Mercurial > hg > sv-dependency-builds
comparison src/opus-1.3/celt/cwrs.c @ 154:4664ac0c1032
Add Opus sources and macOS builds
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Wed, 23 Jan 2019 13:48:08 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
153:84bc3a5ec321 | 154:4664ac0c1032 |
---|---|
1 /* Copyright (c) 2007-2008 CSIRO | |
2 Copyright (c) 2007-2009 Xiph.Org Foundation | |
3 Copyright (c) 2007-2009 Timothy B. Terriberry | |
4 Written by Timothy B. Terriberry and Jean-Marc Valin */ | |
5 /* | |
6 Redistribution and use in source and binary forms, with or without | |
7 modification, are permitted provided that the following conditions | |
8 are met: | |
9 | |
10 - Redistributions of source code must retain the above copyright | |
11 notice, this list of conditions and the following disclaimer. | |
12 | |
13 - Redistributions in binary form must reproduce the above copyright | |
14 notice, this list of conditions and the following disclaimer in the | |
15 documentation and/or other materials provided with the distribution. | |
16 | |
17 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |
18 ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |
19 LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | |
20 A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER | |
21 OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, | |
22 EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, | |
23 PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR | |
24 PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF | |
25 LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING | |
26 NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS | |
27 SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
28 */ | |
29 | |
30 #ifdef HAVE_CONFIG_H | |
31 #include "config.h" | |
32 #endif | |
33 | |
34 #include "os_support.h" | |
35 #include "cwrs.h" | |
36 #include "mathops.h" | |
37 #include "arch.h" | |
38 | |
39 #ifdef CUSTOM_MODES | |
40 | |
41 /*Guaranteed to return a conservatively large estimate of the binary logarithm | |
42 with frac bits of fractional precision. | |
43 Tested for all possible 32-bit inputs with frac=4, where the maximum | |
44 overestimation is 0.06254243 bits.*/ | |
45 int log2_frac(opus_uint32 val, int frac) | |
46 { | |
47 int l; | |
48 l=EC_ILOG(val); | |
49 if(val&(val-1)){ | |
50 /*This is (val>>l-16), but guaranteed to round up, even if adding a bias | |
51 before the shift would cause overflow (e.g., for 0xFFFFxxxx). | |
52 Doesn't work for val=0, but that case fails the test above.*/ | |
53 if(l>16)val=((val-1)>>(l-16))+1; | |
54 else val<<=16-l; | |
55 l=(l-1)<<frac; | |
56 /*Note that we always need one iteration, since the rounding up above means | |
57 that we might need to adjust the integer part of the logarithm.*/ | |
58 do{ | |
59 int b; | |
60 b=(int)(val>>16); | |
61 l+=b<<frac; | |
62 val=(val+b)>>b; | |
63 val=(val*val+0x7FFF)>>15; | |
64 } | |
65 while(frac-->0); | |
66 /*If val is not exactly 0x8000, then we have to round up the remainder.*/ | |
67 return l+(val>0x8000); | |
68 } | |
69 /*Exact powers of two require no rounding.*/ | |
70 else return (l-1)<<frac; | |
71 } | |
72 #endif | |
73 | |
74 /*Although derived separately, the pulse vector coding scheme is equivalent to | |
75 a Pyramid Vector Quantizer \cite{Fis86}. | |
76 Some additional notes about an early version appear at | |
77 https://people.xiph.org/~tterribe/notes/cwrs.html, but the codebook ordering | |
78 and the definitions of some terms have evolved since that was written. | |
79 | |
80 The conversion from a pulse vector to an integer index (encoding) and back | |
81 (decoding) is governed by two related functions, V(N,K) and U(N,K). | |
82 | |
83 V(N,K) = the number of combinations, with replacement, of N items, taken K | |
84 at a time, when a sign bit is added to each item taken at least once (i.e., | |
