Mercurial > hg > sv-dependency-builds
comparison src/zlib-1.2.8/deflate.c @ 128:5b4145a0d408
Current zlib source
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Tue, 18 Oct 2016 14:33:52 +0100 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
127:7867fa7e1b6b | 128:5b4145a0d408 |
---|---|
1 /* deflate.c -- compress data using the deflation algorithm | |
2 * Copyright (C) 1995-2013 Jean-loup Gailly and Mark Adler | |
3 * For conditions of distribution and use, see copyright notice in zlib.h | |
4 */ | |
5 | |
6 /* | |
7 * ALGORITHM | |
8 * | |
9 * The "deflation" process depends on being able to identify portions | |
10 * of the input text which are identical to earlier input (within a | |
11 * sliding window trailing behind the input currently being processed). | |
12 * | |
13 * The most straightforward technique turns out to be the fastest for | |
14 * most input files: try all possible matches and select the longest. | |
15 * The key feature of this algorithm is that insertions into the string | |
16 * dictionary are very simple and thus fast, and deletions are avoided | |
17 * completely. Insertions are performed at each input character, whereas | |
18 * string matches are performed only when the previous match ends. So it | |
19 * is preferable to spend more time in matches to allow very fast string | |
20 * insertions and avoid deletions. The matching algorithm for small | |
21 * strings is inspired from that of Rabin & Karp. A brute force approach | |
22 * is used to find longer strings when a small match has been found. | |
23 * A similar algorithm is used in comic (by Jan-Mark Wams) and freeze | |
24 * (by Leonid Broukhis). | |
25 * A previous version of this file used a more sophisticated algorithm | |
26 * (by Fiala and Greene) which is guaranteed to run in linear amortized | |
27 * time, but has a larger average cost, uses more memory and is patented. | |
28 * However the F&G algorithm may be faster for some highly redundant | |
29 * files if the parameter max_chain_length (described below) is too large. | |
30 * | |
31 * ACKNOWLEDGEMENTS | |
32 * | |
33 * The idea of lazy evaluation of matches is due to Jan-Mark Wams, and | |
34 * I found it in 'freeze' written by Leonid Broukhis. | |
35 * Thanks to many people for bug reports and testing. | |
36 * | |
37 * REFERENCES | |
38 * | |
39 * Deutsch, L.P.,"DEFLATE Compressed Data Format Specification". | |
40 * Available in http://tools.ietf.org/html/rfc1951 | |
41 * | |
42 * A description of the Rabin and Karp algorithm is given in the book | |
43 * "Algorithms" by R. Sedgewick, Addison-Wesley, p252. | |
44 * | |
45 * Fiala,E.R., and Greene,D.H. | |
46 * Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595 | |
47 * | |
48 */ | |
49 | |
50 /* @(#) $Id$ */ | |
51 | |
52 #include "deflate.h" | |
53 | |
54 const char deflate_copyright[] = | |
55 " deflate 1.2.8 Copyright 1995-2013 Jean-loup Gailly and Mark Adler "; | |
56 /* | |
57 If you use the zlib library in a product, an acknowledgment is welcome | |
58 in the documentation of your product. If for some reason you cannot | |
59 include such an acknowledgment, I would appreciate that you keep this | |
60 copyright string in the executable of your product. | |
61 */ | |
62 | |
63 /* =========================================================================== | |
64 * Function prototypes. | |
65 */ | |
66 typedef enum { | |
67 need_more, /* block not completed, need more input or more output */ | |
68 block_done, /* block flush performed */ | |
69 finish_started, /* finish started, need only more output at next deflate */ | |
70 finish_done /* finish done, accept no more input or output */ | |
71 } block_state; | |
72 | |
73 typedef block_state (*compress_func) OF((deflate_state *s, int flush)); | |
74 /* Compression function. Returns the block state after the call. */ | |
75 | |
76 local void fill_window OF((deflate_state *s)); | |
77 local block_state deflate_stored OF((deflate_state *s, int flush)); | |
78 local block_state deflate_fast OF((deflate_state *s, int flush)); | |
79 #ifndef FASTEST | |
80 local block_state deflate_slow OF((deflate_state *s, int flush)); | |
81 #endif | |
82 local block_state deflate_rle OF((deflate_state *s, int flush)); | |
83 local block_state deflate_huff OF((deflate_state *s, int flush)); | |
84 local void lm_init OF((deflate_state *s)); | |
85 local void putShortMSB OF((deflate_state *s, uInt b)); | |
86 local void flush_pending OF((z_streamp strm)); | |
87 local int read_buf OF((z_streamp strm, Bytef *buf, unsigned size)); | |
88 #ifdef ASMV | |
89 void match_init OF((void)); /* asm code initialization */ | |
90 uInt longest_match OF((deflate_state *s, IPos cur_match)); | |
91 #else | |
92 local uInt longest_match OF((deflate_state *s, IPos cur_match)); | |
93 #endif | |
94 | |
95 #ifdef DEBUG | |
96 local void check_match OF((deflate_state *s, IPos start, IPos match, | |
97 int length)); | |
98 #endif | |
99 | |
100 /* =========================================================================== | |
101 * Local data | |
102 */ | |
103 | |
104 #define NIL 0 | |
105 /* Tail of hash chains */ | |
106 | |
107 #ifndef TOO_FAR | |
108 # define TOO_FAR 4096 | |
109 #endif | |
110 /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */ | |
111 | |
112 /* Values for max_lazy_match, good_match and max_chain_length, depending on | |
113 * the desired pack level (0..9). The values given below have been tuned to | |
114 * exclude worst case performance for pathological files. Better values may be | |
115 * found for specific files. | |
116 */ | |
117 typedef struct config_s { | |
118 ush good_length; /* reduce lazy search above this match length */ | |
119 ush max_lazy; /* do not perform lazy search above this match length */ | |
120 ush nice_length; /* quit search above this match length */ | |
121 ush max_chain; | |
122 compress_func func; | |
123 } config; | |
124 | |
125 #ifdef FASTEST | |
126 local const config configuration_table[2] = { | |
127 /* good lazy nice chain */ | |
128 /* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */ | |
129 /* 1 */ {4, 4, 8, 4, deflate_fast}}; /* max speed, no lazy matches */ | |
130 #else | |
131 local const config configuration_table[10] = { | |
132 /* good lazy nice chain */ | |
133 /* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */ | |
134 /* 1 */ {4, 4, 8, 4, deflate_fast}, /* max speed, no lazy matches */ | |
135 /* 2 */ {4, 5, 16, 8, deflate_fast}, | |
136 /* 3 */ {4, 6, 32, 32, deflate_fast}, | |
137 | |
138 /* 4 */ {4, 4, 16, 16, deflate_slow}, /* lazy matches */ | |
139 /* 5 */ {8, 16, 32, 32, deflate_slow}, | |
140 /* 6 */ {8, 16, 128, 128, deflate_slow}, | |
141 /* 7 */ {8, 32, 128, 256, deflate_slow}, | |
142 /* 8 */ {32, 128, 258, 1024, deflate_slow}, | |
143 /* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* max compression */ | |
144 #endif | |
145 | |
146 /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4 | |
147 * For deflate_fast() (levels <= 3) good is ignored and lazy has a different | |
148 * meaning. | |
149 */ | |
150 | |
151 #define EQUAL 0 | |
152 /* result of memcmp for equal strings */ | |
153 | |
154 #ifndef NO_DUMMY_DECL | |
155 struct static_tree_desc_s {int dummy;}; /* for buggy compilers */ | |
156 #endif | |
157 | |
158 /* rank Z_BLOCK between Z_NO_FLUSH and Z_PARTIAL_FLUSH */ | |
159 #define RANK(f) (((f) << 1) - ((f) > 4 ? 9 : 0)) | |
160 | |
161 /* =========================================================================== | |
162 * Update a hash value with the given input byte | |
163 * IN assertion: all calls to to UPDATE_HASH are made with consecutive | |
164 * input characters, so that a running hash key can be computed from the | |
165 * previous key instead of complete recalculation each time. | |
166 */ | |
167 #define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask) | |
168 | |
169 | |
170 /* =========================================================================== | |
171 * Insert string str in the dictionary and set match_head to the previous head | |
172 * of the hash chain (the most recent string with same hash key). Return | |
173 * the previous length of the hash chain. | |
174 * If this file is compiled with -DFASTEST, the compression level is forced | |
175 * to 1, and no hash chains are maintained. | |
176 * IN assertion: all calls to to INSERT_STRING are made with consecutive | |
177 * input characters and the first MIN_MATCH bytes of str are valid | |
178 * (except for the last MIN_MATCH-1 bytes of the input file). | |
179 */ | |
180 #ifdef FASTEST | |
181 #define INSERT_STRING(s, str, match_head) \ | |
182 (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \ | |
183 match_head = s->head[s->ins_h], \ | |
184 s->head[s->ins_h] = (Pos)(str)) | |
185 #else | |
186 #define INSERT_STRING(s, str, match_head) \ | |
187 (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \ | |
188 match_head = s->prev[(str) & s->w_mask] = s->head[s->ins_h], \ | |
189 s->head[s->ins_h] = (Pos)(str)) | |
190 #endif | |
191 | |
192 /* =========================================================================== | |
193 * Initialize the hash table (avoiding 64K overflow for 16 bit systems). | |
194 * prev[] will be initialized on the fly. | |
195 */ | |
196 #define CLEAR_HASH(s) \ | |
197 s->head[s->hash_size-1] = NIL; \ | |
