comparison osx/include/kj/memory.h @ 134:41e769c91eca

Add Capnp and KJ builds for OSX
author Chris Cannam <cannam@all-day-breakfast.com>
date Tue, 25 Oct 2016 14:48:23 +0100
parents
children 0994c39f1e94
comparison
equal deleted inserted replaced
133:1ac99bfc383d 134:41e769c91eca
1 // Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors
2 // Licensed under the MIT License:
3 //
4 // Permission is hereby granted, free of charge, to any person obtaining a copy
5 // of this software and associated documentation files (the "Software"), to deal
6 // in the Software without restriction, including without limitation the rights
7 // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
8 // copies of the Software, and to permit persons to whom the Software is
9 // furnished to do so, subject to the following conditions:
10 //
11 // The above copyright notice and this permission notice shall be included in
12 // all copies or substantial portions of the Software.
13 //
14 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
17 // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
19 // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
20 // THE SOFTWARE.
21
22 #ifndef KJ_MEMORY_H_
23 #define KJ_MEMORY_H_
24
25 #if defined(__GNUC__) && !KJ_HEADER_WARNINGS
26 #pragma GCC system_header
27 #endif
28
29 #include "common.h"
30
31 namespace kj {
32
33 // =======================================================================================
34 // Disposer -- Implementation details.
35
36 class Disposer {
37 // Abstract interface for a thing that "disposes" of objects, where "disposing" usually means
38 // calling the destructor followed by freeing the underlying memory. `Own<T>` encapsulates an
39 // object pointer with corresponding Disposer.
40 //
41 // Few developers will ever touch this interface. It is primarily useful for those implementing
42 // custom memory allocators.
43
44 protected:
45 // Do not declare a destructor, as doing so will force a global initializer for each HeapDisposer
46 // instance. Eww!
47
48 virtual void disposeImpl(void* pointer) const = 0;
49 // Disposes of the object, given a pointer to the beginning of the object. If the object is
50 // polymorphic, this pointer is determined by dynamic_cast<void*>(). For non-polymorphic types,
51 // Own<T> does not allow any casting, so the pointer exactly matches the original one given to
52 // Own<T>.
53
54 public:
55
56 template <typename T>
57 void dispose(T* object) const;
58 // Helper wrapper around disposeImpl().
59 //
60 // If T is polymorphic, calls `disposeImpl(dynamic_cast<void*>(object))`, otherwise calls
61 // `disposeImpl(implicitCast<void*>(object))`.
62 //
63 // Callers must not call dispose() on the same pointer twice, even if the first call throws
64 // an exception.
65
66 private:
67 template <typename T, bool polymorphic = __is_polymorphic(T)>
68 struct Dispose_;
69 };
70
71 template <typename T>
72 class DestructorOnlyDisposer: public Disposer {
73 // A disposer that merely calls the type's destructor and nothing else.
74
75 public:
76 static const DestructorOnlyDisposer instance;
77
78 void disposeImpl(void* pointer) const override {
79 reinterpret_cast<T*>(pointer)->~T();
80 }
81 };
82
83 template <typename T>
84 const DestructorOnlyDisposer<T> DestructorOnlyDisposer<T>::instance = DestructorOnlyDisposer<T>();
85
86 class NullDisposer: public Disposer {
87 // A disposer that does nothing.
88
89 public:
90 static const NullDisposer instance;
91
92 void disposeImpl(void* pointer) const override {}
93 };
94
95 // =======================================================================================
96 // Own<T> -- An owned pointer.
97
98 template <typename T>
99 class Own {
100 // A transferrable title to a T. When an Own<T> goes out of scope, the object's Disposer is
101 // called to dispose of it. An Own<T> can be efficiently passed by move, without relocating the
102 // underlying object; this transfers ownership.
103 //
104 // This is much like std::unique_ptr, except:
105 // - You cannot release(). An owned object is not necessarily allocated with new (see next
106 // point), so it would be hard to use release() correctly.
107 // - The deleter is made polymorphic by virtual call rather than by template. This is much
108 // more powerful -- it allows the use of custom allocators, freelists, etc. This could
109 // _almost_ be accomplished with unique_ptr by forcing everyone to use something like
110 // std::unique_ptr<T, kj::Deleter>, except that things get hairy in the presence of multiple
111 // inheritance and upcasting, and anyway if you force everyone to use a custom deleter
112 // then you've lost any benefit to interoperating with the "standard" unique_ptr.
113
114 public:
115 KJ_DISALLOW_COPY(Own);
116 inline Own(): disposer(nullptr), ptr(nullptr) {}
117 inline Own(Own&& other) noexcept
118 : disposer(other.disposer), ptr(other.ptr) { other.ptr = nullptr; }
119 inline Own(Own<RemoveConstOrDisable<T>>&& other) noexcept
120 : disposer(other.disposer), ptr(other.ptr) { other.ptr = nullptr; }
121 template <typename U, typename = EnableIf<canConvert<U*, T*>()>>
122 inline Own(Own<U>&& other) noexcept
123 : disposer(other.disposer), ptr(other.ptr) {
124 static_assert(__is_polymorphic(T),
125 "Casting owned pointers requires that the target type is polymorphic.");
126 other.ptr = nullptr;
127 }
128 inline Own(T* ptr, const Disposer& disposer) noexcept: disposer(&disposer), ptr(ptr) {}
129
130 ~Own() noexcept(false) { dispose(); }
131
132 inline Own& operator=(Own&& other) {
133 // Move-assingnment operator.
