Mercurial > hg > sv-dependency-builds
comparison src/opus-1.3/silk/NSQ.c @ 154:4664ac0c1032
Add Opus sources and macOS builds
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Wed, 23 Jan 2019 13:48:08 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
153:84bc3a5ec321 | 154:4664ac0c1032 |
---|---|
1 /*********************************************************************** | |
2 Copyright (c) 2006-2011, Skype Limited. All rights reserved. | |
3 Redistribution and use in source and binary forms, with or without | |
4 modification, are permitted provided that the following conditions | |
5 are met: | |
6 - Redistributions of source code must retain the above copyright notice, | |
7 this list of conditions and the following disclaimer. | |
8 - Redistributions in binary form must reproduce the above copyright | |
9 notice, this list of conditions and the following disclaimer in the | |
10 documentation and/or other materials provided with the distribution. | |
11 - Neither the name of Internet Society, IETF or IETF Trust, nor the | |
12 names of specific contributors, may be used to endorse or promote | |
13 products derived from this software without specific prior written | |
14 permission. | |
15 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | |
16 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
17 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
18 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | |
19 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | |
20 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | |
21 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | |
22 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | |
23 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | |
24 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | |
25 POSSIBILITY OF SUCH DAMAGE. | |
26 ***********************************************************************/ | |
27 | |
28 #ifdef HAVE_CONFIG_H | |
29 #include "config.h" | |
30 #endif | |
31 | |
32 #include "main.h" | |
33 #include "stack_alloc.h" | |
34 #include "NSQ.h" | |
35 | |
36 | |
37 static OPUS_INLINE void silk_nsq_scale_states( | |
38 const silk_encoder_state *psEncC, /* I Encoder State */ | |
39 silk_nsq_state *NSQ, /* I/O NSQ state */ | |
40 const opus_int16 x16[], /* I input */ | |
41 opus_int32 x_sc_Q10[], /* O input scaled with 1/Gain */ | |
42 const opus_int16 sLTP[], /* I re-whitened LTP state in Q0 */ | |
43 opus_int32 sLTP_Q15[], /* O LTP state matching scaled input */ | |
44 opus_int subfr, /* I subframe number */ | |
45 const opus_int LTP_scale_Q14, /* I */ | |
46 const opus_int32 Gains_Q16[ MAX_NB_SUBFR ], /* I */ | |
47 const opus_int pitchL[ MAX_NB_SUBFR ], /* I Pitch lag */ | |
48 const opus_int signal_type /* I Signal type */ | |
49 ); | |
50 | |
51 #if !defined(OPUS_X86_MAY_HAVE_SSE4_1) | |