198 zmemzero((Bytef *)s->head, (unsigned)(s->hash_size-1)*sizeof(*s->head)); | |
199 | |
200 /* ========================================================================= */ | |
201 int ZEXPORT deflateInit_(strm, level, version, stream_size) | |
202 z_streamp strm; | |
203 int level; | |
204 const char *version; | |
205 int stream_size; | |
206 { | |
207 return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL, | |
208 Z_DEFAULT_STRATEGY, version, stream_size); | |
209 /* To do: ignore strm->next_in if we use it as window */ | |
210 } | |
211 | |
212 /* ========================================================================= */ | |
213 int ZEXPORT deflateInit2_(strm, level, method, windowBits, memLevel, strategy, | |
214 version, stream_size) | |
215 z_streamp strm; | |
216 int level; | |
217 int method; | |
218 int windowBits; | |
219 int memLevel; | |
220 int strategy; | |
221 const char *version; | |
222 int stream_size; | |
223 { | |
224 deflate_state *s; | |
225 int wrap = 1; | |
226 static const char my_version[] = ZLIB_VERSION; | |
227 | |
228 ushf *overlay; | |
229 /* We overlay pending_buf and d_buf+l_buf. This works since the average | |
230 * output size for (length,distance) codes is <= 24 bits. | |
231 */ | |
232 | |
233 if (version == Z_NULL || version[0] != my_version[0] || | |
234 stream_size != sizeof(z_stream)) { | |
235 return Z_VERSION_ERROR; | |
236 } | |
237 if (strm == Z_NULL) return Z_STREAM_ERROR; | |
238 | |
239 strm->msg = Z_NULL; | |
240 if (strm->zalloc == (alloc_func)0) { | |
241 #ifdef Z_SOLO | |
242 return Z_STREAM_ERROR; | |
243 #else | |
244 strm->zalloc = zcalloc; | |
245 strm->opaque = (voidpf)0; | |
246 #endif | |
247 } | |
248 if (strm->zfree == (free_func)0) | |
249 #ifdef Z_SOLO | |
250 return Z_STREAM_ERROR; | |
251 #else | |
252 strm->zfree = zcfree; | |
253 #endif | |
254 | |
255 #ifdef FASTEST | |
256 if (level != 0) level = 1; | |
257 #else | |
258 if (level == Z_DEFAULT_COMPRESSION) level = 6; | |
259 #endif | |
260 | |
261 if (windowBits < 0) { /* suppress zlib wrapper */ | |
262 wrap = 0; | |
263 windowBits = -windowBits; | |
264 } | |
265 #ifdef GZIP | |
266 else if (windowBits > 15) { | |
267 wrap = 2; /* write gzip wrapper instead */ | |
268 windowBits -= 16; | |
269 } | |
270 #endif | |
271 if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED || | |
272 windowBits < 8 || windowBits > 15 || level < 0 || level > 9 || | |
273 strategy < 0 || strategy > Z_FIXED) { | |
274 return Z_STREAM_ERROR; | |
275 } | |
276 if (windowBits == 8) windowBits = 9; /* until 256-byte window bug fixed */ | |
277 s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state)); | |
278 if (s == Z_NULL) return Z_MEM_ERROR; | |
279 strm->state = (struct internal_state FAR *)s; | |
280 s->strm = strm; | |
281 | |
282 s->wrap = wrap; | |
283 s->gzhead = Z_NULL; | |
284 s->w_bits = windowBits; | |
285 s->w_size = 1 << s->w_bits; | |
286 s->w_mask = s->w_size - 1; | |
287 | |
288 s->hash_bits = memLevel + 7; | |
289 s->hash_size = 1 << s->hash_bits; | |
290 s->hash_mask = s->hash_size - 1; | |
291 s->hash_shift = ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH); | |
292 | |
293 s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte)); | |
294 s->prev = (Posf *) ZALLOC(strm, s->w_size, sizeof(Pos)); | |
295 s->head = (Posf *) ZALLOC(strm, s->hash_size, sizeof(Pos)); | |
296 | |
297 s->high_water = 0; /* nothing written to s->window yet */ | |
298 | |
299 s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */ | |
300 | |
301 overlay = (ushf *) ZALLOC(strm, s->lit_bufsize, sizeof(ush)+2); | |
302 s->pending_buf = (uchf *) overlay; | |
303 s->pending_buf_size = (ulg)s->lit_bufsize * (sizeof(ush)+2L); | |
304 | |
305 if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL || | |
306 s->pending_buf == Z_NULL) { | |
307 s->status = FINISH_STATE; | |
308 strm->msg = ERR_MSG(Z_MEM_ERROR); | |
309 deflateEnd (strm); | |
310 return Z_MEM_ERROR; | |
311 } | |
312 s->d_buf = overlay + s->lit_bufsize/sizeof(ush); | |
313 s->l_buf = s->pending_buf + (1+sizeof(ush))*s->lit_bufsize; | |
314 | |
315 s->level = level; | |
316 s->strategy = strategy; | |
317 s->method = (Byte)method; | |
318 | |
319 return deflateReset(strm); | |
320 } | |
321 | |
322 /* ========================================================================= */ | |
323 int ZEXPORT deflateSetDictionary (strm, dictionary, dictLength) | |
324 z_streamp strm; | |
325 const Bytef *dictionary; | |
326 uInt dictLength; | |
327 { | |
328 deflate_state *s; | |
329 uInt str, n; | |
330 int wrap; | |
331 unsigned avail; | |
332 z_const unsigned char *next; | |
333 | |
334 if (strm == Z_NULL || strm->state == Z_NULL || dictionary == Z_NULL) | |
335 return Z_STREAM_ERROR; | |
336 s = strm->state; | |
337 wrap = s->wrap; | |
338 if (wrap == 2 || (wrap == 1 && s->status != INIT_STATE) || s->lookahead) | |
339 return Z_STREAM_ERROR; | |
340 | |
341 /* when using zlib wrappers, compute Adler-32 for provided dictionary */ | |
342 if (wrap == 1) | |
343 strm->adler = adler32(strm->adler, dictionary, dictLength); | |
344 s->wrap = 0; /* avoid computing Adler-32 in read_buf */ | |
345 | |
346 /* if dictionary would fill window, just replace the history */ | |
347 if (dictLength >= s->w_size) { | |
348 if (wrap == 0) { /* already empty otherwise */ | |
349 CLEAR_HASH(s); | |
350 s->strstart = 0; | |
351 s->block_start = 0L; | |
352 s->insert = 0; | |
353 } | |
354 dictionary += dictLength - s->w_size; /* use the tail */ | |
355 dictLength = s->w_size; | |
356 } | |
357 | |
358 /* insert dictionary into window and hash */ | |
359 avail = strm->avail_in; | |
360 next = strm->next_in; | |
361 strm->avail_in = dictLength; | |
362 strm->next_in = (z_const Bytef *)dictionary; | |
363 fill_window(s); | |
364 while (s->lookahead >= MIN_MATCH) { | |
365 str = s->strstart; | |
366 n = s->lookahead - (MIN_MATCH-1); | |
367 do { | |
368 UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]); | |
369 #ifndef FASTEST | |
370 s->prev[str & s->w_mask] = s->head[s->ins_h]; | |
371 #endif | |
372 s->head[s->ins_h] = (Pos)str; | |
373 str++; | |
374 } while (--n); | |
375 s->strstart = str; | |
376 s->lookahead = MIN_MATCH-1; | |
377 fill_window(s); | |
378 } | |
379 s->strstart += s->lookahead; | |
380 s->block_start = (long)s->strstart; | |
381 s->insert = s->lookahead; | |
382 s->lookahead = 0; | |
383 s->match_length = s->prev_length = MIN_MATCH-1; | |
384 s->match_available = 0; | |
385 strm->next_in = next; | |
386 strm->avail_in = avail; | |
387 s->wrap = wrap; | |
388 return Z_OK; | |
389 } | |
390 | |
391 /* ========================================================================= */ | |
392 int ZEXPORT deflateResetKeep (strm) | |
393 z_streamp strm; | |
394 { | |
395 deflate_state *s; | |
396 | |
397 if (strm == Z_NULL || strm->state == Z_NULL || | |
398 strm->zalloc == (alloc_func)0 || strm->zfree == (free_func)0) { | |
399 return Z_STREAM_ERROR; | |
400 } | |
401 | |
402 strm->total_in = strm->total_out = 0; | |
403 strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */ | |
404 strm->data_type = Z_UNKNOWN; | |
405 | |
406 s = (deflate_state *)strm->state; | |
407 s->pending = 0; | |
408 s->pending_out = s->pending_buf; | |
409 | |
410 if (s->wrap < 0) { | |
411 s->wrap = -s->wrap; /* was made negative by deflate(..., Z_FINISH); */ | |
412 } | |
413 s->status = s->wrap ? INIT_STATE : BUSY_STATE; | |
414 strm->adler = | |
415 #ifdef GZIP | |
416 s->wrap == 2 ? crc32(0L, Z_NULL, 0) : | |
417 #endif | |
418 adler32(0L, Z_NULL, 0); | |
419 s->last_flush = Z_NO_FLUSH; | |
420 | |
421 _tr_init(s); | |
422 | |
423 return Z_OK; | |
424 } | |
425 | |
426 /* ========================================================================= */ | |
427 int ZEXPORT deflateReset (strm) | |
428 z_streamp strm; | |
429 { | |
430 int ret; | |
431 | |
432 ret = deflateResetKeep(strm); | |
433 if (ret == Z_OK) | |
434 lm_init(strm->state); | |
435 return ret; | |
436 } | |
437 | |
438 /* ========================================================================= */ | |
439 int ZEXPORT deflateSetHeader (strm, head) | |
440 z_streamp strm; | |
441 gz_headerp head; | |
442 { | |
443 if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; | |
444 if (strm->state->wrap != 2) return Z_STREAM_ERROR; | |
445 strm->state->gzhead = head; | |
446 return Z_OK; | |
447 } | |
448 | |
449 /* ========================================================================= */ | |
450 int ZEXPORT deflatePending (strm, pending, bits) | |
451 unsigned *pending; | |
452 int *bits; | |
453 z_streamp strm; | |
454 { | |
455 if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; | |
456 if (pending != Z_NULL) | |
457 *pending = strm->state->pending; | |
458 if (bits != Z_NULL) | |
459 *bits = strm->state->bi_valid; | |
460 return Z_OK; | |
461 } | |
462 | |
463 /* ========================================================================= */ | |
464 int ZEXPORT deflatePrime (strm, bits, value) | |
465 z_streamp strm; | |
466 int bits; | |
467 int value; | |
468 { | |
469 deflate_state *s; | |
470 int put; | |
471 | |
472 if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; | |
473 s = strm->state; | |
474 if ((Bytef *)(s->d_buf) < s->pending_out + ((Buf_size + 7) >> 3)) | |
475 return Z_BUF_ERROR; | |
476 do { | |
477 put = Buf_size - s->bi_valid; | |