85 the number of N-dimensional unit pulse vectors with K pulses). | |
86 One way to compute this is via | |
87 V(N,K) = K>0 ? sum(k=1...K,2**k*choose(N,k)*choose(K-1,k-1)) : 1, | |
88 where choose() is the binomial function. | |
89 A table of values for N<10 and K<10 looks like: | |
90 V[10][10] = { | |
91 {1, 0, 0, 0, 0, 0, 0, 0, 0, 0}, | |
92 {1, 2, 2, 2, 2, 2, 2, 2, 2, 2}, | |
93 {1, 4, 8, 12, 16, 20, 24, 28, 32, 36}, | |
94 {1, 6, 18, 38, 66, 102, 146, 198, 258, 326}, | |
95 {1, 8, 32, 88, 192, 360, 608, 952, 1408, 1992}, | |
96 {1, 10, 50, 170, 450, 1002, 1970, 3530, 5890, 9290}, | |
97 {1, 12, 72, 292, 912, 2364, 5336, 10836, 20256, 35436}, | |
98 {1, 14, 98, 462, 1666, 4942, 12642, 28814, 59906, 115598}, | |
99 {1, 16, 128, 688, 2816, 9424, 27008, 68464, 157184, 332688}, | |
100 {1, 18, 162, 978, 4482, 16722, 53154, 148626, 374274, 864146} | |
101 }; | |
102 | |
103 U(N,K) = the number of such combinations wherein N-1 objects are taken at | |
104 most K-1 at a time. | |
105 This is given by | |
106 U(N,K) = sum(k=0...K-1,V(N-1,k)) | |
107 = K>0 ? (V(N-1,K-1) + V(N,K-1))/2 : 0. | |
108 The latter expression also makes clear that U(N,K) is half the number of such | |
109 combinations wherein the first object is taken at least once. | |
110 Although it may not be clear from either of these definitions, U(N,K) is the | |
111 natural function to work with when enumerating the pulse vector codebooks, | |
112 not V(N,K). | |
113 U(N,K) is not well-defined for N=0, but with the extension | |
114 U(0,K) = K>0 ? 0 : 1, | |
115 the function becomes symmetric: U(N,K) = U(K,N), with a similar table: | |
116 U[10][10] = { | |
117 {1, 0, 0, 0, 0, 0, 0, 0, 0, 0}, | |
118 {0, 1, 1, 1, 1, 1, 1, 1, 1, 1}, | |
119 {0, 1, 3, 5, 7, 9, 11, 13, 15, 17}, | |
120 {0, 1, 5, 13, 25, 41, 61, 85, 113, 145}, | |
121 {0, 1, 7, 25, 63, 129, 231, 377, 575, 833}, | |
122 {0, 1, 9, 41, 129, 321, 681, 1289, 2241, 3649}, | |
123 {0, 1, 11, 61, 231, 681, 1683, 3653, 7183, 13073}, | |
124 {0, 1, 13, 85, 377, 1289, 3653, 8989, 19825, 40081}, | |
125 {0, 1, 15, 113, 575, 2241, 7183, 19825, 48639, 108545}, | |
126 {0, 1, 17, 145, 833, 3649, 13073, 40081, 108545, 265729} | |
127 }; | |
128 | |
129 With this extension, V(N,K) may be written in terms of U(N,K): | |
130 V(N,K) = U(N,K) + U(N,K+1) | |
131 for all N>=0, K>=0. | |
132 Thus U(N,K+1) represents the number of combinations where the first element | |
133 is positive or zero, and U(N,K) represents the number of combinations where | |
134 it is negative. | |
135 With a large enough table of U(N,K) values, we could write O(N) encoding | |
136 and O(min(N*log(K),N+K)) decoding routines, but such a table would be | |
137 prohibitively large for small embedded devices (K may be as large as 32767 | |
138 for small N, and N may be as large as 200). | |
139 | |
140 Both functions obey the same recurrence relation: | |
141 V(N,K) = V(N-1,K) + V(N,K-1) + V(N-1,K-1), | |
142 U(N,K) = U(N-1,K) + U(N,K-1) + U(N-1,K-1), | |
143 for all N>0, K>0, with different initial conditions at N=0 or K=0. | |
144 This allows us to construct a row of one of the tables above given the | |
145 previous row or the next row. | |
146 Thus we can derive O(NK) encoding and decoding routines with O(K) memory | |
147 using only addition and subtraction. | |
148 | |
149 When encoding, we build up from the U(2,K) row and work our way forwards. | |
150 When decoding, we need to start at the U(N,K) row and work our way backwards, | |
151 which requires a means of computing U(N,K). | |
152 U(N,K) may be computed from two previous values with the same N: | |
153 U(N,K) = ((2*N-1)*U(N,K-1) - U(N,K-2))/(K-1) + U(N,K-2) | |
154 for all N>1, and since U(N,K) is symmetric, a similar relation holds for two | |
155 previous values with the same K: | |
156 U(N,K>1) = ((2*K-1)*U(N-1,K) - U(N-2,K))/(N-1) + U(N-2,K) | |
157 for all K>1. | |
158 This allows us to construct an arbitrary row of the U(N,K) table by starting | |