134
135 // Careful, this might own `other`. Therefore we have to transfer the pointers first, then
136 // dispose.
137 const Disposer* disposerCopy = disposer;
138 T* ptrCopy = ptr;
139 disposer = other.disposer;
140 ptr = other.ptr;
141 other.ptr = nullptr;
142 if (ptrCopy != nullptr) {
143 disposerCopy->dispose(const_cast<RemoveConst<T>*>(ptrCopy));
144 }
145 return *this;
146 }
147
148 inline Own& operator=(decltype(nullptr)) {
149 dispose();
150 return *this;
151 }
152
153 template <typename U>
154 Own<U> downcast() {
155 // Downcast the pointer to Own<U>, destroying the original pointer. If this pointer does not
156 // actually point at an instance of U, the results are undefined (throws an exception in debug
157 // mode if RTTI is enabled, otherwise you're on your own).
158
159 Own<U> result;
160 if (ptr != nullptr) {
161 result.ptr = &kj::downcast<U>(*ptr);
162 result.disposer = disposer;
163 ptr = nullptr;
164 }
165 return result;
166 }
167
168 #define NULLCHECK KJ_IREQUIRE(ptr != nullptr, "null Own<> dereference")
169 inline T* operator->() { NULLCHECK; return ptr; }
170 inline const T* operator->() const { NULLCHECK; return ptr; }
171 inline T& operator*() { NULLCHECK; return *ptr; }
172 inline const T& operator*() const { NULLCHECK; return *ptr; }
173 #undef NULLCHECK
174 inline T* get() { return ptr; }
175 inline const T* get() const { return ptr; }
176 inline operator T*() { return ptr; }
177 inline operator const T*() const { return ptr; }
178
179 private:
180 const Disposer* disposer; // Only valid if ptr != nullptr.
181 T* ptr;
182
183 inline explicit Own(decltype(nullptr)): disposer(nullptr), ptr(nullptr) {}
184
185 inline bool operator==(decltype(nullptr)) { return ptr == nullptr; }
186 inline bool operator!=(decltype(nullptr)) { return ptr != nullptr; }
187 // Only called by Maybe<Own<T>>.
188
189 inline void dispose() {
190 // Make sure that if an exception is thrown, we are left with a null ptr, so we won't possibly
191 // dispose again.
192 T* ptrCopy = ptr;
193 if (ptrCopy != nullptr) {
194 ptr = nullptr;
195 disposer->dispose(const_cast<RemoveConst<T>*>(ptrCopy));
196 }
197 }
198
199 template <typename U>
200 friend class Own;
201 friend class Maybe<Own<T>>;
202 };
203
204 namespace _ { // private
205
206 template <typename T>
207 class OwnOwn {
208 public:
209 inline OwnOwn(Own<T>&& value) noexcept: value(kj::mv(value)) {}
210
211 inline Own<T>& operator*() & { return value; }
212 inline const Own<T>& operator*() const & { return value; }
213 inline Own<T>&& operator*() && { return kj::mv(value); }
214 inline const Own<T>&& operator*() const && { return kj::mv(value); }
215 inline Own<T>* operator->() { return &value; }
216 inline const Own<T>* operator->() const { return &value; }
217 inline operator Own<T>*() { return value ? &value : nullptr; }
218 inline operator const Own<T>*() const { return value ? &value : nullptr; }
219
220 private:
221 Own<T> value;
222 };
223
224 template <typename T>
225 OwnOwn<T> readMaybe(Maybe<Own<T>>&& maybe) { return OwnOwn<T>(kj::mv(maybe.ptr)); }
226 template <typename T>
227 Own<T>* readMaybe(Maybe<Own<T>>& maybe) { return maybe.ptr ? &maybe.ptr : nullptr; }
228 template <typename T>
229 const Own<T>* readMaybe(const Maybe<Own<T>>& maybe) { return maybe.ptr ? &maybe.ptr : nullptr; }
230
231 } // namespace _ (private)
232
233 template <typename T>
234 class Maybe<Own<T>> {
235 public:
236 inline Maybe(): ptr(nullptr) {}
237 inline Maybe(Own<T>&& t) noexcept: ptr(kj::mv(t)) {}
238 inline Maybe(Maybe&& other) noexcept: ptr(kj::mv(other.ptr)) {}
239
240 template <typename U>
241 inline Maybe(Maybe<Own<U>>&& other): ptr(mv(other.ptr)) {}
242
243 inline Maybe(decltype(nullptr)) noexcept: ptr(nullptr) {}
244
245 inline operator Maybe<T&>() { return ptr.get(); }
246 inline operator Maybe<const T&>() const { return ptr.get(); }
247
248 inline Maybe& operator=(Maybe&& other) { ptr = kj::mv(other.ptr); return *this; }
249
250 inline bool operator==(decltype(nullptr)) const { return ptr == nullptr; }
251 inline bool operator!=(decltype(nullptr)) const { return ptr != nullptr; }
252
253 Own<T>& orDefault(Own<T>& defaultValue) {
254 if (ptr == nullptr) {
255 return defaultValue;
256 } else {
257 return ptr;
258 }
259 }
260 const Own<T>& orDefault(const Own<T>& defaultValue) const {
