================================================================= | |
188 * This function can be used by asm versions of crc32() | |
189 */ | |
190 const z_crc_t FAR * ZEXPORT get_crc_table() | |
191 { | |
192 #ifdef DYNAMIC_CRC_TABLE | |
193 if (crc_table_empty) | |
194 make_crc_table(); | |
195 #endif /* DYNAMIC_CRC_TABLE */ | |
196 return (const z_crc_t FAR *)crc_table; | |
197 } | |
198 | |
199 /* ========================================================================= */ | |
200 #define DO1 crc = crc_table[0][((int)crc ^ (*buf++)) & 0xff] ^ (crc >> 8) | |
201 #define DO8 DO1; DO1; DO1; DO1; DO1; DO1; DO1; DO1 | |
202 | |
203 /* ========================================================================= */ | |
204 unsigned long ZEXPORT crc32(crc, buf, len) | |
205 unsigned long crc; | |
206 const unsigned char FAR *buf; | |
207 uInt len; | |
208 { | |
209 if (buf == Z_NULL) return 0UL; | |
210 | |
211 #ifdef DYNAMIC_CRC_TABLE | |
212 if (crc_table_empty) | |
213 make_crc_table(); | |
214 #endif /* DYNAMIC_CRC_TABLE */ | |
215 | |
216 #ifdef BYFOUR | |
217 if (sizeof(void *) == sizeof(ptrdiff_t)) { | |
218 z_crc_t endian; | |
219 | |
220 endian = 1; | |
221 if (*((unsigned char *)(&endian))) | |
222 return crc32_little(crc, buf, len); | |
223 else | |
224 return crc32_big(crc, buf, len); | |
225 } | |
226 #endif /* BYFOUR */ | |
227 crc = crc ^ 0xffffffffUL; | |
228 while (len >= 8) { | |
229 DO8; | |
230 len -= 8; | |
231 } | |
232 if (len) do { | |
233 DO1; | |
234 } while (--len); | |
235 return crc ^ 0xffffffffUL; | |
236 } | |
237 | |
238 #ifdef BYFOUR | |
239 | |
240 /* ========================================================================= */ | |
241 #define DOLIT4 c ^= *buf4++; \ | |
242 c = crc_table[3][c & 0xff] ^ crc_table[2][(c >> 8) & 0xff] ^ \ | |
243 crc_table[1][(c >> 16) & 0xff] ^ crc_table[0][c >> 24] | |
244 #define DOLIT32 DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4 | |
245 | |
246 /* ========================================================================= */ | |
247 local unsigned long crc32_little(crc, buf, len) | |
248 unsigned long crc; | |
249 const unsigned char FAR *buf; | |
250 unsigned len; | |
251 { | |
252 register z_crc_t c; | |
253 register const z_crc_t FAR *buf4; | |
254 | |
255 c = (z_crc_t)crc; | |
256 c = ~c; | |
257 while (len && ((ptrdiff_t)buf & 3)) { | |
258 c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8); | |
259 len--; | |
260 } | |
261 | |
262 buf4 = (const z_crc_t FAR *)(const void FAR *)buf; | |
263 while (len >= 32) { | |
264 DOLIT32; | |
265 len -= 32; | |
266 } | |
267 while (len >= 4) { | |
268 DOLIT4; | |
269 len -= 4; | |
270 } | |
271 buf = (const unsigned char FAR *)buf4; | |
272 | |
273 if (len) do { | |
274 c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8); | |
275 } while (--len); | |
276 c = ~c; | |
277 return (unsigned long)c; | |
278 } | |
279 | |
280 /* ========================================================================= */ | |
281 #define DOBIG4 c ^= *++buf4; \ | |
282 c = crc_table[4][c & 0xff] ^ crc_table[5][(c >> 8) & 0xff] ^ \ | |
283 crc_table[6][(c >> 16) & 0xff] ^ crc_table[7][c >> 24] | |
284 #define DOBIG32 DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4 | |
285 | |
286 /* ========================================================================= */ | |
287 local unsigned long crc32_big(crc, buf, len) | |
288 unsigned long crc; | |
289 const unsigned char FAR *buf; | |
290 unsigned len; | |
291 { | |
292 register z_crc_t c; | |
293 register const z_crc_t FAR *buf4; | |
294 | |
295 c = ZSWAP32((z_crc_t)crc); | |
296 c = ~c; | |
297 while (len && ((ptrdiff_t)buf & 3)) { | |