159 with the first two values, which are constants. | |
160 This saves roughly 2/3 the work in our O(NK) decoding routine, but costs O(K) | |
161 multiplications. | |
162 Similar relations can be derived for V(N,K), but are not used here. | |
163 | |
164 For N>0 and K>0, U(N,K) and V(N,K) take on the form of an (N-1)-degree | |
165 polynomial for fixed N. | |
166 The first few are | |
167 U(1,K) = 1, | |
168 U(2,K) = 2*K-1, | |
169 U(3,K) = (2*K-2)*K+1, | |
170 U(4,K) = (((4*K-6)*K+8)*K-3)/3, | |
171 U(5,K) = ((((2*K-4)*K+10)*K-8)*K+3)/3, | |
172 and | |
173 V(1,K) = 2, | |
174 V(2,K) = 4*K, | |
175 V(3,K) = 4*K*K+2, | |
176 V(4,K) = 8*(K*K+2)*K/3, | |
177 V(5,K) = ((4*K*K+20)*K*K+6)/3, | |
178 for all K>0. | |
179 This allows us to derive O(N) encoding and O(N*log(K)) decoding routines for | |
180 small N (and indeed decoding is also O(N) for N<3). | |
181 | |
182 @ARTICLE{Fis86, | |
183 author="Thomas R. Fischer", | |
184 title="A Pyramid Vector Quantizer", | |
185 journal="IEEE Transactions on Information Theory", | |
186 volume="IT-32", | |
187 number=4, | |
188 pages="568--583", | |
189 month=Jul, | |
190 year=1986 | |
191 }*/ | |
192 | |
193 #if !defined(SMALL_FOOTPRINT) | |
194 | |
195 /*U(N,K) = U(K,N) := N>0?K>0?U(N-1,K)+U(N,K-1)+U(N-1,K-1):0:K>0?1:0*/ | |
196 # define CELT_PVQ_U(_n,_k) (CELT_PVQ_U_ROW[IMIN(_n,_k)][IMAX(_n,_k)]) | |
197 /*V(N,K) := U(N,K)+U(N,K+1) = the number of PVQ codewords for a band of size N | |
198 with K pulses allocated to it.*/ | |
199 # define CELT_PVQ_V(_n,_k) (CELT_PVQ_U(_n,_k)+CELT_PVQ_U(_n,(_k)+1)) | |
200 | |
201 /*For each V(N,K) supported, we will access element U(min(N,K+1),max(N,K+1)). | |
202 Thus, the number of entries in row I is the larger of the maximum number of | |
203 pulses we will ever allocate for a given N=I (K=128, or however many fit in | |
204 32 bits, whichever is smaller), plus one, and the maximum N for which | |
205 K=I-1 pulses fit in 32 bits. | |
206 The largest band size in an Opus Custom mode is 208. | |
207 Otherwise, we can limit things to the set of N which can be achieved by | |
208 splitting a band from a standard Opus mode: 176, 144, 96, 88, 72, 64, 48, | |
209 44, 36, 32, 24, 22, 18, 16, 8, 4, 2).*/ | |
210 #if defined(CUSTOM_MODES) | |
211 static const opus_uint32 CELT_PVQ_U_DATA[1488]={ | |
212 #else | |
213 static const opus_uint32 CELT_PVQ_U_DATA[1272]={ | |
214 #endif | |
215 /*N=0, K=0...176:*/ | |
216 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | |
217 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | |
218 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | |
219 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | |
220 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | |
221 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | |
222 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | |
223 #if defined(CUSTOM_MODES) | |
224 /*...208:*/ | |
225 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | |
226 0, 0, 0, 0, 0, 0, | |
227 #endif | |
228 /*N=1, K=1...176:*/ | |
229 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, | |
230 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, | |
231 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, | |
232 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, | |
233 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, | |
234 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, | |
235 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, | |
236 #if defined(CUSTOM_MODES) | |
237 /*...208:*/ | |
238 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, | |
239 1, 1, 1, 1, 1, 1, | |
240 #endif | |
241 /*N=2, K=2...176:*/ | |
242 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, | |
243 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, | |
244 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, | |
245 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 141, 143, | |