52 static OPUS_INLINE void silk_noise_shape_quantizer( | |
53 silk_nsq_state *NSQ, /* I/O NSQ state */ | |
54 opus_int signalType, /* I Signal type */ | |
55 const opus_int32 x_sc_Q10[], /* I */ | |
56 opus_int8 pulses[], /* O */ | |
57 opus_int16 xq[], /* O */ | |
58 opus_int32 sLTP_Q15[], /* I/O LTP state */ | |
59 const opus_int16 a_Q12[], /* I Short term prediction coefs */ | |
60 const opus_int16 b_Q14[], /* I Long term prediction coefs */ | |
61 const opus_int16 AR_shp_Q13[], /* I Noise shaping AR coefs */ | |
62 opus_int lag, /* I Pitch lag */ | |
63 opus_int32 HarmShapeFIRPacked_Q14, /* I */ | |
64 opus_int Tilt_Q14, /* I Spectral tilt */ | |
65 opus_int32 LF_shp_Q14, /* I */ | |
66 opus_int32 Gain_Q16, /* I */ | |
67 opus_int Lambda_Q10, /* I */ | |
68 opus_int offset_Q10, /* I */ | |
69 opus_int length, /* I Input length */ | |
70 opus_int shapingLPCOrder, /* I Noise shaping AR filter order */ | |
71 opus_int predictLPCOrder, /* I Prediction filter order */ | |
72 int arch /* I Architecture */ | |
73 ); | |
74 #endif | |
75 | |
76 void silk_NSQ_c | |
77 ( | |
78 const silk_encoder_state *psEncC, /* I Encoder State */ | |
79 silk_nsq_state *NSQ, /* I/O NSQ state */ | |
80 SideInfoIndices *psIndices, /* I/O Quantization Indices */ | |
81 const opus_int16 x16[], /* I Input */ | |
82 opus_int8 pulses[], /* O Quantized pulse signal */ | |
83 const opus_int16 PredCoef_Q12[ 2 * MAX_LPC_ORDER ], /* I Short term prediction coefs */ | |
84 const opus_int16 LTPCoef_Q14[ LTP_ORDER * MAX_NB_SUBFR ], /* I Long term prediction coefs */ | |
85 const opus_int16 AR_Q13[ MAX_NB_SUBFR * MAX_SHAPE_LPC_ORDER ], /* I Noise shaping coefs */ | |
86 const opus_int HarmShapeGain_Q14[ MAX_NB_SUBFR ], /* I Long term shaping coefs */ | |
87 const opus_int Tilt_Q14[ MAX_NB_SUBFR ], /* I Spectral tilt */ | |
88 const opus_int32 LF_shp_Q14[ MAX_NB_SUBFR ], /* I Low frequency shaping coefs */ | |
89 const opus_int32 Gains_Q16[ MAX_NB_SUBFR ], /* I Quantization step sizes */ | |
90 const opus_int pitchL[ MAX_NB_SUBFR ], /* I Pitch lags */ | |
91 const opus_int Lambda_Q10, /* I Rate/distortion tradeoff */ | |
92 const opus_int LTP_scale_Q14 /* I LTP state scaling */ | |
93 ) | |
94 { | |
95 opus_int k, lag, start_idx, LSF_interpolation_flag; | |
96 const opus_int16 *A_Q12, *B_Q14, *AR_shp_Q13; | |
97 opus_int16 *pxq; | |
98 VARDECL( opus_int32, sLTP_Q15 ); | |
99 VARDECL( opus_int16, sLTP ); | |
100 opus_int32 HarmShapeFIRPacked_Q14; | |
101 opus_int offset_Q10; | |
102 VARDECL( opus_int32, x_sc_Q10 ); | |
103 SAVE_STACK; | |
104 | |
105 NSQ->rand_seed = psIndices->Seed; | |
106 | |
107 /* Set unvoiced lag to the previous one, overwrite later for voiced */ | |
108 lag = NSQ->lagPrev; | |
109 | |
110 silk_assert( NSQ->prev_gain_Q16 != 0 ); | |
111 | |
112 offset_Q10 = silk_Quantization_Offsets_Q10[ psIndices->signalType >> 1 ][ psIndices->quantOffsetType ]; | |
113 | |