478 if (put > bits) | |
479 put = bits; | |
480 s->bi_buf |= (ush)((value & ((1 << put) - 1)) << s->bi_valid); | |
481 s->bi_valid += put; | |
482 _tr_flush_bits(s); | |
483 value >>= put; | |
484 bits -= put; | |
485 } while (bits); | |
486 return Z_OK; | |
487 } | |
488 | |
489 /* ========================================================================= */ | |
490 int ZEXPORT deflateParams(strm, level, strategy) | |
491 z_streamp strm; | |
492 int level; | |
493 int strategy; | |
494 { | |
495 deflate_state *s; | |
496 compress_func func; | |
497 int err = Z_OK; | |
498 | |
499 if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; | |
500 s = strm->state; | |
501 | |
502 #ifdef FASTEST | |
503 if (level != 0) level = 1; | |
504 #else | |
505 if (level == Z_DEFAULT_COMPRESSION) level = 6; | |
506 #endif | |
507 if (level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) { | |
508 return Z_STREAM_ERROR; | |
509 } | |
510 func = configuration_table[s->level].func; | |
511 | |
512 if ((strategy != s->strategy || func != configuration_table[level].func) && | |
513 strm->total_in != 0) { | |
514 /* Flush the last buffer: */ | |
515 err = deflate(strm, Z_BLOCK); | |
516 if (err == Z_BUF_ERROR && s->pending == 0) | |
517 err = Z_OK; | |
518 } | |
519 if (s->level != level) { | |
520 s->level = level; | |
521 s->max_lazy_match = configuration_table[level].max_lazy; | |
522 s->good_match = configuration_table[level].good_length; | |
523 s->nice_match = configuration_table[level].nice_length; | |
524 s->max_chain_length = configuration_table[level].max_chain; | |
525 } | |
526 s->strategy = strategy; | |
527 return err; | |
528 } | |
529 | |
530 /* ========================================================================= */ | |
531 int ZEXPORT deflateTune(strm, good_length, max_lazy, nice_length, max_chain) | |
532 z_streamp strm; | |
533 int good_length; | |
534 int max_lazy; | |
535 int nice_length; | |
536 int max_chain; | |
537 { | |
538 deflate_state *s; | |
539 | |
540 if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; | |
541 s = strm->state; | |
542 s->good_match = good_length; | |
543 s->max_lazy_match = max_lazy; | |
544 s->nice_match = nice_length; | |
545 s->max_chain_length = max_chain; | |
546 return Z_OK; | |
547 } | |
548 | |
549 /* ========================================================================= | |
550 * For the default windowBits of 15 and memLevel of 8, this function returns | |
551 * a close to exact, as well as small, upper bound on the compressed size. | |
552 * They are coded as constants here for a reason--if the #define's are | |
553 * changed, then this function needs to be changed as well. The return | |
554 * value for 15 and 8 only works for those exact settings. | |
555 * | |
556 * For any setting other than those defaults for windowBits and memLevel, | |
557 * the value returned is a conservative worst case for the maximum expansion | |
558 * resulting from using fixed blocks instead of stored blocks, which deflate | |
559 * can emit on compressed data for some combinations of the parameters. | |
560 * | |
561 * This function could be more sophisticated to provide closer upper bounds for | |
562 * every combination of windowBits and memLevel. But even the conservative | |
563 * upper bound of about 14% expansion does not seem onerous for output buffer | |
564 * allocation. | |
565 */ | |
566 uLong ZEXPORT deflateBound(strm, sourceLen) | |
567 z_streamp strm; | |
568 uLong sourceLen; | |
569 { | |
570 deflate_state *s; | |
571 uLong complen, wraplen; | |
572 Bytef *str; | |
573 | |
574 /* conservative upper bound for compressed data */ | |
575 complen = sourceLen + | |
576 ((sourceLen + 7) >> 3) + ((sourceLen + 63) >> 6) + 5; | |
577 | |
578 /* if can't get parameters, return conservative bound plus zlib wrapper */ | |
579 if (strm == Z_NULL || strm->state == Z_NULL) | |
580 return complen + 6; | |
581 | |
582 /* compute wrapper length */ | |
583 s = strm->state; | |
584 switch (s->wrap) { | |
585 case 0: /* raw deflate */ | |
586 wraplen = 0; | |
587 break; | |
588 case 1: /* zlib wrapper */ | |
589 wraplen = 6 + (s->strstart ? 4 : 0); | |
590 break; | |
591 case 2: /* gzip wrapper */ | |
592 wraplen = 18; | |
593 if (s->gzhead != Z_NULL) { /* user-supplied gzip header */ | |
594 if (s->gzhead->extra != Z_NULL) | |
595 wraplen += 2 + s->gzhead->extra_len; | |
596 str = s->gzhead->name; | |
597 if (str != Z_NULL) | |
598 do { | |
599 wraplen++; | |
600 } while (*str++); | |
601 str = s->gzhead->comment; | |
602 if (str != Z_NULL) | |
603 do { | |
604 wraplen++; | |
605 } while (*str++); | |
606 if (s->gzhead->hcrc) | |
607 wraplen += 2; | |
608 } | |
609 break; | |
610 default: /* for compiler happiness */ | |
611 wraplen = 6; | |
612 } | |
613 | |
614 /* if not default parameters, return conservative bound */ | |
615 if (s->w_bits != 15 || s->hash_bits != 8 + 7) | |
616 return complen + wraplen; | |
617 | |
618 /* default settings: return tight bound for that case */ | |
619 return sourceLen + (sourceLen >> 12) + (sourceLen >> 14) + | |
620 (sourceLen >> 25) + 13 - 6 + wraplen; | |
621 } | |
622 | |
623 /* ========================================================================= | |
624 * Put a short in the pending buffer. The 16-bit value is put in MSB order. | |
625 * IN assertion: the stream state is correct and there is enough room in | |
626 * pending_buf. | |
627 */ | |
628 local void putShortMSB (s, b) | |
629 deflate_state *s; | |
630 uInt b; | |
631 { | |
632 put_byte(s, (Byte)(b >> 8)); | |
633 put_byte(s, (Byte)(b & 0xff)); | |
634 } | |
635 | |
636 /* ========================================================================= | |
637 * Flush as much pending output as possible. All deflate() output goes | |
638 * through this function so some applications may wish to modify it | |
639 * to avoid allocating a large strm->next_out buffer and copying into it. | |
640 * (See also read_buf()). | |
641 */ | |
642 local void flush_pending(strm) | |
643 z_streamp strm; | |
644 { | |
645 unsigned len; | |
646 deflate_state *s = strm->state; | |
647 | |
648 _tr_flush_bits(s); | |
649 len = s->pending; | |
650 if (len > strm->avail_out) len = strm->avail_out; | |
651 if (len == 0) return; | |
652 | |
653 zmemcpy(strm->next_out, s->pending_out, len); | |
654 strm->next_out += len; | |
655 s->pending_out += len; | |
656 strm->total_out += len; | |
657 strm->avail_out -= len; | |
658 s->pending -= len; | |
659 if (s->pending == 0) { | |
660 s->pending_out = s->pending_buf; | |
661 } | |
662 } | |
663 | |
664 /* ========================================================================= */ | |
665 int ZEXPORT deflate (strm, flush) | |
666 z_streamp strm; | |
667 int flush; | |
668 { | |
669 int old_flush; /* value of flush param for previous deflate call */ | |
670 deflate_state *s; | |
671 | |
672 if (strm == Z_NULL || strm->state == Z_NULL || | |
673 flush > Z_BLOCK || flush < 0) { | |
674 return Z_STREAM_ERROR; | |
675 } | |
676 s = strm->state; | |
677 | |
678 if (strm->next_out == Z_NULL || | |
679 (strm->next_in == Z_NULL && strm->avail_in != 0) || | |
680 (s->status == FINISH_STATE && flush != Z_FINISH)) { | |
681 ERR_RETURN(strm, Z_STREAM_ERROR); | |
682 } | |
683 if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR); | |
684 | |
685 s->strm = strm; /* just in case */ | |
686 old_flush = s->last_flush; | |
687 s->last_flush = flush; | |
688 | |
689 /* Write the header */ | |
690 if (s->status == INIT_STATE) { | |
691 #ifdef GZIP | |
692 if (s->wrap == 2) { | |
693 strm->adler = crc32(0L, Z_NULL, 0); | |
694 put_byte(s, 31); | |
695 put_byte(s, 139); | |
696 put_byte(s, 8); | |
697 if (s->gzhead == Z_NULL) { | |
698 put_byte(s, 0); | |
699 put_byte(s, 0); | |
700 put_byte(s, 0); | |
701 put_byte(s, 0); | |
702 put_byte(s, 0); | |
703 put_byte(s, s->level == 9 ? 2 : | |
704 (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ? | |
705 4 : 0)); | |
706 put_byte(s, OS_CODE); | |
707 s->status = BUSY_STATE; | |
708 } | |
709 else { | |
710 put_byte(s, (s->gzhead->text ? 1 : 0) + | |
711 (s->gzhead->hcrc ? 2 : 0) + | |
712 (s->gzhead->extra == Z_NULL ? 0 : 4) + | |
713 (s->gzhead->name == Z_NULL ? 0 : 8) + | |
714 (s->gzhead->comment == Z_NULL ? 0 : 16) | |
715 ); | |
716 put_byte(s, (Byte)(s->gzhead->time & 0xff)); | |
717 put_byte(s, (Byte)((s->gzhead->time >> 8) & 0xff)); | |
718 put_byte(s, (Byte)((s->gzhead->time >> 16) & 0xff)); | |
719 put_byte(s, (Byte)((s->gzhead->time >> 24) & 0xff)); | |
720 put_byte(s, s->level == 9 ? 2 : | |
721 (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ? | |
722 4 : 0)); | |
723 put_byte(s, s->gzhead->os & 0xff); | |
724 if (s->gzhead->extra != Z_NULL) { | |
725 put_byte(s, s->gzhead->extra_len & 0xff); | |
726 put_byte(s, (s->gzhead->extra_len >> 8) & 0xff); | |
727 } | |
728 if (s->gzhead->hcrc) | |
729 strm->adler = crc32(strm->adler, s->pending_buf, | |
730 s->pending); | |
731 s->gzindex = 0; | |
732 s->status = EXTRA_STATE; | |
733 } | |
734 } | |
735 else | |
736 #endif | |
737 { | |
738 uInt header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8; | |
739 uInt level_flags; | |
740 | |
741 if (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2) | |
742 level_flags = 0; | |
743 else if (s->level < 6) | |
744 level_flags = 1; | |
745 else if (s->level == 6) | |
746 level_flags = 2; | |