246 145, 147, 149, 151, 153, 155, 157, 159, 161, 163, 165, 167, 169, 171, 173, | |
247 175, 177, 179, 181, 183, 185, 187, 189, 191, 193, 195, 197, 199, 201, 203, | |
248 205, 207, 209, 211, 213, 215, 217, 219, 221, 223, 225, 227, 229, 231, 233, | |
249 235, 237, 239, 241, 243, 245, 247, 249, 251, 253, 255, 257, 259, 261, 263, | |
250 265, 267, 269, 271, 273, 275, 277, 279, 281, 283, 285, 287, 289, 291, 293, | |
251 295, 297, 299, 301, 303, 305, 307, 309, 311, 313, 315, 317, 319, 321, 323, | |
252 325, 327, 329, 331, 333, 335, 337, 339, 341, 343, 345, 347, 349, 351, | |
253 #if defined(CUSTOM_MODES) | |
254 /*...208:*/ | |
255 353, 355, 357, 359, 361, 363, 365, 367, 369, 371, 373, 375, 377, 379, 381, | |
256 383, 385, 387, 389, 391, 393, 395, 397, 399, 401, 403, 405, 407, 409, 411, | |
257 413, 415, | |
258 #endif | |
259 /*N=3, K=3...176:*/ | |
260 13, 25, 41, 61, 85, 113, 145, 181, 221, 265, 313, 365, 421, 481, 545, 613, | |
261 685, 761, 841, 925, 1013, 1105, 1201, 1301, 1405, 1513, 1625, 1741, 1861, | |
262 1985, 2113, 2245, 2381, 2521, 2665, 2813, 2965, 3121, 3281, 3445, 3613, 3785, | |
263 3961, 4141, 4325, 4513, 4705, 4901, 5101, 5305, 5513, 5725, 5941, 6161, 6385, | |
264 6613, 6845, 7081, 7321, 7565, 7813, 8065, 8321, 8581, 8845, 9113, 9385, 9661, | |
265 9941, 10225, 10513, 10805, 11101, 11401, 11705, 12013, 12325, 12641, 12961, | |
266 13285, 13613, 13945, 14281, 14621, 14965, 15313, 15665, 16021, 16381, 16745, | |
267 17113, 17485, 17861, 18241, 18625, 19013, 19405, 19801, 20201, 20605, 21013, | |
268 21425, 21841, 22261, 22685, 23113, 23545, 23981, 24421, 24865, 25313, 25765, | |
269 26221, 26681, 27145, 27613, 28085, 28561, 29041, 29525, 30013, 30505, 31001, | |
270 31501, 32005, 32513, 33025, 33541, 34061, 34585, 35113, 35645, 36181, 36721, | |
271 37265, 37813, 38365, 38921, 39481, 40045, 40613, 41185, 41761, 42341, 42925, | |
272 43513, 44105, 44701, 45301, 45905, 46513, 47125, 47741, 48361, 48985, 49613, | |
273 50245, 50881, 51521, 52165, 52813, 53465, 54121, 54781, 55445, 56113, 56785, | |
274 57461, 58141, 58825, 59513, 60205, 60901, 61601, | |
275 #if defined(CUSTOM_MODES) | |
276 /*...208:*/ | |
277 62305, 63013, 63725, 64441, 65161, 65885, 66613, 67345, 68081, 68821, 69565, | |
278 70313, 71065, 71821, 72581, 73345, 74113, 74885, 75661, 76441, 77225, 78013, | |
279 78805, 79601, 80401, 81205, 82013, 82825, 83641, 84461, 85285, 86113, | |
280 #endif | |
281 /*N=4, K=4...176:*/ | |
282 63, 129, 231, 377, 575, 833, 1159, 1561, 2047, 2625, 3303, 4089, 4991, 6017, | |
283 7175, 8473, 9919, 11521, 13287, 15225, 17343, 19649, 22151, 24857, 27775, | |
284 30913, 34279, 37881, 41727, 45825, 50183, 54809, 59711, 64897, 70375, 76153, | |
285 82239, 88641, 95367, 102425, 109823, 117569, 125671, 134137, 142975, 152193, | |
286 161799, 171801, 182207, 193025, 204263, 215929, 228031, 240577, 253575, | |
287 267033, 280959, 295361, 310247, 325625, 341503, 357889, 374791, 392217, | |
288 410175, 428673, 447719, 467321, 487487, 508225, 529543, 551449, 573951, | |
289 597057, 620775, 645113, 670079, 695681, 721927, 748825, 776383, 804609, | |
290 833511, 863097, 893375, 924353, 956039, 988441, 1021567, 1055425, 1090023, | |
291 1125369, 1161471, 1198337, 1235975, 1274393, 1313599, 1353601, 1394407, | |
292 1436025, 1478463, 1521729, 1565831, 1610777, 1656575, 1703233, 1750759, | |
293 1799161, 1848447, 1898625, 1949703, 2001689, 2054591, 2108417, 2163175, | |
294 2218873, 2275519, 2333121, 2391687, 2451225, 2511743, 2573249, 2635751, | |
295 2699257, 2763775, 2829313, 2895879, 2963481, 3032127, 3101825, 3172583, | |
296 3244409, 3317311, 3391297, 3466375, 3542553, 3619839, 3698241, 3777767, | |
297 3858425, 3940223, 4023169, 4107271, 4192537, 4278975, 4366593, 4455399, | |
298 4545401, 4636607, 4729025, 4822663, 4917529, 5013631, 5110977, 5209575, | |
299 5309433, 5410559, 5512961, 5616647, 5721625, 5827903, 5935489, 6044391, | |
300 6154617, 6266175, 6379073, 6493319, 6608921, 6725887, 6844225, 6963943, | |