114 if( psIndices->NLSFInterpCoef_Q2 == 4 ) { | |
115 LSF_interpolation_flag = 0; | |
116 } else { | |
117 LSF_interpolation_flag = 1; | |
118 } | |
119 | |
120 ALLOC( sLTP_Q15, psEncC->ltp_mem_length + psEncC->frame_length, opus_int32 ); | |
121 ALLOC( sLTP, psEncC->ltp_mem_length + psEncC->frame_length, opus_int16 ); | |
122 ALLOC( x_sc_Q10, psEncC->subfr_length, opus_int32 ); | |
123 /* Set up pointers to start of sub frame */ | |
124 NSQ->sLTP_shp_buf_idx = psEncC->ltp_mem_length; | |
125 NSQ->sLTP_buf_idx = psEncC->ltp_mem_length; | |
126 pxq = &NSQ->xq[ psEncC->ltp_mem_length ]; | |
127 for( k = 0; k < psEncC->nb_subfr; k++ ) { | |
128 A_Q12 = &PredCoef_Q12[ (( k >> 1 ) | ( 1 - LSF_interpolation_flag )) * MAX_LPC_ORDER ]; | |
129 B_Q14 = <PCoef_Q14[ k * LTP_ORDER ]; | |
130 AR_shp_Q13 = &AR_Q13[ k * MAX_SHAPE_LPC_ORDER ]; | |
131 | |
132 /* Noise shape parameters */ | |
133 silk_assert( HarmShapeGain_Q14[ k ] >= 0 ); | |
134 HarmShapeFIRPacked_Q14 = silk_RSHIFT( HarmShapeGain_Q14[ k ], 2 ); | |
135 HarmShapeFIRPacked_Q14 |= silk_LSHIFT( (opus_int32)silk_RSHIFT( HarmShapeGain_Q14[ k ], 1 ), 16 ); | |
136 | |
137 NSQ->rewhite_flag = 0; | |
138 if( psIndices->signalType == TYPE_VOICED ) { | |
139 /* Voiced */ | |
140 lag = pitchL[ k ]; | |
141 | |
142 /* Re-whitening */ | |
143 if( ( k & ( 3 - silk_LSHIFT( LSF_interpolation_flag, 1 ) ) ) == 0 ) { | |
144 /* Rewhiten with new A coefs */ | |
145 start_idx = psEncC->ltp_mem_length - lag - psEncC->predictLPCOrder - LTP_ORDER / 2; | |
146 celt_assert( start_idx > 0 ); | |
147 | |
148 silk_LPC_analysis_filter( &sLTP[ start_idx ], &NSQ->xq[ start_idx + k * psEncC->subfr_length ], | |
149 A_Q12, psEncC->ltp_mem_length - start_idx, psEncC->predictLPCOrder, psEncC->arch ); | |
150 | |
151 NSQ->rewhite_flag = 1; | |
152 NSQ->sLTP_buf_idx = psEncC->ltp_mem_length; | |
153 } | |
154 } | |
155 | |
156 silk_nsq_scale_states( psEncC, NSQ, x16, x_sc_Q10, sLTP, sLTP_Q15, k, LTP_scale_Q14, Gains_Q16, pitchL, psIndices->signalType ); | |
157 | |
158 silk_noise_shape_quantizer( NSQ, psIndices->signalType, x_sc_Q10, pulses, pxq, sLTP_Q15, A_Q12, B_Q14, | |
159 AR_shp_Q13, lag, HarmShapeFIRPacked_Q14, Tilt_Q14[ k ], LF_shp_Q14[ k ], Gains_Q16[ k ], Lambda_Q10, | |
160 offset_Q10, psEncC->subfr_length, psEncC->shapingLPCOrder, psEncC->predictLPCOrder, psEncC->arch ); | |
161 | |
162 x16 += psEncC->subfr_length; | |
163 pulses += psEncC->subfr_length; | |
164 pxq += psEncC->subfr_length; | |
165 } | |
166 | |
167 /* Update lagPrev for next frame */ | |
168 NSQ->lagPrev = pitchL[ psEncC->nb_subfr - 1 ]; | |
169 | |
170 /* Save quantized speech and noise shaping signals */ | |
171 silk_memmove( NSQ->xq, &NSQ->xq[ psEncC->frame_length ], psEncC->ltp_mem_length * sizeof( opus_int16 ) ); | |
172 silk_memmove( NSQ->sLTP_shp_Q14, &NSQ->sLTP_shp_Q14[ psEncC->frame_length ], psEncC->ltp_mem_length * sizeof( opus_int32 ) ); | |
