comparison osx/include/kj/async.h @ 49:3ab5a40c4e3b

Add Capnp and KJ builds for OSX
author Chris Cannam <cannam@all-day-breakfast.com>
date Tue, 25 Oct 2016 14:48:23 +0100
parents
children 0994c39f1e94
comparison
equal deleted inserted replaced
48:9530b331f8c1 49:3ab5a40c4e3b
1 // Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors
2 // Licensed under the MIT License:
3 //
4 // Permission is hereby granted, free of charge, to any person obtaining a copy
5 // of this software and associated documentation files (the "Software"), to deal
6 // in the Software without restriction, including without limitation the rights
7 // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
8 // copies of the Software, and to permit persons to whom the Software is
9 // furnished to do so, subject to the following conditions:
10 //
11 // The above copyright notice and this permission notice shall be included in
12 // all copies or substantial portions of the Software.
13 //
14 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
17 // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
19 // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
20 // THE SOFTWARE.
21
22 #ifndef KJ_ASYNC_H_
23 #define KJ_ASYNC_H_
24
25 #if defined(__GNUC__) && !KJ_HEADER_WARNINGS
26 #pragma GCC system_header
27 #endif
28
29 #include "async-prelude.h"
30 #include "exception.h"
31 #include "refcount.h"
32
33 namespace kj {
34
35 class EventLoop;
36 class WaitScope;
37
38 template <typename T>
39 class Promise;
40 template <typename T>
41 class ForkedPromise;
42 template <typename T>
43 class PromiseFulfiller;
44 template <typename T>
45 struct PromiseFulfillerPair;
46
47 template <typename Func, typename T>
48 using PromiseForResult = Promise<_::JoinPromises<_::ReturnType<Func, T>>>;
49 // Evaluates to the type of Promise for the result of calling functor type Func with parameter type
50 // T. If T is void, then the promise is for the result of calling Func with no arguments. If
51 // Func itself returns a promise, the promises are joined, so you never get Promise<Promise<T>>.
52
53 // =======================================================================================
54 // Promises
55
56 template <typename T>
57 class Promise: protected _::PromiseBase {
58 // The basic primitive of asynchronous computation in KJ. Similar to "futures", but designed
59 // specifically for event loop concurrency. Similar to E promises and JavaScript Promises/A.
60 //
61 // A Promise represents a promise to produce a value of type T some time in the future. Once
62 // that value has been produced, the promise is "fulfilled". Alternatively, a promise can be
63 // "broken", with an Exception describing what went wrong. You may implicitly convert a value of
64 // type T to an already-fulfilled Promise<T>. You may implicitly convert the constant
65 // `kj::READY_NOW` to an already-fulfilled Promise<void>. You may also implicitly convert a
66 // `kj::Exception` to an already-broken promise of any type.
67 //
68 // Promises are linear types -- they are moveable but not copyable. If a Promise is destroyed
69 // or goes out of scope (without being moved elsewhere), any ongoing asynchronous operations
70 // meant to fulfill the promise will be canceled if possible. All methods of `Promise` (unless
71 // otherwise noted) actually consume the promise in the sense of move semantics. (Arguably they
72 // should be rvalue-qualified, but at the time this interface was created compilers didn't widely
73 // support that yet and anyway it would be pretty ugly typing kj::mv(promise).whatever().) If
74 // you want to use one Promise in two different places, you must fork it with `fork()`.
75 //
76 // To use the result of a Promise, you must call `then()` and supply a callback function to
77 // call with the result. `then()` returns another promise, for the result of the callback.
78 // Any time that this would result in Promise<Promise<T>>, the promises are collapsed into a
79 // simple Promise<T> that first waits for the outer promise, then the inner. Example:
80 //
81 // // Open a remote file, read the content, and then count the
82 // // number of lines of text.
83 // // Note that none of the calls here block. `file`, `content`
84 // // and `lineCount` are all initialized immediately before any
85 // // asynchronous operations occur. The lambda callbacks are
86 // // called later.