301 7085049, 7207551, | |
302 #if defined(CUSTOM_MODES) | |
303 /*...208:*/ | |
304 7331457, 7456775, 7583513, 7711679, 7841281, 7972327, 8104825, 8238783, | |
305 8374209, 8511111, 8649497, 8789375, 8930753, 9073639, 9218041, 9363967, | |
306 9511425, 9660423, 9810969, 9963071, 10116737, 10271975, 10428793, 10587199, | |
307 10747201, 10908807, 11072025, 11236863, 11403329, 11571431, 11741177, | |
308 11912575, | |
309 #endif | |
310 /*N=5, K=5...176:*/ | |
311 321, 681, 1289, 2241, 3649, 5641, 8361, 11969, 16641, 22569, 29961, 39041, | |
312 50049, 63241, 78889, 97281, 118721, 143529, 172041, 204609, 241601, 283401, | |
313 330409, 383041, 441729, 506921, 579081, 658689, 746241, 842249, 947241, | |
314 1061761, 1186369, 1321641, 1468169, 1626561, 1797441, 1981449, 2179241, | |
315 2391489, 2618881, 2862121, 3121929, 3399041, 3694209, 4008201, 4341801, | |
316 4695809, 5071041, 5468329, 5888521, 6332481, 6801089, 7295241, 7815849, | |
317 8363841, 8940161, 9545769, 10181641, 10848769, 11548161, 12280841, 13047849, | |
318 13850241, 14689089, 15565481, 16480521, 17435329, 18431041, 19468809, | |
319 20549801, 21675201, 22846209, 24064041, 25329929, 26645121, 28010881, | |
320 29428489, 30899241, 32424449, 34005441, 35643561, 37340169, 39096641, | |
321 40914369, 42794761, 44739241, 46749249, 48826241, 50971689, 53187081, | |
322 55473921, 57833729, 60268041, 62778409, 65366401, 68033601, 70781609, | |
323 73612041, 76526529, 79526721, 82614281, 85790889, 89058241, 92418049, | |
324 95872041, 99421961, 103069569, 106816641, 110664969, 114616361, 118672641, | |
325 122835649, 127107241, 131489289, 135983681, 140592321, 145317129, 150160041, | |
326 155123009, 160208001, 165417001, 170752009, 176215041, 181808129, 187533321, | |
327 193392681, 199388289, 205522241, 211796649, 218213641, 224775361, 231483969, | |
328 238341641, 245350569, 252512961, 259831041, 267307049, 274943241, 282741889, | |
329 290705281, 298835721, 307135529, 315607041, 324252609, 333074601, 342075401, | |
330 351257409, 360623041, 370174729, 379914921, 389846081, 399970689, 410291241, | |
331 420810249, 431530241, 442453761, 453583369, 464921641, 476471169, 488234561, | |
332 500214441, 512413449, 524834241, 537479489, 550351881, 563454121, 576788929, | |
333 590359041, 604167209, 618216201, 632508801, | |
334 #if defined(CUSTOM_MODES) | |
335 /*...208:*/ | |
336 647047809, 661836041, 676876329, 692171521, 707724481, 723538089, 739615241, | |
337 755958849, 772571841, 789457161, 806617769, 824056641, 841776769, 859781161, | |
338 878072841, 896654849, 915530241, 934702089, 954173481, 973947521, 994027329, | |
339 1014416041, 1035116809, 1056132801, 1077467201, 1099123209, 1121104041, | |
340 1143412929, 1166053121, 1189027881, 1212340489, 1235994241, | |
341 #endif | |
342 /*N=6, K=6...96:*/ | |
343 1683, 3653, 7183, 13073, 22363, 36365, 56695, 85305, 124515, 177045, 246047, | |
344 335137, 448427, 590557, 766727, 982729, 1244979, 1560549, 1937199, 2383409, | |
345 2908411, 3522221, 4235671, 5060441, 6009091, 7095093, 8332863, 9737793, | |
346 11326283, 13115773, 15124775, 17372905, 19880915, 22670725, 25765455, | |
347 29189457, 32968347, 37129037, 41699767, 46710137, 52191139, 58175189, | |
348 64696159, 71789409, 79491819, 87841821, 96879431, 106646281, 117185651, | |
349 128542501, 140763503, 153897073, 167993403, 183104493, 199284183, 216588185, | |
350 235074115, 254801525, 275831935, 298228865, 322057867, 347386557, 374284647, | |
351 402823977, 433078547, 465124549, 499040399, 534906769, 572806619, 612825229, | |
352 655050231, 699571641, 746481891, 795875861, 847850911, 902506913, 959946283, | |
353 1020274013, 1083597703, 1150027593, 1219676595, 1292660325, 1369097135, | |
354 1449108145, 1532817275, 1620351277, 1711839767, 1807415257, 1907213187, | |
355 2011371957, 2120032959, | |
356 #if defined(CUSTOM_MODES) | |
357 /*...109:*/ | |