173 RESTORE_STACK; | |
174 } | |
175 | |
176 /***********************************/ | |
177 /* silk_noise_shape_quantizer */ | |
178 /***********************************/ | |
179 | |
180 #if !defined(OPUS_X86_MAY_HAVE_SSE4_1) | |
181 static OPUS_INLINE | |
182 #endif | |
183 void silk_noise_shape_quantizer( | |
184 silk_nsq_state *NSQ, /* I/O NSQ state */ | |
185 opus_int signalType, /* I Signal type */ | |
186 const opus_int32 x_sc_Q10[], /* I */ | |
187 opus_int8 pulses[], /* O */ | |
188 opus_int16 xq[], /* O */ | |
189 opus_int32 sLTP_Q15[], /* I/O LTP state */ | |
190 const opus_int16 a_Q12[], /* I Short term prediction coefs */ | |
191 const opus_int16 b_Q14[], /* I Long term prediction coefs */ | |
192 const opus_int16 AR_shp_Q13[], /* I Noise shaping AR coefs */ | |
193 opus_int lag, /* I Pitch lag */ | |
194 opus_int32 HarmShapeFIRPacked_Q14, /* I */ | |
195 opus_int Tilt_Q14, /* I Spectral tilt */ | |
196 opus_int32 LF_shp_Q14, /* I */ | |
197 opus_int32 Gain_Q16, /* I */ | |
198 opus_int Lambda_Q10, /* I */ | |
199 opus_int offset_Q10, /* I */ | |
200 opus_int length, /* I Input length */ | |
201 opus_int shapingLPCOrder, /* I Noise shaping AR filter order */ | |
202 opus_int predictLPCOrder, /* I Prediction filter order */ | |
203 int arch /* I Architecture */ | |
204 ) | |
205 { | |
206 opus_int i; | |
207 opus_int32 LTP_pred_Q13, LPC_pred_Q10, n_AR_Q12, n_LTP_Q13; | |
208 opus_int32 n_LF_Q12, r_Q10, rr_Q10, q1_Q0, q1_Q10, q2_Q10, rd1_Q20, rd2_Q20; | |
209 opus_int32 exc_Q14, LPC_exc_Q14, xq_Q14, Gain_Q10; | |
210 opus_int32 tmp1, tmp2, sLF_AR_shp_Q14; | |
211 opus_int32 *psLPC_Q14, *shp_lag_ptr, *pred_lag_ptr; | |
212 #ifdef silk_short_prediction_create_arch_coef | |
213 opus_int32 a_Q12_arch[MAX_LPC_ORDER]; | |
214 #endif | |
215 | |
216 shp_lag_ptr = &NSQ->sLTP_shp_Q14[ NSQ->sLTP_shp_buf_idx - lag + HARM_SHAPE_FIR_TAPS / 2 ]; | |
217 pred_lag_ptr = &sLTP_Q15[ NSQ->sLTP_buf_idx - lag + LTP_ORDER / 2 ]; | |
218 Gain_Q10 = silk_RSHIFT( Gain_Q16, 6 ); | |
219 | |
220 /* Set up short term AR state */ | |
221 psLPC_Q14 = &NSQ->sLPC_Q14[ NSQ_LPC_BUF_LENGTH - 1 ]; | |
222 | |
223 #ifdef silk_short_prediction_create_arch_coef | |
224 silk_short_prediction_create_arch_coef(a_Q12_arch, a_Q12, predictLPCOrder); | |
225 #endif | |
226 | |
227 for( i = 0; i < length; i++ ) { | |
228 /* Generate dither */ | |
229 NSQ->rand_seed = silk_RAND( NSQ->rand_seed ); | |
230 | |
231 /* Short-term prediction */ | |
232 LPC_pred_Q10 = silk_noise_shape_quantizer_short_prediction(psLPC_Q14, a_Q12, a_Q12_arch, predictLPCOrder, arch); | |
233 | |
234 /* Long-term prediction */ | |
235 if( signalType == TYPE_VOICED ) { | |
236 /* Unrolled loop */ | |
237 /* Avoids introducing a bias because silk_SMLAWB() always rounds to -inf */ | |
238 LTP_pred_Q13 = 2; | |
239 LTP_pred_Q13 = silk_SMLAWB( LTP_pred_Q13, pred_lag_ptr[ 0 ], b_Q14[ 0 ] ); | |