747 else | |
748 level_flags = 3; | |
749 header |= (level_flags << 6); | |
750 if (s->strstart != 0) header |= PRESET_DICT; | |
751 header += 31 - (header % 31); | |
752 | |
753 s->status = BUSY_STATE; | |
754 putShortMSB(s, header); | |
755 | |
756 /* Save the adler32 of the preset dictionary: */ | |
757 if (s->strstart != 0) { | |
758 putShortMSB(s, (uInt)(strm->adler >> 16)); | |
759 putShortMSB(s, (uInt)(strm->adler & 0xffff)); | |
760 } | |
761 strm->adler = adler32(0L, Z_NULL, 0); | |
762 } | |
763 } | |
764 #ifdef GZIP | |
765 if (s->status == EXTRA_STATE) { | |
766 if (s->gzhead->extra != Z_NULL) { | |
767 uInt beg = s->pending; /* start of bytes to update crc */ | |
768 | |
769 while (s->gzindex < (s->gzhead->extra_len & 0xffff)) { | |
770 if (s->pending == s->pending_buf_size) { | |
771 if (s->gzhead->hcrc && s->pending > beg) | |
772 strm->adler = crc32(strm->adler, s->pending_buf + beg, | |
773 s->pending - beg); | |
774 flush_pending(strm); | |
775 beg = s->pending; | |
776 if (s->pending == s->pending_buf_size) | |
777 break; | |
778 } | |
779 put_byte(s, s->gzhead->extra[s->gzindex]); | |
780 s->gzindex++; | |
781 } | |
782 if (s->gzhead->hcrc && s->pending > beg) | |
783 strm->adler = crc32(strm->adler, s->pending_buf + beg, | |
784 s->pending - beg); | |
785 if (s->gzindex == s->gzhead->extra_len) { | |
786 s->gzindex = 0; | |
787 s->status = NAME_STATE; | |
788 } | |
789 } | |
790 else | |
791 s->status = NAME_STATE; | |
792 } | |
793 if (s->status == NAME_STATE) { | |
794 if (s->gzhead->name != Z_NULL) { | |
795 uInt beg = s->pending; /* start of bytes to update crc */ | |
796 int val; | |
797 | |
798 do { | |
799 if (s->pending == s->pending_buf_size) { | |
800 if (s->gzhead->hcrc && s->pending > beg) | |
801 strm->adler = crc32(strm->adler, s->pending_buf + beg, | |
802 s->pending - beg); | |
803 flush_pending(strm); | |
804 beg = s->pending; | |
805 if (s->pending == s->pending_buf_size) { | |
806 val = 1; | |
807 break; | |
808 } | |
809 } | |
810 val = s->gzhead->name[s->gzindex++]; | |
811 put_byte(s, val); | |
812 } while (val != 0); | |
813 if (s->gzhead->hcrc && s->pending > beg) | |
814 strm->adler = crc32(strm->adler, s->pending_buf + beg, | |
815 s->pending - beg); | |
816 if (val == 0) { | |
817 s->gzindex = 0; | |
818 s->status = COMMENT_STATE; | |
819 } | |
820 } | |
821 else | |
822 s->status = COMMENT_STATE; | |
823 } | |
824 if (s->status == COMMENT_STATE) { | |
825 if (s->gzhead->comment != Z_NULL) { | |
826 uInt beg = s->pending; /* start of bytes to update crc */ | |
827 int val; | |
828 | |
829 do { | |
830 if (s->pending == s->pending_buf_size) { | |
831 if (s->gzhead->hcrc && s->pending > beg) | |
832 strm->adler = crc32(strm->adler, s->pending_buf + beg, | |
833 s->pending - beg); | |
834 flush_pending(strm); | |
835 beg = s->pending; | |
836 if (s->pending == s->pending_buf_size) { | |
837 val = 1; | |
838 break; | |
839 } | |
840 } | |
841 val = s->gzhead->comment[s->gzindex++]; | |
842 put_byte(s, val); | |
843 } while (val != 0); | |
844 if (s->gzhead->hcrc && s->pending > beg) | |
845 strm->adler = crc32(strm->adler, s->pending_buf + beg, | |
846 s->pending - beg); | |
847 if (val == 0) | |
848 s->status = HCRC_STATE; | |
849 } | |
850 else | |
851 s->status = HCRC_STATE; | |
852 } | |
853 if (s->status == HCRC_STATE) { | |
854 if (s->gzhead->hcrc) { | |
855 if (s->pending + 2 > s->pending_buf_size) | |
856 flush_pending(strm); | |
857 if (s->pending + 2 <= s->pending_buf_size) { | |
858 put_byte(s, (Byte)(strm->adler & 0xff)); | |
859 put_byte(s, (Byte)((strm->adler >> 8) & 0xff)); | |
860 strm->adler = crc32(0L, Z_NULL, 0); | |
861 s->status = BUSY_STATE; | |
862 } | |
863 } | |
864 else | |
865 s->status = BUSY_STATE; | |
866 } | |
867 #endif | |
868 | |
869 /* Flush as much pending output as possible */ | |
870 if (s->pending != 0) { | |
871 flush_pending(strm); | |
872 if (strm->avail_out == 0) { | |
873 /* Since avail_out is 0, deflate will be called again with | |
874 * more output space, but possibly with both pending and | |
875 * avail_in equal to zero. There won't be anything to do, | |
876 * but this is not an error situation so make sure we | |
877 * return OK instead of BUF_ERROR at next call of deflate: | |
878 */ | |
879 s->last_flush = -1; | |
880 return Z_OK; | |
881 } | |
882 | |
883 /* Make sure there is something to do and avoid duplicate consecutive | |
884 * flushes. For repeated and useless calls with Z_FINISH, we keep | |
885 * returning Z_STREAM_END instead of Z_BUF_ERROR. | |
886 */ | |
887 } else if (strm->avail_in == 0 && RANK(flush) <= RANK(old_flush) && | |
888 flush != Z_FINISH) { | |
889 ERR_RETURN(strm, Z_BUF_ERROR); | |
890 } | |
891 | |
892 /* User must not provide more input after the first FINISH: */ | |
893 if (s->status == FINISH_STATE && strm->avail_in != 0) { | |
894 ERR_RETURN(strm, Z_BUF_ERROR); | |
895 } | |
896 | |
897 /* Start a new block or continue the current one. | |
898 */ | |
899 if (strm->avail_in != 0 || s->lookahead != 0 || | |
900 (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) { | |
901 block_state bstate; | |
902 | |
903 bstate = s->strategy == Z_HUFFMAN_ONLY ? deflate_huff(s, flush) : | |
904 (s->strategy == Z_RLE ? deflate_rle(s, flush) : | |
905 (*(configuration_table[s->level].func))(s, flush)); | |
906 | |
907 if (bstate == finish_started || bstate == finish_done) { | |
908 s->status = FINISH_STATE; | |
909 } | |
910 if (bstate == need_more || bstate == finish_started) { | |
911 if (strm->avail_out == 0) { | |
912 s->last_flush = -1; /* avoid BUF_ERROR next call, see above */ | |
913 } | |
914 return Z_OK; | |
915 /* If flush != Z_NO_FLUSH && avail_out == 0, the next call | |
916 * of deflate should use the same flush parameter to make sure | |
917 * that the flush is complete. So we don't have to output an | |
918 * empty block here, this will be done at next call. This also | |
919 * ensures that for a very small output buffer, we emit at most | |
920 * one empty block. | |
921 */ | |
922 } | |
923 if (bstate == block_done) { | |
924 if (flush == Z_PARTIAL_FLUSH) { | |
925 _tr_align(s); | |
926 } else if (flush != Z_BLOCK) { /* FULL_FLUSH or SYNC_FLUSH */ | |
927 _tr_stored_block(s, (char*)0, 0L, 0); | |
928 /* For a full flush, this empty block will be recognized | |
929 * as a special marker by inflate_sync(). | |
930 */ | |
931 if (flush == Z_FULL_FLUSH) { | |
932 CLEAR_HASH(s); /* forget history */ | |
933 if (s->lookahead == 0) { | |
934 s->strstart = 0; | |
935 s->block_start = 0L; | |
936 s->insert = 0; | |
937 } | |
938 } | |
939 } | |
940 flush_pending(strm); | |
941 if (strm->avail_out == 0) { | |
942 s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */ | |
943 return Z_OK; | |
944 } | |
945 } | |
946 } | |
947 Assert(strm->avail_out > 0, "bug2"); | |
948 | |
949 if (flush != Z_FINISH) return Z_OK; | |
950 if (s->wrap <= 0) return Z_STREAM_END; | |
951 | |
952 /* Write the trailer */ | |
953 #ifdef GZIP | |
954 if (s->wrap == 2) { | |
955 put_byte(s, (Byte)(strm->adler & 0xff)); | |
956 put_byte(s, (Byte)((strm->adler >> 8) & 0xff)); | |
957 put_byte(s, (Byte)((strm->adler >> 16) & 0xff)); | |
958 put_byte(s, (Byte)((strm->adler >> 24) & 0xff)); | |
959 put_byte(s, (Byte)(strm->total_in & 0xff)); | |
960 put_byte(s, (Byte)((strm->total_in >> 8) & 0xff)); | |
961 put_byte(s, (Byte)((strm->total_in >> 16) & 0xff)); | |
962 put_byte(s, (Byte)((strm->total_in >> 24) & 0xff)); | |
963 } | |
964 else | |
965 #endif | |
966 { | |
967 putShortMSB(s, (uInt)(strm->adler >> 16)); | |
968 putShortMSB(s, (uInt)(strm->adler & 0xffff)); | |
969 } | |
970 flush_pending(strm); | |
971 /* If avail_out is zero, the application will call deflate again | |
972 * to flush the rest. | |
973 */ | |
974 if (s->wrap > 0) s->wrap = -s->wrap; /* write the trailer only once! */ | |
975 return s->pending != 0 ? Z_OK : Z_STREAM_END; | |
976 } | |
977 | |
978 /* ========================================================================= */ | |
979 int ZEXPORT deflateEnd (strm) | |
980 z_streamp strm; | |
981 { | |
982 int status; | |
983 | |
984 if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; | |
985 | |
986 status = strm->state->status; | |
987 if (status != INIT_STATE && | |
988 status != EXTRA_STATE && | |
989 status != NAME_STATE && | |
990 status != COMMENT_STATE && | |
991 status != HCRC_STATE && | |
992 status != BUSY_STATE && | |
993 status != FINISH_STATE) { | |
994 return Z_STREAM_ERROR; | |
995 } | |
996 | |
997 /* Deallocate in reverse order of allocations: */ | |
998 TRY_FREE(strm, strm->state->pending_buf); | |
999 TRY_FREE(strm, strm->state->head); | |
1000 TRY_FREE(strm, strm->state->prev); | |
1001 TRY_FREE(strm, strm->state->window); | |
1002 | |
1003 ZFREE(strm, strm->state); | |
1004 strm->state = Z_NULL; | |
1005 | |
1006 return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK; | |
1007 } | |
1008 | |
1009 /* ========================================================================= | |
1010 * Copy the source state to the destination state. | |
1011 * To simplify the source, this is not supported for 16-bit MSDOS (which | |
1012 * doesn't have enough memory anyway to duplicate compression states). | |
1013 */ | |
1014 int ZEXPORT deflateCopy (dest, source) | |
1015 z_streamp dest; | |
1016 z_streamp source; | |
1017 { | |