298 c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8); | |
299 len--; | |
300 } | |
301 | |
302 buf4 = (const z_crc_t FAR *)(const void FAR *)buf; | |
303 buf4--; | |
304 while (len >= 32) { | |
305 DOBIG32; | |
306 len -= 32; | |
307 } | |
308 while (len >= 4) { | |
309 DOBIG4; | |
310 len -= 4; | |
311 } | |
312 buf4++; | |
313 buf = (const unsigned char FAR *)buf4; | |
314 | |
315 if (len) do { | |
316 c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8); | |
317 } while (--len); | |
318 c = ~c; | |
319 return (unsigned long)(ZSWAP32(c)); | |
320 } | |
321 | |
322 #endif /* BYFOUR */ | |
323 | |
324 #define GF2_DIM 32 /* dimension of GF(2) vectors (length of CRC) */ | |
325 | |
326 /* ========================================================================= */ | |
327 local unsigned long gf2_matrix_times(mat, vec) | |
328 unsigned long *mat; | |
329 unsigned long vec; | |
330 { | |
331 unsigned long sum; | |
332 | |
333 sum = 0; | |
334 while (vec) { | |
335 if (vec & 1) | |
336 sum ^= *mat; | |
337 vec >>= 1; | |
338 mat++; | |
339 } | |
340 return sum; | |
341 } | |
342 | |
343 /* ========================================================================= */ | |
344 local void gf2_matrix_square(square, mat) | |
345 unsigned long *square; | |
346 unsigned long *mat; | |
347 { | |
348 int n; | |
349 | |
350 for (n = 0; n < GF2_DIM; n++) | |
351 square[n] = gf2_matrix_times(mat, mat[n]); | |
352 } | |
353 | |
354 /* ========================================================================= */ | |
355 local uLong crc32_combine_(crc1, crc2, len2) | |
356 uLong crc1; | |
357 uLong crc2; | |
358 z_off64_t len2; | |
359 { | |
360 int n; | |
361 unsigned long row; | |
362 unsigned long even[GF2_DIM]; /* even-power-of-two zeros operator */ | |
363 unsigned long odd[GF2_DIM]; /* odd-power-of-two zeros operator */ | |
364 | |
365 /* degenerate case (also disallow negative lengths) */ | |
366 if (len2 <= 0) | |
367 return crc1; | |
368 | |
369 /* put operator for one zero bit in odd */ | |
370 odd[0] = 0xedb88320UL; /* CRC-32 polynomial */ | |
371 row = 1; | |
372 for (n = 1; n < GF2_DIM; n++) { | |
373 odd[n] = row; | |
374 row <<= 1; | |
375 } | |
376 | |
377 /* put operator for two zero bits in even */ | |
378 gf2_matrix_square(even, odd); | |
379 | |
380 /* put operator for four zero bits in odd */ | |
381 gf2_matrix_square(odd, even); | |
382 | |
383 /* apply len2 zeros to crc1 (first square will put the operator for one | |
384 zero byte, eight zero bits, in even) */ | |
385 do { | |
386 /* apply zeros operator for this bit of len2 */ | |
387 gf2_matrix_square(even, odd); | |
388 if (len2 & 1) | |
389 crc1 = gf2_matrix_times(even, crc1); | |
390 len2 >>= 1; | |
391 | |
392 /* if no more bits set, then done */ | |
393 if (len2 == 0) | |
394 break; | |
395 | |
396 /* another iteration of the loop with odd and even swapped */ | |
397 gf2_matrix_square(odd, even); | |
398 if (len2 & 1) | |
399 crc1 = gf2_matrix_times(odd, crc1); | |
400 len2 >>= 1; | |
401 | |
402 /* if no more bits set, then done */ | |
403 } while (len2 != 0); | |
404 | |
405 /* return combined crc */ | |
406 crc1 ^= crc2; | |
407 return crc1; | |
408 } | |
409 | |
410 /* ========================================================================= */ | |
411 uLong ZEXPORT crc32_combine(crc1, crc2, len2) | |
412 uLong crc1; | |
413 uLong crc2; | |
414 z_off_t len2; | |
415 { | |
416 return crc32_combine_(crc1, crc2, len2); | |
417 } | |
418 | |
419 uLong ZEXPORT crc32_combine64(crc1, crc2, len2) | |
420 uLong crc1; | |
421 uLong crc2; | |
422 z_off64_t len2; | |
423 { | |
424 return crc32_combine_(crc1, crc2, len2); | |
425 } |