240 LTP_pred_Q13 = silk_SMLAWB( LTP_pred_Q13, pred_lag_ptr[ -1 ], b_Q14[ 1 ] ); | |
241 LTP_pred_Q13 = silk_SMLAWB( LTP_pred_Q13, pred_lag_ptr[ -2 ], b_Q14[ 2 ] ); | |
242 LTP_pred_Q13 = silk_SMLAWB( LTP_pred_Q13, pred_lag_ptr[ -3 ], b_Q14[ 3 ] ); | |
243 LTP_pred_Q13 = silk_SMLAWB( LTP_pred_Q13, pred_lag_ptr[ -4 ], b_Q14[ 4 ] ); | |
244 pred_lag_ptr++; | |
245 } else { | |
246 LTP_pred_Q13 = 0; | |
247 } | |
248 | |
249 /* Noise shape feedback */ | |
250 celt_assert( ( shapingLPCOrder & 1 ) == 0 ); /* check that order is even */ | |
251 n_AR_Q12 = silk_NSQ_noise_shape_feedback_loop(&NSQ->sDiff_shp_Q14, NSQ->sAR2_Q14, AR_shp_Q13, shapingLPCOrder, arch); | |
252 | |
253 n_AR_Q12 = silk_SMLAWB( n_AR_Q12, NSQ->sLF_AR_shp_Q14, Tilt_Q14 ); | |
254 | |
255 n_LF_Q12 = silk_SMULWB( NSQ->sLTP_shp_Q14[ NSQ->sLTP_shp_buf_idx - 1 ], LF_shp_Q14 ); | |
256 n_LF_Q12 = silk_SMLAWT( n_LF_Q12, NSQ->sLF_AR_shp_Q14, LF_shp_Q14 ); | |
257 | |
258 celt_assert( lag > 0 || signalType != TYPE_VOICED ); | |
259 | |
260 /* Combine prediction and noise shaping signals */ | |
261 tmp1 = silk_SUB32( silk_LSHIFT32( LPC_pred_Q10, 2 ), n_AR_Q12 ); /* Q12 */ | |
262 tmp1 = silk_SUB32( tmp1, n_LF_Q12 ); /* Q12 */ | |
263 if( lag > 0 ) { | |
264 /* Symmetric, packed FIR coefficients */ | |
265 n_LTP_Q13 = silk_SMULWB( silk_ADD32( shp_lag_ptr[ 0 ], shp_lag_ptr[ -2 ] ), HarmShapeFIRPacked_Q14 ); | |
266 n_LTP_Q13 = silk_SMLAWT( n_LTP_Q13, shp_lag_ptr[ -1 ], HarmShapeFIRPacked_Q14 ); | |
267 n_LTP_Q13 = silk_LSHIFT( n_LTP_Q13, 1 ); | |
268 shp_lag_ptr++; | |
269 | |
270 tmp2 = silk_SUB32( LTP_pred_Q13, n_LTP_Q13 ); /* Q13 */ | |
271 tmp1 = silk_ADD_LSHIFT32( tmp2, tmp1, 1 ); /* Q13 */ | |
272 tmp1 = silk_RSHIFT_ROUND( tmp1, 3 ); /* Q10 */ | |
273 } else { | |
274 tmp1 = silk_RSHIFT_ROUND( tmp1, 2 ); /* Q10 */ | |
275 } | |
276 | |
277 r_Q10 = silk_SUB32( x_sc_Q10[ i ], tmp1 ); /* residual error Q10 */ | |
278 | |
279 /* Flip sign depending on dither */ | |
280 if( NSQ->rand_seed < 0 ) { | |
281 r_Q10 = -r_Q10; | |
282 } | |
283 r_Q10 = silk_LIMIT_32( r_Q10, -(31 << 10), 30 << 10 ); | |
284 | |
285 /* Find two quantization level candidates and measure their rate-distortion */ | |
286 q1_Q10 = silk_SUB32( r_Q10, offset_Q10 ); | |
287 q1_Q0 = silk_RSHIFT( q1_Q10, 10 ); | |
288 if (Lambda_Q10 > 2048) { | |
289 /* For aggressive RDO, the bias becomes more than one pulse. */ | |
290 int rdo_offset = Lambda_Q10/2 - 512; | |
291 if (q1_Q10 > rdo_offset) { | |
292 q1_Q0 = silk_RSHIFT( q1_Q10 - rdo_offset, 10 ); | |
293 } else if (q1_Q10 < -rdo_offset) { | |
294 q1_Q0 = silk_RSHIFT( q1_Q10 + rdo_offset, 10 ); | |
295 } else if (q1_Q10 < 0) { | |
296 q1_Q0 = -1; | |
297 } else { | |
298 q1_Q0 = 0; | |
299 } | |
300 } | |
301 if( q1_Q0 > 0 ) { | |
302 q1_Q10 = silk_SUB32( silk_LSHIFT( q1_Q0, 10 ), QUANT_LEVEL_ADJUST_Q10 ); | |