1018 #ifdef MAXSEG_64K | |
1019 return Z_STREAM_ERROR; | |
1020 #else | |
1021 deflate_state *ds; | |
1022 deflate_state *ss; | |
1023 ushf *overlay; | |
1024 | |
1025 | |
1026 if (source == Z_NULL || dest == Z_NULL || source->state == Z_NULL) { | |
1027 return Z_STREAM_ERROR; | |
1028 } | |
1029 | |
1030 ss = source->state; | |
1031 | |
1032 zmemcpy((voidpf)dest, (voidpf)source, sizeof(z_stream)); | |
1033 | |
1034 ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state)); | |
1035 if (ds == Z_NULL) return Z_MEM_ERROR; | |
1036 dest->state = (struct internal_state FAR *) ds; | |
1037 zmemcpy((voidpf)ds, (voidpf)ss, sizeof(deflate_state)); | |
1038 ds->strm = dest; | |
1039 | |
1040 ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte)); | |
1041 ds->prev = (Posf *) ZALLOC(dest, ds->w_size, sizeof(Pos)); | |
1042 ds->head = (Posf *) ZALLOC(dest, ds->hash_size, sizeof(Pos)); | |
1043 overlay = (ushf *) ZALLOC(dest, ds->lit_bufsize, sizeof(ush)+2); | |
1044 ds->pending_buf = (uchf *) overlay; | |
1045 | |
1046 if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL || | |
1047 ds->pending_buf == Z_NULL) { | |
1048 deflateEnd (dest); | |
1049 return Z_MEM_ERROR; | |
1050 } | |
1051 /* following zmemcpy do not work for 16-bit MSDOS */ | |
1052 zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte)); | |
1053 zmemcpy((voidpf)ds->prev, (voidpf)ss->prev, ds->w_size * sizeof(Pos)); | |
1054 zmemcpy((voidpf)ds->head, (voidpf)ss->head, ds->hash_size * sizeof(Pos)); | |
1055 zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size); | |
1056 | |
1057 ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf); | |
1058 ds->d_buf = overlay + ds->lit_bufsize/sizeof(ush); | |
1059 ds->l_buf = ds->pending_buf + (1+sizeof(ush))*ds->lit_bufsize; | |
1060 | |
1061 ds->l_desc.dyn_tree = ds->dyn_ltree; | |
1062 ds->d_desc.dyn_tree = ds->dyn_dtree; | |
1063 ds->bl_desc.dyn_tree = ds->bl_tree; | |
1064 | |
1065 return Z_OK; | |
1066 #endif /* MAXSEG_64K */ | |
1067 } | |
1068 | |
1069 /* =========================================================================== | |
1070 * Read a new buffer from the current input stream, update the adler32 | |
1071 * and total number of bytes read. All deflate() input goes through | |
1072 * this function so some applications may wish to modify it to avoid | |
1073 * allocating a large strm->next_in buffer and copying from it. | |
1074 * (See also flush_pending()). | |
1075 */ | |
1076 local int read_buf(strm, buf, size) | |
1077 z_streamp strm; | |
1078 Bytef *buf; | |
1079 unsigned size; | |
1080 { | |
1081 unsigned len = strm->avail_in; | |
1082 | |
1083 if (len > size) len = size; | |
1084 if (len == 0) return 0; | |
1085 | |
1086 strm->avail_in -= len; | |
1087 | |
1088 zmemcpy(buf, strm->next_in, len); | |
1089 if (strm->state->wrap == 1) { | |
1090 strm->adler = adler32(strm->adler, buf, len); | |
1091 } | |
1092 #ifdef GZIP | |
1093 else if (strm->state->wrap == 2) { | |
1094 strm->adler = crc32(strm->adler, buf, len); | |
1095 } | |
1096 #endif | |
1097 strm->next_in += len; | |
1098 strm->total_in += len; | |
1099 | |
1100 return (int)len; | |
1101 } | |
1102 | |
1103 /* =========================================================================== | |
1104 * Initialize the "longest match" routines for a new zlib stream | |
1105 */ | |
1106 local void lm_init (s) | |
1107 deflate_state *s; | |
1108 { | |
1109 s->window_size = (ulg)2L*s->w_size; | |
1110 | |
1111 CLEAR_HASH(s); | |
1112 | |
1113 /* Set the default configuration parameters: | |
1114 */ | |
1115 s->max_lazy_match = configuration_table[s->level].max_lazy; | |
1116 s->good_match = configuration_table[s->level].good_length; | |
1117 s->nice_match = configuration_table[s->level].nice_length; | |
1118 s->max_chain_length = configuration_table[s->level].max_chain; | |
1119 | |
1120 s->strstart = 0; | |
1121 s->block_start = 0L; | |
1122 s->lookahead = 0; | |
1123 s->insert = 0; | |
1124 s->match_length = s->prev_length = MIN_MATCH-1; | |
1125 s->match_available = 0; | |
1126 s->ins_h = 0; | |
1127 #ifndef FASTEST | |
1128 #ifdef ASMV | |
1129 match_init(); /* initialize the asm code */ | |
1130 #endif | |
1131 #endif | |
1132 } | |
1133 | |
1134 #ifndef FASTEST | |
1135 /* =========================================================================== | |
1136 * Set match_start to the longest match starting at the given string and | |
1137 * return its length. Matches shorter or equal to prev_length are discarded, | |
1138 * in which case the result is equal to prev_length and match_start is | |
1139 * garbage. | |
1140 * IN assertions: cur_match is the head of the hash chain for the current | |
1141 * string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1 | |
1142 * OUT assertion: the match length is not greater than s->lookahead. | |
1143 */ | |
1144 #ifndef ASMV | |
1145 /* For 80x86 and 680x0, an optimized version will be provided in match.asm or | |
1146 * match.S. The code will be functionally equivalent. | |
1147 */ | |
1148 local uInt longest_match(s, cur_match) | |
1149 deflate_state *s; | |
1150 IPos cur_match; /* current match */ | |
1151 { | |
1152 unsigned chain_length = s->max_chain_length;/* max hash chain length */ | |
1153 register Bytef *scan = s->window + s->strstart; /* current string */ | |
1154 register Bytef *match; /* matched string */ | |
1155 register int len; /* length of current match */ | |
1156 int best_len = s->prev_length; /* best match length so far */ | |
1157 int nice_match = s->nice_match; /* stop if match long enough */ | |
1158 IPos limit = s->strstart > (IPos)MAX_DIST(s) ? | |
1159 s->strstart - (IPos)MAX_DIST(s) : NIL; | |
1160 /* Stop when cur_match becomes <= limit. To simplify the code, | |
1161 * we prevent matches with the string of window index 0. | |
1162 */ | |
1163 Posf *prev = s->prev; | |
1164 uInt wmask = s->w_mask; | |
1165 | |
1166 #ifdef UNALIGNED_OK | |
1167 /* Compare two bytes at a time. Note: this is not always beneficial. | |
1168 * Try with and without -DUNALIGNED_OK to check. | |
1169 */ | |
1170 register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1; | |
1171 register ush scan_start = *(ushf*)scan; | |
1172 register ush scan_end = *(ushf*)(scan+best_len-1); | |
1173 #else | |
1174 register Bytef *strend = s->window + s->strstart + MAX_MATCH; | |
1175 register Byte scan_end1 = scan[best_len-1]; | |
1176 register Byte scan_end = scan[best_len]; | |
1177 #endif | |
1178 | |
1179 /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16. | |
1180 * It is easy to get rid of this optimization if necessary. | |
1181 */ | |
1182 Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever"); | |
1183 | |
1184 /* Do not waste too much time if we already have a good match: */ | |
1185 if (s->prev_length >= s->good_match) { | |
1186 chain_length >>= 2; | |
1187 } | |
1188 /* Do not look for matches beyond the end of the input. This is necessary | |
1189 * to make deflate deterministic. | |
1190 */ | |
1191 if ((uInt)nice_match > s->lookahead) nice_match = s->lookahead; | |
1192 | |
1193 Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead"); | |
1194 | |
1195 do { | |
1196 Assert(cur_match < s->strstart, "no future"); | |
1197 match = s->window + cur_match; | |
1198 | |
1199 /* Skip to next match if the match length cannot increase | |
1200 * or if the match length is less than 2. Note that the checks below | |
1201 * for insufficient lookahead only occur occasionally for performance | |
1202 * reasons. Therefore uninitialized memory will be accessed, and | |
1203 * conditional jumps will be made that depend on those values. | |
1204 * However the length of the match is limited to the lookahead, so | |
1205 * the output of deflate is not affected by the uninitialized values. | |
1206 */ | |
1207 #if (defined(UNALIGNED_OK) && MAX_MATCH == 258) | |
1208 /* This code assumes sizeof(unsigned short) == 2. Do not use | |
1209 * UNALIGNED_OK if your compiler uses a different size. | |
1210 */ | |
1211 if (*(ushf*)(match+best_len-1) != scan_end || | |
1212 *(ushf*)match != scan_start) continue; | |
1213 | |
1214 /* It is not necessary to compare scan[2] and match[2] since they are | |
1215 * always equal when the other bytes match, given that the hash keys | |
1216 * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at | |
1217 * strstart+3, +5, ... up to strstart+257. We check for insufficient | |
1218 * lookahead only every 4th comparison; the 128th check will be made | |
1219 * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is | |
1220 * necessary to put more guard bytes at the end of the window, or | |
1221 * to check more often for insufficient lookahead. | |
1222 */ | |
1223 Assert(scan[2] == match[2], "scan[2]?"); | |
1224 scan++, match++; | |
1225 do { | |
1226 } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) && | |
1227 *(ushf*)(scan+=2) == *(ushf*)(match+=2) && | |
1228 *(ushf*)(scan+=2) == *(ushf*)(match+=2) && | |
1229 *(ushf*)(scan+=2) == *(ushf*)(match+=2) && | |
1230 scan < strend); | |
1231 /* The funny "do {}" generates better code on most compilers */ | |
1232 | |
1233 /* Here, scan <= window+strstart+257 */ | |
1234 Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan"); | |
1235 if (*scan == *match) scan++; | |
1236 | |
1237 len = (MAX_MATCH - 1) - (int)(strend-scan); | |
1238 scan = strend - (MAX_MATCH-1); | |