358 2233340609U, 2351442379U, 2474488829U, 2602633639U, 2736033641U, 2874848851U, | |
359 3019242501U, 3169381071U, 3325434321U, 3487575323U, 3655980493U, 3830829623U, | |
360 4012305913U, | |
361 #endif | |
362 /*N=7, K=7...54*/ | |
363 8989, 19825, 40081, 75517, 134245, 227305, 369305, 579125, 880685, 1303777, | |
364 1884961, 2668525, 3707509, 5064793, 6814249, 9041957, 11847485, 15345233, | |
365 19665841, 24957661, 31388293, 39146185, 48442297, 59511829, 72616013, | |
366 88043969, 106114625, 127178701, 151620757, 179861305, 212358985, 249612805, | |
367 292164445, 340600625, 395555537, 457713341, 527810725, 606639529, 695049433, | |
368 793950709, 904317037, 1027188385, 1163673953, 1314955181, 1482288821, | |
369 1667010073, 1870535785, 2094367717, | |
370 #if defined(CUSTOM_MODES) | |
371 /*...60:*/ | |
372 2340095869U, 2609401873U, 2904062449U, 3225952925U, 3577050821U, 3959439497U, | |
373 #endif | |
374 /*N=8, K=8...37*/ | |
375 48639, 108545, 224143, 433905, 795455, 1392065, 2340495, 3800305, 5984767, | |
376 9173505, 13726991, 20103025, 28875327, 40754369, 56610575, 77500017, | |
377 104692735, 139703809, 184327311, 240673265, 311207743, 398796225, 506750351, | |
378 638878193, 799538175, 993696769, 1226990095, 1505789553, 1837271615, | |
379 2229491905U, | |
380 #if defined(CUSTOM_MODES) | |
381 /*...40:*/ | |
382 2691463695U, 3233240945U, 3866006015U, | |
383 #endif | |
384 /*N=9, K=9...28:*/ | |
385 265729, 598417, 1256465, 2485825, 4673345, 8405905, 14546705, 24331777, | |
386 39490049, 62390545, 96220561, 145198913, 214828609, 312193553, 446304145, | |
387 628496897, 872893441, 1196924561, 1621925137, 2173806145U, | |
388 #if defined(CUSTOM_MODES) | |
389 /*...29:*/ | |
390 2883810113U, | |
391 #endif | |
392 /*N=10, K=10...24:*/ | |
393 1462563, 3317445, 7059735, 14218905, 27298155, 50250765, 89129247, 152951073, | |
394 254831667, 413442773, 654862247, 1014889769, 1541911931, 2300409629U, | |
395 3375210671U, | |
396 /*N=11, K=11...19:*/ | |
397 8097453, 18474633, 39753273, 81270333, 158819253, 298199265, 540279585, | |
398 948062325, 1616336765, | |
399 #if defined(CUSTOM_MODES) | |
400 /*...20:*/ | |
401 2684641785U, | |
402 #endif | |
403 /*N=12, K=12...18:*/ | |
404 45046719, 103274625, 224298231, 464387817, 921406335, 1759885185, | |
405 3248227095U, | |
406 /*N=13, K=13...16:*/ | |
407 251595969, 579168825, 1267854873, 2653649025U, | |
408 /*N=14, K=14:*/ | |
409 1409933619 | |
410 }; | |
411 | |
412 #if defined(CUSTOM_MODES) | |
413 static const opus_uint32 *const CELT_PVQ_U_ROW[15]={ | |
414 CELT_PVQ_U_DATA+ 0,CELT_PVQ_U_DATA+ 208,CELT_PVQ_U_DATA+ 415, | |
415 CELT_PVQ_U_DATA+ 621,CELT_PVQ_U_DATA+ 826,CELT_PVQ_U_DATA+1030, | |
416 CELT_PVQ_U_DATA+1233,CELT_PVQ_U_DATA+1336,CELT_PVQ_U_DATA+1389, | |
417 CELT_PVQ_U_DATA+1421,CELT_PVQ_U_DATA+1441,CELT_PVQ_U_DATA+1455, | |
418 CELT_PVQ_U_DATA+1464,CELT_PVQ_U_DATA+1470,CELT_PVQ_U_DATA+1473 | |
419 }; | |
420 #else | |
421 static const opus_uint32 *const CELT_PVQ_U_ROW[15]={ | |
422 CELT_PVQ_U_DATA+ 0,CELT_PVQ_U_DATA+ 176,CELT_PVQ_U_DATA+ 351, | |
423 CELT_PVQ_U_DATA+ 525,CELT_PVQ_U_DATA+ 698,CELT_PVQ_U_DATA+ 870, | |
424 CELT_PVQ_U_DATA+1041,CELT_PVQ_U_DATA+1131,CELT_PVQ_U_DATA+1178, | |
425 CELT_PVQ_U_DATA+1207,CELT_PVQ_U_DATA+1226,CELT_PVQ_U_DATA+1240, | |
426 CELT_PVQ_U_DATA+1248,CELT_PVQ_U_DATA+1254,CELT_PVQ_U_DATA+1257 | |
427 }; | |
428 #endif | |
429 | |
430 #if defined(CUSTOM_MODES) | |
431 void get_required_bits(opus_int16 *_bits,int _n,int _maxk,int _frac){ | |
432 int k; | |
433 /*_maxk==0 => there's nothing to do.*/ | |
434 celt_assert(_maxk>0); | |
435 _bits[0]=0; | |
436 for(k=1;k<=_maxk;k++)_bits[k]=log2_frac(CELT_PVQ_V(_n,k),_frac); | |
437 } | |
438 #endif | |
439 | |
440 static opus_uint32 icwrs(int _n,const int *_y){ | |
441 opus_uint32 i; | |
442 int j; | |
443 int k; | |
444 celt_assert(_n>=2); | |
445 j=_n-1; | |
446 i=_y[j]<0; | |
447 k=abs(_y[j]); | |
448 do{ | |
449 j--; | |