303 q1_Q10 = silk_ADD32( q1_Q10, offset_Q10 ); | |
304 q2_Q10 = silk_ADD32( q1_Q10, 1024 ); | |
305 rd1_Q20 = silk_SMULBB( q1_Q10, Lambda_Q10 ); | |
306 rd2_Q20 = silk_SMULBB( q2_Q10, Lambda_Q10 ); | |
307 } else if( q1_Q0 == 0 ) { | |
308 q1_Q10 = offset_Q10; | |
309 q2_Q10 = silk_ADD32( q1_Q10, 1024 - QUANT_LEVEL_ADJUST_Q10 ); | |
310 rd1_Q20 = silk_SMULBB( q1_Q10, Lambda_Q10 ); | |
311 rd2_Q20 = silk_SMULBB( q2_Q10, Lambda_Q10 ); | |
312 } else if( q1_Q0 == -1 ) { | |
313 q2_Q10 = offset_Q10; | |
314 q1_Q10 = silk_SUB32( q2_Q10, 1024 - QUANT_LEVEL_ADJUST_Q10 ); | |
315 rd1_Q20 = silk_SMULBB( -q1_Q10, Lambda_Q10 ); | |
316 rd2_Q20 = silk_SMULBB( q2_Q10, Lambda_Q10 ); | |
317 } else { /* Q1_Q0 < -1 */ | |
318 q1_Q10 = silk_ADD32( silk_LSHIFT( q1_Q0, 10 ), QUANT_LEVEL_ADJUST_Q10 ); | |
319 q1_Q10 = silk_ADD32( q1_Q10, offset_Q10 ); | |
320 q2_Q10 = silk_ADD32( q1_Q10, 1024 ); | |
321 rd1_Q20 = silk_SMULBB( -q1_Q10, Lambda_Q10 ); | |
322 rd2_Q20 = silk_SMULBB( -q2_Q10, Lambda_Q10 ); | |
323 } | |
324 rr_Q10 = silk_SUB32( r_Q10, q1_Q10 ); | |
325 rd1_Q20 = silk_SMLABB( rd1_Q20, rr_Q10, rr_Q10 ); | |
326 rr_Q10 = silk_SUB32( r_Q10, q2_Q10 ); | |
327 rd2_Q20 = silk_SMLABB( rd2_Q20, rr_Q10, rr_Q10 ); | |
328 | |
329 if( rd2_Q20 < rd1_Q20 ) { | |
330 q1_Q10 = q2_Q10; | |
331 } | |
332 | |
333 pulses[ i ] = (opus_int8)silk_RSHIFT_ROUND( q1_Q10, 10 ); | |
334 | |
335 /* Excitation */ | |
336 exc_Q14 = silk_LSHIFT( q1_Q10, 4 ); | |
337 if ( NSQ->rand_seed < 0 ) { | |
338 exc_Q14 = -exc_Q14; | |
339 } | |
340 | |
341 /* Add predictions */ | |
342 LPC_exc_Q14 = silk_ADD_LSHIFT32( exc_Q14, LTP_pred_Q13, 1 ); | |
343 xq_Q14 = silk_ADD_LSHIFT32( LPC_exc_Q14, LPC_pred_Q10, 4 ); | |
344 | |
345 /* Scale XQ back to normal level before saving */ | |
346 xq[ i ] = (opus_int16)silk_SAT16( silk_RSHIFT_ROUND( silk_SMULWW( xq_Q14, Gain_Q10 ), 8 ) ); | |
347 | |
348 /* Update states */ | |
349 psLPC_Q14++; | |
350 *psLPC_Q14 = xq_Q14; | |
351 NSQ->sDiff_shp_Q14 = silk_SUB_LSHIFT32( xq_Q14, x_sc_Q10[ i ], 4 ); | |
352 sLF_AR_shp_Q14 = silk_SUB_LSHIFT32( NSQ->sDiff_shp_Q14, n_AR_Q12, 2 ); | |
353 NSQ->sLF_AR_shp_Q14 = sLF_AR_shp_Q14; | |
354 | |
355 NSQ->sLTP_shp_Q14[ NSQ->sLTP_shp_buf_idx ] = silk_SUB_LSHIFT32( sLF_AR_shp_Q14, n_LF_Q12, 2 ); | |
356 sLTP_Q15[ NSQ->sLTP_buf_idx ] = silk_LSHIFT( LPC_exc_Q14, 1 ); | |
357 NSQ->sLTP_shp_buf_idx++; | |
358 NSQ->sLTP_buf_idx++; | |
359 | |
360 /* Make dither dependent on quantized signal */ | |
361 NSQ->rand_seed = silk_ADD32_ovflw( NSQ->rand_seed, pulses[ i ] ); | |
362 } | |
363 | |
364 /* Update LPC synth buffer */ | |
365 silk_memcpy( NSQ->sLPC_Q14, &NSQ->sLPC_Q14[ length ], NSQ_LPC_BUF_LENGTH * sizeof( opus_int32 ) ); | |
366 } | |
367 | |
368 static OPUS_INLINE void silk_nsq_scale_states( | |
369 const silk_encoder_state *psEncC, /* I Encoder State */ | |
370 silk_nsq_state *NSQ, /* I/O NSQ state */ | |