1239 | |
1240 #else /* UNALIGNED_OK */ | |
1241 | |
1242 if (match[best_len] != scan_end || | |
1243 match[best_len-1] != scan_end1 || | |
1244 *match != *scan || | |
1245 *++match != scan[1]) continue; | |
1246 | |
1247 /* The check at best_len-1 can be removed because it will be made | |
1248 * again later. (This heuristic is not always a win.) | |
1249 * It is not necessary to compare scan[2] and match[2] since they | |
1250 * are always equal when the other bytes match, given that | |
1251 * the hash keys are equal and that HASH_BITS >= 8. | |
1252 */ | |
1253 scan += 2, match++; | |
1254 Assert(*scan == *match, "match[2]?"); | |
1255 | |
1256 /* We check for insufficient lookahead only every 8th comparison; | |
1257 * the 256th check will be made at strstart+258. | |
1258 */ | |
1259 do { | |
1260 } while (*++scan == *++match && *++scan == *++match && | |
1261 *++scan == *++match && *++scan == *++match && | |
1262 *++scan == *++match && *++scan == *++match && | |
1263 *++scan == *++match && *++scan == *++match && | |
1264 scan < strend); | |
1265 | |
1266 Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan"); | |
1267 | |
1268 len = MAX_MATCH - (int)(strend - scan); | |
1269 scan = strend - MAX_MATCH; | |
1270 | |
1271 #endif /* UNALIGNED_OK */ | |
1272 | |
1273 if (len > best_len) { | |
1274 s->match_start = cur_match; | |
1275 best_len = len; | |
1276 if (len >= nice_match) break; | |
1277 #ifdef UNALIGNED_OK | |
1278 scan_end = *(ushf*)(scan+best_len-1); | |
1279 #else | |
1280 scan_end1 = scan[best_len-1]; | |
1281 scan_end = scan[best_len]; | |
1282 #endif | |
1283 } | |
1284 } while ((cur_match = prev[cur_match & wmask]) > limit | |
1285 && --chain_length != 0); | |
1286 | |
1287 if ((uInt)best_len <= s->lookahead) return (uInt)best_len; | |
1288 return s->lookahead; | |
1289 } | |
1290 #endif /* ASMV */ | |
1291 | |
1292 #else /* FASTEST */ | |
1293 | |
1294 /* --------------------------------------------------------------------------- | |
1295 * Optimized version for FASTEST only | |
1296 */ | |
1297 local uInt longest_match(s, cur_match) | |
1298 deflate_state *s; | |
1299 IPos cur_match; /* current match */ | |
1300 { | |
1301 register Bytef *scan = s->window + s->strstart; /* current string */ | |
1302 register Bytef *match; /* matched string */ | |
1303 register int len; /* length of current match */ | |
1304 register Bytef *strend = s->window + s->strstart + MAX_MATCH; | |
1305 | |
1306 /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16. | |
1307 * It is easy to get rid of this optimization if necessary. | |
1308 */ | |
1309 Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever"); | |
1310 | |
1311 Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead"); | |
1312 | |
1313 Assert(cur_match < s->strstart, "no future"); | |
1314 | |
1315 match = s->window + cur_match; | |
1316 | |
1317 /* Return failure if the match length is less than 2: | |
1318 */ | |
1319 if (match[0] != scan[0] || match[1] != scan[1]) return MIN_MATCH-1; | |
1320 | |
1321 /* The check at best_len-1 can be removed because it will be made | |
1322 * again later. (This heuristic is not always a win.) | |
1323 * It is not necessary to compare scan[2] and match[2] since they | |
1324 * are always equal when the other bytes match, given that | |
1325 * the hash keys are equal and that HASH_BITS >= 8. | |
1326 */ | |
1327 scan += 2, match += 2; | |
1328 Assert(*scan == *match, "match[2]?"); | |
1329 | |
1330 /* We check for insufficient lookahead only every 8th comparison; | |
1331 * the 256th check will be made at strstart+258. | |
1332 */ | |
1333 do { | |
1334 } while (*++scan == *++match && *++scan == *++match && | |
1335 *++scan == *++match && *++scan == *++match && | |
1336 *++scan == *++match && *++scan == *++match && | |
1337 *++scan == *++match && *++scan == *++match && | |
1338 scan < strend); | |
1339 | |
1340 Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan"); | |
1341 | |
1342 len = MAX_MATCH - (int)(strend - scan); | |
1343 | |
1344 if (len < MIN_MATCH) return MIN_MATCH - 1; | |
1345 | |
1346 s->match_start = cur_match; | |
1347 return (uInt)len <= s->lookahead ? (uInt)len : s->lookahead; | |
1348 } | |
1349 | |
1350 #endif /* FASTEST */ | |
1351 | |
1352 #ifdef DEBUG | |
1353 /* =========================================================================== | |
1354 * Check that the match at match_start is indeed a match. | |
1355 */ | |
1356 local void check_match(s, start, match, length) | |
1357 deflate_state *s; | |
1358 IPos start, match; | |
1359 int length; | |
1360 { | |
1361 /* check that the match is indeed a match */ | |
1362 if (zmemcmp(s->window + match, | |
1363 s->window + start, length) != EQUAL) { | |
1364 fprintf(stderr, " start %u, match %u, length %d\n", | |
1365 start, match, length); | |
1366 do { | |
1367 fprintf(stderr, "%c%c", s->window[match++], s->window[start++]); | |
1368 } while (--length != 0); | |
1369 z_error("invalid match"); | |
1370 } | |
1371 if (z_verbose > 1) { | |
1372 fprintf(stderr,"\\[%d,%d]", start-match, length); | |
1373 do { putc(s->window[start++], stderr); } while (--length != 0); | |
1374 } | |
1375 } | |
1376 #else | |
1377 # define check_match(s, start, match, length) | |
1378 #endif /* DEBUG */ | |
1379 | |
1380 /* =========================================================================== | |
1381 * Fill the window when the lookahead becomes insufficient. | |
1382 * Updates strstart and lookahead. | |
1383 * | |
1384 * IN assertion: lookahead < MIN_LOOKAHEAD | |
1385 * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD | |
1386 * At least one byte has been read, or avail_in == 0; reads are | |
1387 * performed for at least two bytes (required for the zip translate_eol | |
1388 * option -- not supported here). | |
1389 */ | |
1390 local void fill_window(s) | |
1391 deflate_state *s; | |
1392 { | |
1393 register unsigned n, m; | |
1394 register Posf *p; | |
1395 unsigned more; /* Amount of free space at the end of the window. */ | |
1396 uInt wsize = s->w_size; | |
1397 | |
1398 Assert(s->lookahead < MIN_LOOKAHEAD, "already enough lookahead"); | |
1399 | |
1400 do { | |
1401 more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart); | |
1402 | |
1403 /* Deal with !@#$% 64K limit: */ | |
1404 if (sizeof(int) <= 2) { | |
1405 if (more == 0 && s->strstart == 0 && s->lookahead == 0) { | |
1406 more = wsize; | |
1407 | |
1408 } else if (more == (unsigned)(-1)) { | |
1409 /* Very unlikely, but possible on 16 bit machine if | |
1410 * strstart == 0 && lookahead == 1 (input done a byte at time) | |
1411 */ | |
1412 more--; | |
1413 } | |
1414 } | |
1415 | |
1416 /* If the window is almost full and there is insufficient lookahead, | |
1417 * move the upper half to the lower one to make room in the upper half. | |
1418 */ | |
1419 if (s->strstart >= wsize+MAX_DIST(s)) { | |
1420 | |
1421 zmemcpy(s->window, s->window+wsize, (unsigned)wsize); | |
1422 s->match_start -= wsize; | |
1423 s->strstart -= wsize; /* we now have strstart >= MAX_DIST */ | |
1424 s->block_start -= (long) wsize; | |
1425 | |
1426 /* Slide the hash table (could be avoided with 32 bit values | |
1427 at the expense of memory usage). We slide even when level == 0 | |
1428 to keep the hash table consistent if we switch back to level > 0 | |
1429 later. (Using level 0 permanently is not an optimal usage of | |
1430 zlib, so we don't care about this pathological case.) | |
1431 */ | |
1432 n = s->hash_size; | |
1433 p = &s->head[n]; | |
1434 do { | |
1435 m = *--p; | |
1436 *p = (Pos)(m >= wsize ? m-wsize : NIL); | |
1437 } while (--n); | |
1438 | |
1439 n = wsize; | |
1440 #ifndef FASTEST | |
1441 p = &s->prev[n]; | |
1442 do { | |
1443 m = *--p; | |
1444 *p = (Pos)(m >= wsize ? m-wsize : NIL); | |
1445 /* If n is not on any hash chain, prev[n] is garbage but | |
1446 * its value will never be used. | |
1447 */ | |
1448 } while (--n); | |
1449 #endif | |
1450 more += wsize; | |
1451 } | |
1452 if (s->strm->avail_in == 0) break; | |
1453 | |
1454 /* If there was no sliding: | |
1455 * strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 && | |
1456 * more == window_size - lookahead - strstart | |
1457 * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1) | |
1458 * => more >= window_size - 2*WSIZE + 2 | |
1459 * In the BIG_MEM or MMAP case (not yet supported), | |
1460 * window_size == input_size + MIN_LOOKAHEAD && | |
1461 * strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD. | |
1462 * Otherwise, window_size == 2*WSIZE so more >= 2. | |
1463 * If there was sliding, more >= WSIZE. So in all cases, more >= 2. | |
1464 */ | |
1465 Assert(more >= 2, "more < 2"); | |
1466 | |
1467 n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more); | |
1468 s->lookahead += n; | |
1469 | |
1470 /* Initialize the hash value now that we have some input: */ | |
1471 if (s->lookahead + s->insert >= MIN_MATCH) { | |
1472 uInt str = s->strstart - s->insert; | |
1473 s->ins_h = s->window[str]; | |
1474 UPDATE_HASH(s, s->ins_h, s->window[str + 1]); | |
1475 #if MIN_MATCH != 3 | |
1476 Call UPDATE_HASH() MIN_MATCH-3 more times | |
1477 #endif | |
1478 while (s->insert) { | |
1479 UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]); | |
1480 #ifndef FASTEST | |
1481 s->prev[str & s->w_mask] = s->head[s->ins_h]; | |
1482 #endif | |