450 i+=CELT_PVQ_U(_n-j,k); | |
451 k+=abs(_y[j]); | |
452 if(_y[j]<0)i+=CELT_PVQ_U(_n-j,k+1); | |
453 } | |
454 while(j>0); | |
455 return i; | |
456 } | |
457 | |
458 void encode_pulses(const int *_y,int _n,int _k,ec_enc *_enc){ | |
459 celt_assert(_k>0); | |
460 ec_enc_uint(_enc,icwrs(_n,_y),CELT_PVQ_V(_n,_k)); | |
461 } | |
462 | |
463 static opus_val32 cwrsi(int _n,int _k,opus_uint32 _i,int *_y){ | |
464 opus_uint32 p; | |
465 int s; | |
466 int k0; | |
467 opus_int16 val; | |
468 opus_val32 yy=0; | |
469 celt_assert(_k>0); | |
470 celt_assert(_n>1); | |
471 while(_n>2){ | |
472 opus_uint32 q; | |
473 /*Lots of pulses case:*/ | |
474 if(_k>=_n){ | |
475 const opus_uint32 *row; | |
476 row=CELT_PVQ_U_ROW[_n]; | |
477 /*Are the pulses in this dimension negative?*/ | |
478 p=row[_k+1]; | |
479 s=-(_i>=p); | |
480 _i-=p&s; | |
481 /*Count how many pulses were placed in this dimension.*/ | |
482 k0=_k; | |
483 q=row[_n]; | |
484 if(q>_i){ | |
485 celt_sig_assert(p>q); | |
486 _k=_n; | |
487 do p=CELT_PVQ_U_ROW[--_k][_n]; | |
488 while(p>_i); | |
489 } | |
490 else for(p=row[_k];p>_i;p=row[_k])_k--; | |
491 _i-=p; | |
492 val=(k0-_k+s)^s; | |
493 *_y++=val; | |
494 yy=MAC16_16(yy,val,val); | |
495 } | |
496 /*Lots of dimensions case:*/ | |
497 else{ | |
498 /*Are there any pulses in this dimension at all?*/ | |
499 p=CELT_PVQ_U_ROW[_k][_n]; | |
500 q=CELT_PVQ_U_ROW[_k+1][_n]; | |
501 if(p<=_i&&_i<q){ | |
502 _i-=p; | |
503 *_y++=0; | |
504 } | |
505 else{ | |
506 /*Are the pulses in this dimension negative?*/ | |
507 s=-(_i>=q); | |
508 _i-=q&s; | |
509 /*Count how many pulses were placed in this dimension.*/ | |
510 k0=_k; | |
511 do p=CELT_PVQ_U_ROW[--_k][_n]; | |
512 while(p>_i); | |
513 _i-=p; | |
514 val=(k0-_k+s)^s; | |
515 *_y++=val; | |
516 yy=MAC16_16(yy,val,val); | |
517 } | |
518 } | |
519 _n--; | |
520 } | |
521 /*_n==2*/ | |
522 p=2*_k+1; | |
523 s=-(_i>=p); | |
524 _i-=p&s; | |
525 k0=_k; | |
526 _k=(_i+1)>>1; | |
527 if(_k)_i-=2*_k-1; | |
528 val=(k0-_k+s)^s; | |
529 *_y++=val; | |
530 yy=MAC16_16(yy,val,val); | |
531 /*_n==1*/ | |
532 s=-(int)_i; | |
533 val=(_k+s)^s; | |
534 *_y=val; | |
535 yy=MAC16_16(yy,val,val); | |
536 return yy; | |
537 } | |
538 | |
539 opus_val32 decode_pulses(int *_y,int _n,int _k,ec_dec *_dec){ | |
540 return cwrsi(_n,_k,ec_dec_uint(_dec,CELT_PVQ_V(_n,_k)),_y); | |
541 } | |
542 | |
543 #else /* SMALL_FOOTPRINT */ | |
544 | |
545 /*Computes the next row/column of any recurrence that obeys the relation | |
546 u[i][j]=u[i-1][j]+u[i][j-1]+u[i-1][j-1]. | |
547 _ui0 is the base case for the new row/column.*/ | |
548 static OPUS_INLINE void unext(opus_uint32 *_ui,unsigned _len,opus_uint32 _ui0){ | |
549 opus_uint32 ui1; | |
550 unsigned j; | |
551 /*This do-while will overrun the array if we don't have storage for at least | |
552 2 values.*/ | |
553 j=1; do { | |
554 ui1=UADD32(UADD32(_ui[j],_ui[j-1]),_ui0); | |
555 _ui[j-1]=_ui0; | |
556 _ui0=ui1; | |
557 } while (++j<_len); | |
558 _ui[j-1]=_ui0; | |
559 } | |
560 | |
561 /*Computes the previous row/column of any recurrence that obeys the relation | |
562 u[i-1][j]=u[i][j]-u[i][j-1]-u[i-1][j-1]. | |
563 _ui0 is the base case for the new row/column.*/ | |
564 static OPUS_INLINE void uprev(opus_uint32 *_ui,unsigned _n,opus_uint32 _ui0){ | |
565 opus_uint32 ui1; | |
566 unsigned j; | |
567 /*This do-while will overrun the array if we don't have storage for at least | |
568 2 values.*/ | |
569 j=1; do { | |
570 ui1=USUB32(USUB32(_ui[j],_ui[j-1]),_ui0); | |
571 _ui[j-1]=_ui0; | |
572 _ui0=ui1; | |
573 } while (++j<_n); | |
574 _ui[j-1]=_ui0; | |
575 } | |
576 | |
577 /*Compute V(_n,_k), as well as U(_n,0..._k+1). | |
578 _u: On exit, _u[i] contains U(_n,i) for i in [0..._k+1].*/ | |
579 static opus_uint32 ncwrs_urow(unsigned _n,unsigned _k,opus_uint32 *_u){ | |
580 opus_uint32 um2; | |
581 unsigned len; | |
582 unsigned k; | |
583 len=_k+2; | |
584 /*We require storage at least 3 values (e.g., _k>0).*/ | |