371 const opus_int16 x16[], /* I input */ | |
372 opus_int32 x_sc_Q10[], /* O input scaled with 1/Gain */ | |
373 const opus_int16 sLTP[], /* I re-whitened LTP state in Q0 */ | |
374 opus_int32 sLTP_Q15[], /* O LTP state matching scaled input */ | |
375 opus_int subfr, /* I subframe number */ | |
376 const opus_int LTP_scale_Q14, /* I */ | |
377 const opus_int32 Gains_Q16[ MAX_NB_SUBFR ], /* I */ | |
378 const opus_int pitchL[ MAX_NB_SUBFR ], /* I Pitch lag */ | |
379 const opus_int signal_type /* I Signal type */ | |
380 ) | |
381 { | |
382 opus_int i, lag; | |
383 opus_int32 gain_adj_Q16, inv_gain_Q31, inv_gain_Q26; | |
384 | |
385 lag = pitchL[ subfr ]; | |
386 inv_gain_Q31 = silk_INVERSE32_varQ( silk_max( Gains_Q16[ subfr ], 1 ), 47 ); | |
387 silk_assert( inv_gain_Q31 != 0 ); | |
388 | |
389 /* Scale input */ | |
390 inv_gain_Q26 = silk_RSHIFT_ROUND( inv_gain_Q31, 5 ); | |
391 for( i = 0; i < psEncC->subfr_length; i++ ) { | |
392 x_sc_Q10[ i ] = silk_SMULWW( x16[ i ], inv_gain_Q26 ); | |
393 } | |
394 | |
395 /* After rewhitening the LTP state is un-scaled, so scale with inv_gain_Q16 */ | |
396 if( NSQ->rewhite_flag ) { | |
397 if( subfr == 0 ) { | |
398 /* Do LTP downscaling */ | |
399 inv_gain_Q31 = silk_LSHIFT( silk_SMULWB( inv_gain_Q31, LTP_scale_Q14 ), 2 ); | |
400 } | |
401 for( i = NSQ->sLTP_buf_idx - lag - LTP_ORDER / 2; i < NSQ->sLTP_buf_idx; i++ ) { | |
402 silk_assert( i < MAX_FRAME_LENGTH ); | |
403 sLTP_Q15[ i ] = silk_SMULWB( inv_gain_Q31, sLTP[ i ] ); | |
404 } | |
405 } | |
406 | |
407 /* Adjust for changing gain */ | |
408 if( Gains_Q16[ subfr ] != NSQ->prev_gain_Q16 ) { | |
409 gain_adj_Q16 = silk_DIV32_varQ( NSQ->prev_gain_Q16, Gains_Q16[ subfr ], 16 ); | |
410 | |
411 /* Scale long-term shaping state */ | |
412 for( i = NSQ->sLTP_shp_buf_idx - psEncC->ltp_mem_length; i < NSQ->sLTP_shp_buf_idx; i++ ) { | |
413 NSQ->sLTP_shp_Q14[ i ] = silk_SMULWW( gain_adj_Q16, NSQ->sLTP_shp_Q14[ i ] ); | |
414 } | |
415 | |
416 /* Scale long-term prediction state */ | |
417 if( signal_type == TYPE_VOICED && NSQ->rewhite_flag == 0 ) { | |
418 for( i = NSQ->sLTP_buf_idx - lag - LTP_ORDER / 2; i < NSQ->sLTP_buf_idx; i++ ) { | |
419 sLTP_Q15[ i ] = silk_SMULWW( gain_adj_Q16, sLTP_Q15[ i ] ); | |
420 } | |
421 } | |
422 | |
423 NSQ->sLF_AR_shp_Q14 = silk_SMULWW( gain_adj_Q16, NSQ->sLF_AR_shp_Q14 ); | |
424 NSQ->sDiff_shp_Q14 = silk_SMULWW( gain_adj_Q16, NSQ->sDiff_shp_Q14 ); | |
425 | |
426 /* Scale short-term prediction and shaping states */ | |
427 for( i = 0; i < NSQ_LPC_BUF_LENGTH; i++ ) { | |
428 NSQ->sLPC_Q14[ i ] = silk_SMULWW( gain_adj_Q16, NSQ->sLPC_Q14[ i ] ); | |
429 } | |
430 for( i = 0; i < MAX_SHAPE_LPC_ORDER; i++ ) { | |
431 NSQ->sAR2_Q14[ i ] = silk_SMULWW( gain_adj_Q16, NSQ->sAR2_Q14[ i ] ); | |
432 } | |
433 | |
434 /* Save inverse gain */ | |
435 NSQ->prev_gain_Q16 = Gains_Q16[ subfr ]; | |
436 } | |
437 } |