1483 s->head[s->ins_h] = (Pos)str; | |
1484 str++; | |
1485 s->insert--; | |
1486 if (s->lookahead + s->insert < MIN_MATCH) | |
1487 break; | |
1488 } | |
1489 } | |
1490 /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage, | |
1491 * but this is not important since only literal bytes will be emitted. | |
1492 */ | |
1493 | |
1494 } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0); | |
1495 | |
1496 /* If the WIN_INIT bytes after the end of the current data have never been | |
1497 * written, then zero those bytes in order to avoid memory check reports of | |
1498 * the use of uninitialized (or uninitialised as Julian writes) bytes by | |
1499 * the longest match routines. Update the high water mark for the next | |
1500 * time through here. WIN_INIT is set to MAX_MATCH since the longest match | |
1501 * routines allow scanning to strstart + MAX_MATCH, ignoring lookahead. | |
1502 */ | |
1503 if (s->high_water < s->window_size) { | |
1504 ulg curr = s->strstart + (ulg)(s->lookahead); | |
1505 ulg init; | |
1506 | |
1507 if (s->high_water < curr) { | |
1508 /* Previous high water mark below current data -- zero WIN_INIT | |
1509 * bytes or up to end of window, whichever is less. | |
1510 */ | |
1511 init = s->window_size - curr; | |
1512 if (init > WIN_INIT) | |
1513 init = WIN_INIT; | |
1514 zmemzero(s->window + curr, (unsigned)init); | |
1515 s->high_water = curr + init; | |
1516 } | |
1517 else if (s->high_water < (ulg)curr + WIN_INIT) { | |
1518 /* High water mark at or above current data, but below current data | |
1519 * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up | |
1520 * to end of window, whichever is less. | |
1521 */ | |
1522 init = (ulg)curr + WIN_INIT - s->high_water; | |
1523 if (init > s->window_size - s->high_water) | |
1524 init = s->window_size - s->high_water; | |
1525 zmemzero(s->window + s->high_water, (unsigned)init); | |
1526 s->high_water += init; | |
1527 } | |
1528 } | |
1529 | |
1530 Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD, | |
1531 "not enough room for search"); | |
1532 } | |
1533 | |
1534 /* =========================================================================== | |
1535 * Flush the current block, with given end-of-file flag. | |
1536 * IN assertion: strstart is set to the end of the current match. | |
1537 */ | |
1538 #define FLUSH_BLOCK_ONLY(s, last) { \ | |
1539 _tr_flush_block(s, (s->block_start >= 0L ? \ | |
1540 (charf *)&s->window[(unsigned)s->block_start] : \ | |
1541 (charf *)Z_NULL), \ | |
1542 (ulg)((long)s->strstart - s->block_start), \ | |
1543 (last)); \ | |
1544 s->block_start = s->strstart; \ | |
1545 flush_pending(s->strm); \ | |
1546 Tracev((stderr,"[FLUSH]")); \ | |
1547 } | |
1548 | |
1549 /* Same but force premature exit if necessary. */ | |
1550 #define FLUSH_BLOCK(s, last) { \ | |
1551 FLUSH_BLOCK_ONLY(s, last); \ | |
1552 if (s->strm->avail_out == 0) return (last) ? finish_started : need_more; \ | |
1553 } | |
1554 | |
1555 /* =========================================================================== | |
1556 * Copy without compression as much as possible from the input stream, return | |
1557 * the current block state. | |
1558 * This function does not insert new strings in the dictionary since | |
1559 * uncompressible data is probably not useful. This function is used | |
1560 * only for the level=0 compression option. | |
1561 * NOTE: this function should be optimized to avoid extra copying from | |
1562 * window to pending_buf. | |
1563 */ | |
1564 local block_state deflate_stored(s, flush) | |
1565 deflate_state *s; | |
1566 int flush; | |
1567 { | |
1568 /* Stored blocks are limited to 0xffff bytes, pending_buf is limited | |
1569 * to pending_buf_size, and each stored block has a 5 byte header: | |
1570 */ | |
1571 ulg max_block_size = 0xffff; | |
1572 ulg max_start; | |
1573 | |
1574 if (max_block_size > s->pending_buf_size - 5) { | |
1575 max_block_size = s->pending_buf_size - 5; | |
1576 } | |
1577 | |
1578 /* Copy as much as possible from input to output: */ | |
1579 for (;;) { | |
1580 /* Fill the window as much as possible: */ | |
1581 if (s->lookahead <= 1) { | |
1582 | |
1583 Assert(s->strstart < s->w_size+MAX_DIST(s) || | |
1584 s->block_start >= (long)s->w_size, "slide too late"); | |
1585 | |
1586 fill_window(s); | |
1587 if (s->lookahead == 0 && flush == Z_NO_FLUSH) return need_more; | |
1588 | |
1589 if (s->lookahead == 0) break; /* flush the current block */ | |
1590 } | |
1591 Assert(s->block_start >= 0L, "block gone"); | |
1592 | |
1593 s->strstart += s->lookahead; | |
1594 s->lookahead = 0; | |
1595 | |
1596 /* Emit a stored block if pending_buf will be full: */ | |
1597 max_start = s->block_start + max_block_size; | |
1598 if (s->strstart == 0 || (ulg)s->strstart >= max_start) { | |
1599 /* strstart == 0 is possible when wraparound on 16-bit machine */ | |
1600 s->lookahead = (uInt)(s->strstart - max_start); | |
1601 s->strstart = (uInt)max_start; | |
1602 FLUSH_BLOCK(s, 0); | |
1603 } | |
1604 /* Flush if we may have to slide, otherwise block_start may become | |
1605 * negative and the data will be gone: | |
1606 */ | |
1607 if (s->strstart - (uInt)s->block_start >= MAX_DIST(s)) { | |
1608 FLUSH_BLOCK(s, 0); | |
1609 } | |
1610 } | |
1611 s->insert = 0; | |
1612 if (flush == Z_FINISH) { | |
1613 FLUSH_BLOCK(s, 1); | |
1614 return finish_done; | |
1615 } | |
1616 if ((long)s->strstart > s->block_start) | |
1617 FLUSH_BLOCK(s, 0); | |
1618 return block_done; | |
1619 } | |
1620 | |
1621 /* =========================================================================== | |
1622 * Compress as much as possible from the input stream, return the current | |
1623 * block state. | |
1624 * This function does not perform lazy evaluation of matches and inserts | |
1625 * new strings in the dictionary only for unmatched strings or for short | |
1626 * matches. It is used only for the fast compression options. | |
1627 */ | |
1628 local block_state deflate_fast(s, flush) | |
1629 deflate_state *s; | |
1630 int flush; | |
1631 { | |
1632 IPos hash_head; /* head of the hash chain */ | |
1633 int bflush; /* set if current block must be flushed */ | |
1634 | |
1635 for (;;) { | |
1636 /* Make sure that we always have enough lookahead, except | |
1637 * at the end of the input file. We need MAX_MATCH bytes | |
1638 * for the next match, plus MIN_MATCH bytes to insert the | |
1639 * string following the next match. | |
1640 */ | |
1641 if (s->lookahead < MIN_LOOKAHEAD) { | |
1642 fill_window(s); | |
1643 if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) { | |
1644 return need_more; | |
1645 } | |
1646 if (s->lookahead == 0) break; /* flush the current block */ | |
1647 } | |
1648 | |
1649 /* Insert the string window[strstart .. strstart+2] in the | |
1650 * dictionary, and set hash_head to the head of the hash chain: | |
1651 */ | |
1652 hash_head = NIL; | |
1653 if (s->lookahead >= MIN_MATCH) { | |
1654 INSERT_STRING(s, s->strstart, hash_head); | |
1655 } | |
1656 | |
1657 /* Find the longest match, discarding those <= prev_length. | |
1658 * At this point we have always match_length < MIN_MATCH | |
1659 */ | |
1660 if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) { | |
1661 /* To simplify the code, we prevent matches with the string | |
1662 * of window index 0 (in particular we have to avoid a match | |
1663 * of the string with itself at the start of the input file). | |
1664 */ | |
1665 s->match_length = longest_match (s, hash_head); | |
1666 /* longest_match() sets match_start */ | |
1667 } | |
1668 if (s->match_length >= MIN_MATCH) { | |
1669 check_match(s, s->strstart, s->match_start, s->match_length); | |
1670 | |
1671 _tr_tally_dist(s, s->strstart - s->match_start, | |
1672 s->match_length - MIN_MATCH, bflush); | |
1673 | |
1674 s->lookahead -= s->match_length; | |
1675 | |
1676 /* Insert new strings in the hash table only if the match length | |
1677 * is not too large. This saves time but degrades compression. | |
1678 */ | |
1679 #ifndef FASTEST | |
1680 if (s->match_length <= s->max_insert_length && | |
1681 s->lookahead >= MIN_MATCH) { | |
1682 s->match_length--; /* string at strstart already in table */ | |
1683 do { | |
1684 s->strstart++; | |
1685 INSERT_STRING(s, s->strstart, hash_head); | |
1686 /* strstart never exceeds WSIZE-MAX_MATCH, so there are | |
1687 * always MIN_MATCH bytes ahead. | |
1688 */ | |
1689 } while (--s->match_length != 0); | |
1690 s->strstart++; | |
1691 } else | |
1692 #endif | |
1693 { | |
1694 s->strstart += s->match_length; | |
1695 s->match_length = 0; | |
1696 s->ins_h = s->window[s->strstart]; | |
1697 UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]); | |
1698 #if MIN_MATCH != 3 | |
1699 Call UPDATE_HASH() MIN_MATCH-3 more times | |
1700 #endif | |
1701 /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not | |
1702 * matter since it will be recomputed at next deflate call. | |
1703 */ | |
1704 } | |
1705 } else { | |
1706 /* No match, output a literal byte */ | |
1707 Tracevv((stderr,"%c", s->window[s->strstart])); | |
1708 _tr_tally_lit (s, s->window[s->strstart], bflush); | |
1709 s->lookahead--; | |
1710 s->strstart++; | |
1711 } | |
1712 if (bflush) FLUSH_BLOCK(s, 0); | |
1713 } | |
1714 s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1; | |
1715 if (flush == Z_FINISH) { | |