261 if (ptr == nullptr) {
262 return defaultValue;
263 } else {
264 return ptr;
265 }
266 }
267
268 template <typename Func>
269 auto map(Func&& f) & -> Maybe<decltype(f(instance<Own<T>&>()))> {
270 if (ptr == nullptr) {
271 return nullptr;
272 } else {
273 return f(ptr);
274 }
275 }
276
277 template <typename Func>
278 auto map(Func&& f) const & -> Maybe<decltype(f(instance<const Own<T>&>()))> {
279 if (ptr == nullptr) {
280 return nullptr;
281 } else {
282 return f(ptr);
283 }
284 }
285
286 template <typename Func>
287 auto map(Func&& f) && -> Maybe<decltype(f(instance<Own<T>&&>()))> {
288 if (ptr == nullptr) {
289 return nullptr;
290 } else {
291 return f(kj::mv(ptr));
292 }
293 }
294
295 template <typename Func>
296 auto map(Func&& f) const && -> Maybe<decltype(f(instance<const Own<T>&&>()))> {
297 if (ptr == nullptr) {
298 return nullptr;
299 } else {
300 return f(kj::mv(ptr));
301 }
302 }
303
304 private:
305 Own<T> ptr;
306
307 template <typename U>
308 friend class Maybe;
309 template <typename U>
310 friend _::OwnOwn<U> _::readMaybe(Maybe<Own<U>>&& maybe);
311 template <typename U>
312 friend Own<U>* _::readMaybe(Maybe<Own<U>>& maybe);
313 template <typename U>
314 friend const Own<U>* _::readMaybe(const Maybe<Own<U>>& maybe);
315 };
316
317 namespace _ { // private
318
319 template <typename T>
320 class HeapDisposer final: public Disposer {
321 public:
322 virtual void disposeImpl(void* pointer) const override { delete reinterpret_cast<T*>(pointer); }
323
324 static const HeapDisposer instance;
325 };
326
327 template <typename T>
328 const HeapDisposer<T> HeapDisposer<T>::instance = HeapDisposer<T>();
329
330 } // namespace _ (private)
331
332 template <typename T, typename... Params>
333 Own<T> heap(Params&&... params) {
334 // heap<T>(...) allocates a T on the heap, forwarding the parameters to its constructor. The
335 // exact heap implementation is unspecified -- for now it is operator new, but you should not
336 // assume this. (Since we know the object size at delete time, we could actually implement an
337 // allocator that is more efficient than operator new.)
338
339 return Own<T>(new T(kj::fwd<Params>(params)...), _::HeapDisposer<T>::instance);
340 }
341
342 template <typename T>
343 Own<Decay<T>> heap(T&& orig) {
344 // Allocate a copy (or move) of the argument on the heap.
345 //
346 // The purpose of this overload is to allow you to omit the template parameter as there is only
347 // one argument and the purpose is to copy it.
348
349 typedef Decay<T> T2;
350 return Own<T2>(new T2(kj::fwd<T>(orig)), _::HeapDisposer<T2>::instance);
351 }
352
353 // =======================================================================================
354 // SpaceFor<T> -- assists in manual allocation
355
356 template <typename T>
357 class SpaceFor {
358 // A class which has the same size and alignment as T but does not call its constructor or
359 // destructor automatically. Instead, call construct() to construct a T in the space, which
360 // returns an Own<T> which will take care of calling T's destructor later.
361
362 public:
363 inline SpaceFor() {}
364 inline ~SpaceFor() {}
365
366 template <typename... Params>
367 Own<T> construct(Params&&... params) {
368 ctor(value, kj::fwd<Params>(params)...);
369 return Own<T>(&value, DestructorOnlyDisposer<T>::instance);
370 }
371
372 private:
373 union {
374 T value;
375 };
376 };
377
378 // =======================================================================================
379 // Inline implementation details
380
381 template <typename T>
382 struct Disposer::Dispose_<T, true> {
383 static void dispose(T* object, const Disposer& disposer) {
384 // Note that dynamic_cast<void*> does not require RTTI to be enabled, because the offset to
385 // the top of the object is in the vtable -- as it obviously needs to be to correctly implement
386 // operator delete.
387 disposer.disposeImpl(dynamic_cast<void*>(object));
388 }
389 };
390 template <typename T>
391 struct Disposer::Dispose_<T, false> {
392 static void dispose(T* object, const Disposer& disposer) {
393 disposer.disposeImpl(static_cast<void*>(object));
394 }
395 };
396
397 template <typename T>
398 void Disposer::dispose(T* object) const {
399 Dispose_<T>::dispose(object, *this);
400 }
401
402 } // namespace kj
403
404 #endif // KJ_MEMORY_H_