585 celt_assert(len>=3); | |
586 _u[0]=0; | |
587 _u[1]=um2=1; | |
588 /*If _n==0, _u[0] should be 1 and the rest should be 0.*/ | |
589 /*If _n==1, _u[i] should be 1 for i>1.*/ | |
590 celt_assert(_n>=2); | |
591 /*If _k==0, the following do-while loop will overflow the buffer.*/ | |
592 celt_assert(_k>0); | |
593 k=2; | |
594 do _u[k]=(k<<1)-1; | |
595 while(++k<len); | |
596 for(k=2;k<_n;k++)unext(_u+1,_k+1,1); | |
597 return _u[_k]+_u[_k+1]; | |
598 } | |
599 | |
600 /*Returns the _i'th combination of _k elements chosen from a set of size _n | |
601 with associated sign bits. | |
602 _y: Returns the vector of pulses. | |
603 _u: Must contain entries [0..._k+1] of row _n of U() on input. | |
604 Its contents will be destructively modified.*/ | |
605 static opus_val32 cwrsi(int _n,int _k,opus_uint32 _i,int *_y,opus_uint32 *_u){ | |
606 int j; | |
607 opus_int16 val; | |
608 opus_val32 yy=0; | |
609 celt_assert(_n>0); | |
610 j=0; | |
611 do{ | |
612 opus_uint32 p; | |
613 int s; | |
614 int yj; | |
615 p=_u[_k+1]; | |
616 s=-(_i>=p); | |
617 _i-=p&s; | |
618 yj=_k; | |
619 p=_u[_k]; | |
620 while(p>_i)p=_u[--_k]; | |
621 _i-=p; | |
622 yj-=_k; | |
623 val=(yj+s)^s; | |
624 _y[j]=val; | |
625 yy=MAC16_16(yy,val,val); | |
626 uprev(_u,_k+2,0); | |
627 } | |
628 while(++j<_n); | |
629 return yy; | |
630 } | |
631 | |
632 /*Returns the index of the given combination of K elements chosen from a set | |
633 of size 1 with associated sign bits. | |
634 _y: The vector of pulses, whose sum of absolute values is K. | |
635 _k: Returns K.*/ | |
636 static OPUS_INLINE opus_uint32 icwrs1(const int *_y,int *_k){ | |
637 *_k=abs(_y[0]); | |
638 return _y[0]<0; | |
639 } | |
640 | |
641 /*Returns the index of the given combination of K elements chosen from a set | |
642 of size _n with associated sign bits. | |
643 _y: The vector of pulses, whose sum of absolute values must be _k. | |
644 _nc: Returns V(_n,_k).*/ | |
645 static OPUS_INLINE opus_uint32 icwrs(int _n,int _k,opus_uint32 *_nc,const int *_y, | |
646 opus_uint32 *_u){ | |
647 opus_uint32 i; | |
648 int j; | |
649 int k; | |
650 /*We can't unroll the first two iterations of the loop unless _n>=2.*/ | |
651 celt_assert(_n>=2); | |
652 _u[0]=0; | |
653 for(k=1;k<=_k+1;k++)_u[k]=(k<<1)-1; | |
654 i=icwrs1(_y+_n-1,&k); | |
655 j=_n-2; | |
656 i+=_u[k]; | |
657 k+=abs(_y[j]); | |
658 if(_y[j]<0)i+=_u[k+1]; | |
659 while(j-->0){ | |
660 unext(_u,_k+2,0); | |
661 i+=_u[k]; | |
662 k+=abs(_y[j]); | |
663 if(_y[j]<0)i+=_u[k+1]; | |
664 } | |
665 *_nc=_u[k]+_u[k+1]; | |
666 return i; | |
667 } | |
668 | |
669 #ifdef CUSTOM_MODES | |
670 void get_required_bits(opus_int16 *_bits,int _n,int _maxk,int _frac){ | |
671 int k; | |
672 /*_maxk==0 => there's nothing to do.*/ | |
673 celt_assert(_maxk>0); | |
674 _bits[0]=0; | |
675 if (_n==1) | |
676 { | |
677 for (k=1;k<=_maxk;k++) | |
678 _bits[k] = 1<<_frac; | |
679 } | |
680 else { | |
681 VARDECL(opus_uint32,u); | |
682 SAVE_STACK; | |
683 ALLOC(u,_maxk+2U,opus_uint32); | |
684 ncwrs_urow(_n,_maxk,u); | |
685 for(k=1;k<=_maxk;k++) | |
686 _bits[k]=log2_frac(u[k]+u[k+1],_frac); | |
687 RESTORE_STACK; | |
688 } | |
689 } | |
690 #endif /* CUSTOM_MODES */ | |
691 | |
692 void encode_pulses(const int *_y,int _n,int _k,ec_enc *_enc){ | |
693 opus_uint32 i; | |
694 VARDECL(opus_uint32,u); | |
695 opus_uint32 nc; | |
696 SAVE_STACK; | |
697 celt_assert(_k>0); | |
698 ALLOC(u,_k+2U,opus_uint32); | |
699 i=icwrs(_n,_k,&nc,_y,u); | |
700 ec_enc_uint(_enc,i,nc); | |
701 RESTORE_STACK; | |
702 } | |
703 | |
704 opus_val32 decode_pulses(int *_y,int _n,int _k,ec_dec *_dec){ | |
705 VARDECL(opus_uint32,u); | |
706 int ret; | |
707 SAVE_STACK; | |
708 celt_assert(_k>0); | |
709 ALLOC(u,_k+2U,opus_uint32); | |
710 ret = cwrsi(_n,_k,ec_dec_uint(_dec,ncwrs_urow(_n,_k,u)),_y,u); | |
711 RESTORE_STACK; | |
712 return ret; | |
713 } | |
714 | |
715 #endif /* SMALL_FOOTPRINT */ |