1716 FLUSH_BLOCK(s, 1); | |
1717 return finish_done; | |
1718 } | |
1719 if (s->last_lit) | |
1720 FLUSH_BLOCK(s, 0); | |
1721 return block_done; | |
1722 } | |
1723 | |
1724 #ifndef FASTEST | |
1725 /* =========================================================================== | |
1726 * Same as above, but achieves better compression. We use a lazy | |
1727 * evaluation for matches: a match is finally adopted only if there is | |
1728 * no better match at the next window position. | |
1729 */ | |
1730 local block_state deflate_slow(s, flush) | |
1731 deflate_state *s; | |
1732 int flush; | |
1733 { | |
1734 IPos hash_head; /* head of hash chain */ | |
1735 int bflush; /* set if current block must be flushed */ | |
1736 | |
1737 /* Process the input block. */ | |
1738 for (;;) { | |
1739 /* Make sure that we always have enough lookahead, except | |
1740 * at the end of the input file. We need MAX_MATCH bytes | |
1741 * for the next match, plus MIN_MATCH bytes to insert the | |
1742 * string following the next match. | |
1743 */ | |
1744 if (s->lookahead < MIN_LOOKAHEAD) { | |
1745 fill_window(s); | |
1746 if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) { | |
1747 return need_more; | |
1748 } | |
1749 if (s->lookahead == 0) break; /* flush the current block */ | |
1750 } | |
1751 | |
1752 /* Insert the string window[strstart .. strstart+2] in the | |
1753 * dictionary, and set hash_head to the head of the hash chain: | |
1754 */ | |
1755 hash_head = NIL; | |
1756 if (s->lookahead >= MIN_MATCH) { | |
1757 INSERT_STRING(s, s->strstart, hash_head); | |
1758 } | |
1759 | |
1760 /* Find the longest match, discarding those <= prev_length. | |
1761 */ | |
1762 s->prev_length = s->match_length, s->prev_match = s->match_start; | |
1763 s->match_length = MIN_MATCH-1; | |
1764 | |
1765 if (hash_head != NIL && s->prev_length < s->max_lazy_match && | |
1766 s->strstart - hash_head <= MAX_DIST(s)) { | |
1767 /* To simplify the code, we prevent matches with the string | |
1768 * of window index 0 (in particular we have to avoid a match | |
1769 * of the string with itself at the start of the input file). | |
1770 */ | |
1771 s->match_length = longest_match (s, hash_head); | |
1772 /* longest_match() sets match_start */ | |
1773 | |
1774 if (s->match_length <= 5 && (s->strategy == Z_FILTERED | |
1775 #if TOO_FAR <= 32767 | |
1776 || (s->match_length == MIN_MATCH && | |
1777 s->strstart - s->match_start > TOO_FAR) | |
1778 #endif | |
1779 )) { | |
1780 | |
1781 /* If prev_match is also MIN_MATCH, match_start is garbage | |
1782 * but we will ignore the current match anyway. | |
1783 */ | |
1784 s->match_length = MIN_MATCH-1; | |
1785 } | |
1786 } | |
1787 /* If there was a match at the previous step and the current | |
1788 * match is not better, output the previous match: | |
1789 */ | |
1790 if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) { | |
1791 uInt max_insert = s->strstart + s->lookahead - MIN_MATCH; | |
1792 /* Do not insert strings in hash table beyond this. */ | |
1793 | |
1794 check_match(s, s->strstart-1, s->prev_match, s->prev_length); | |
1795 | |
1796 _tr_tally_dist(s, s->strstart -1 - s->prev_match, | |
1797 s->prev_length - MIN_MATCH, bflush); | |
1798 | |
1799 /* Insert in hash table all strings up to the end of the match. | |
1800 * strstart-1 and strstart are already inserted. If there is not | |
1801 * enough lookahead, the last two strings are not inserted in | |
1802 * the hash table. | |
1803 */ | |
1804 s->lookahead -= s->prev_length-1; | |
1805 s->prev_length -= 2; | |
1806 do { | |
1807 if (++s->strstart <= max_insert) { | |
1808 INSERT_STRING(s, s->strstart, hash_head); | |
1809 } | |
1810 } while (--s->prev_length != 0); | |
1811 s->match_available = 0; | |
1812 s->match_length = MIN_MATCH-1; | |
1813 s->strstart++; | |
1814 | |
1815 if (bflush) FLUSH_BLOCK(s, 0); | |
1816 | |
1817 } else if (s->match_available) { | |
1818 /* If there was no match at the previous position, output a | |
1819 * single literal. If there was a match but the current match | |
1820 * is longer, truncate the previous match to a single literal. | |
1821 */ | |
1822 Tracevv((stderr,"%c", s->window[s->strstart-1])); | |
1823 _tr_tally_lit(s, s->window[s->strstart-1], bflush); | |
1824 if (bflush) { | |
1825 FLUSH_BLOCK_ONLY(s, 0); | |
1826 } | |
1827 s->strstart++; | |
1828 s->lookahead--; | |
1829 if (s->strm->avail_out == 0) return need_more; | |
1830 } else { | |
1831 /* There is no previous match to compare with, wait for | |
1832 * the next step to decide. | |
1833 */ | |
1834 s->match_available = 1; | |
1835 s->strstart++; | |
1836 s->lookahead--; | |
1837 } | |
1838 } | |
1839 Assert (flush != Z_NO_FLUSH, "no flush?"); | |
1840 if (s->match_available) { | |
1841 Tracevv((stderr,"%c", s->window[s->strstart-1])); | |
1842 _tr_tally_lit(s, s->window[s->strstart-1], bflush); | |
1843 s->match_available = 0; | |
1844 } | |
1845 s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1; | |
1846 if (flush == Z_FINISH) { | |
1847 FLUSH_BLOCK(s, 1); | |
1848 return finish_done; | |
1849 } | |
1850 if (s->last_lit) | |
1851 FLUSH_BLOCK(s, 0); | |
1852 return block_done; | |
1853 } | |
1854 #endif /* FASTEST */ | |
1855 | |
1856 /* =========================================================================== | |
1857 * For Z_RLE, simply look for runs of bytes, generate matches only of distance | |
1858 * one. Do not maintain a hash table. (It will be regenerated if this run of | |
1859 * deflate switches away from Z_RLE.) | |
1860 */ | |
1861 local block_state deflate_rle(s, flush) | |
1862 deflate_state *s; | |
1863 int flush; | |
1864 { | |
1865 int bflush; /* set if current block must be flushed */ | |
1866 uInt prev; /* byte at distance one to match */ | |
1867 Bytef *scan, *strend; /* scan goes up to strend for length of run */ | |
1868 | |
1869 for (;;) { | |
1870 /* Make sure that we always have enough lookahead, except | |
1871 * at the end of the input file. We need MAX_MATCH bytes | |
1872 * for the longest run, plus one for the unrolled loop. | |
1873 */ | |
1874 if (s->lookahead <= MAX_MATCH) { | |
1875 fill_window(s); | |
1876 if (s->lookahead <= MAX_MATCH && flush == Z_NO_FLUSH) { | |
1877 return need_more; | |
1878 } | |
1879 if (s->lookahead == 0) break; /* flush the current block */ | |
1880 } | |
1881 | |
1882 /* See how many times the previous byte repeats */ | |
1883 s->match_length = 0; | |
1884 if (s->lookahead >= MIN_MATCH && s->strstart > 0) { | |
1885 scan = s->window + s->strstart - 1; | |
1886 prev = *scan; | |
1887 if (prev == *++scan && prev == *++scan && prev == *++scan) { | |
1888 strend = s->window + s->strstart + MAX_MATCH; | |
1889 do { | |
1890 } while (prev == *++scan && prev == *++scan && | |
1891 prev == *++scan && prev == *++scan && | |
1892 prev == *++scan && prev == *++scan && | |
1893 prev == *++scan && prev == *++scan && | |
1894 scan < strend); | |
1895 s->match_length = MAX_MATCH - (int)(strend - scan); | |
1896 if (s->match_length > s->lookahead) | |
1897 s->match_length = s->lookahead; | |
1898 } | |
1899 Assert(scan <= s->window+(uInt)(s->window_size-1), "wild scan"); | |
1900 } | |
1901 | |
1902 /* Emit match if have run of MIN_MATCH or longer, else emit literal */ | |
1903 if (s->match_length >= MIN_MATCH) { | |
1904 check_match(s, s->strstart, s->strstart - 1, s->match_length); | |
1905 | |
1906 _tr_tally_dist(s, 1, s->match_length - MIN_MATCH, bflush); | |
1907 | |
1908 s->lookahead -= s->match_length; | |
1909 s->strstart += s->match_length; | |
1910 s->match_length = 0; | |
1911 } else { | |
1912 /* No match, output a literal byte */ | |
1913 Tracevv((stderr,"%c", s->window[s->strstart])); | |
1914 _tr_tally_lit (s, s->window[s->strstart], bflush); | |
1915 s->lookahead--; | |
1916 s->strstart++; | |
1917 } | |
1918 if (bflush) FLUSH_BLOCK(s, 0); | |
1919 } | |
1920 s->insert = 0; | |
1921 if (flush == Z_FINISH) { | |
1922 FLUSH_BLOCK(s, 1); | |
1923 return finish_done; | |
1924 } | |
1925 if (s->last_lit) | |
1926 FLUSH_BLOCK(s, 0); | |
1927 return block_done; | |
1928 } | |
1929 | |
1930 /* =========================================================================== | |
1931 * For Z_HUFFMAN_ONLY, do not look for matches. Do not maintain a hash table. | |
1932 * (It will be regenerated if this run of deflate switches away from Huffman.) | |
1933 */ | |
1934 local block_state deflate_huff(s, flush) | |
1935 deflate_state *s; | |
1936 int flush; | |
1937 { | |
1938 int bflush; /* set if current block must be flushed */ | |
1939 | |
1940 for (;;) { | |
1941 /* Make sure that we have a literal to write. */ | |
1942 if (s->lookahead == 0) { | |
1943 fill_window(s); | |
1944 if (s->lookahead == 0) { | |
1945 if (flush == Z_NO_FLUSH) | |
1946 return need_more; | |
1947 break; /* flush the current block */ | |
1948 } | |
1949 } | |
1950 | |
1951 /* Output a literal byte */ | |
1952 s->match_length = 0; | |
1953 Tracevv((stderr,"%c", s->window[s->strstart])); | |
1954 _tr_tally_lit (s, s->window[s->strstart], bflush); | |
1955 s->lookahead--; | |
1956 s->strstart++; | |
1957 if (bflush) FLUSH_BLOCK(s, 0); | |
1958 } | |
1959 s->insert = 0; | |
1960 if (flush == Z_FINISH) { | |
1961 FLUSH_BLOCK(s, 1); | |
1962 return finish_done; | |
1963 } | |
1964 if (s->last_lit) | |
1965 FLUSH_BLOCK(s, 0); | |
1966 return block_done; | |
1967 } |