87 // Promise<Own<File>> file = openFtp("ftp://host/foo/bar");
88 // Promise<String> content = file.then(
89 // [](Own<File> file) -> Promise<String> {
90 // return file.readAll();
91 // });
92 // Promise<int> lineCount = content.then(
93 // [](String text) -> int {
94 // uint count = 0;
95 // for (char c: text) count += (c == '\n');
96 // return count;
97 // });
98 //
99 // For `then()` to work, the current thread must have an active `EventLoop`. Each callback
100 // is scheduled to execute in that loop. Since `then()` schedules callbacks only on the current
101 // thread's event loop, you do not need to worry about two callbacks running at the same time.
102 // You will need to set up at least one `EventLoop` at the top level of your program before you
103 // can use promises.
104 //
105 // To adapt a non-Promise-based asynchronous API to promises, use `newAdaptedPromise()`.
106 //
107 // Systems using promises should consider supporting the concept of "pipelining". Pipelining
108 // means allowing a caller to start issuing method calls against a promised object before the
109 // promise has actually been fulfilled. This is particularly useful if the promise is for a
110 // remote object living across a network, as this can avoid round trips when chaining a series
111 // of calls. It is suggested that any class T which supports pipelining implement a subclass of
112 // Promise<T> which adds "eventual send" methods -- methods which, when called, say "please
113 // invoke the corresponding method on the promised value once it is available". These methods
114 // should in turn return promises for the eventual results of said invocations. Cap'n Proto,
115 // for example, implements the type `RemotePromise` which supports pipelining RPC requests -- see
116 // `capnp/capability.h`.
117 //
118 // KJ Promises are based on E promises:
119 // http://wiki.erights.org/wiki/Walnut/Distributed_Computing#Promises
120 //
121 // KJ Promises are also inspired in part by the evolving standards for JavaScript/ECMAScript
122 // promises, which are themselves influenced by E promises:
123 // http://promisesaplus.com/
124 // https://github.com/domenic/promises-unwrapping
125
126 public:
127 Promise(_::FixVoid<T> value);
128 // Construct an already-fulfilled Promise from a value of type T. For non-void promises, the
129 // parameter type is simply T. So, e.g., in a function that returns `Promise<int>`, you can
130 // say `return 123;` to return a promise that is already fulfilled to 123.
131 //
132 // For void promises, use `kj::READY_NOW` as the value, e.g. `return kj::READY_NOW`.
133
134 Promise(kj::Exception&& e);
135 // Construct an already-broken Promise.
136
137 inline Promise(decltype(nullptr)) {}
138
139 template <typename Func, typename ErrorFunc = _::PropagateException>
140 PromiseForResult<Func, T> then(Func&& func, ErrorFunc&& errorHandler = _::PropagateException())
141 KJ_WARN_UNUSED_RESULT;
142 // Register a continuation function to be executed when the promise completes. The continuation
143 // (`func`) takes the promised value (an rvalue of type `T`) as its parameter. The continuation
144 // may return a new value; `then()` itself returns a promise for the continuation's eventual
145 // result. If the continuation itself returns a `Promise<U>`, then `then()` shall also return
146 // a `Promise<U>` which first waits for the original promise, then executes the continuation,
147 // then waits for the inner promise (i.e. it automatically "unwraps" the promise).
148 //
149 // In all cases, `then()` returns immediately. The continuation is executed later. The
150 // continuation is always executed on the same EventLoop (and, therefore, the same thread) which
151 // called `then()`, therefore no synchronization is necessary on state shared by the continuation
152 // and the surrounding scope. If no EventLoop is running on the current thread, `then()` throws
153 // an exception.
154 //
155 // You may also specify an error handler continuation as the second parameter. `errorHandler`
156 // must be a functor taking a parameter of type `kj::Exception&&`. It must return the same
157 // type as `func` returns (except when `func` returns `Promise<U>`, in which case `errorHandler`
158 // may return either `Promise<U>` or just `U`). The default error handler simply propagates the
159 // exception to the returned promise.
160 //
161 // Either `func` or `errorHandler` may, of course, throw an exception, in which case the promise
162 // is broken. When compiled with -fno-exceptions, the framework will still detect when a
163 // recoverable exception was thrown inside of a continuation and will consider the promise
164 // broken even though a (presumably garbage) result was returned.
165 //
166 // If the returned promise is destroyed before the callback runs, the callback will be canceled
167 // (it will never run).
168 //
169 // Note that `then()` -- like all other Promise methods -- consumes the promise on which it is
170 // called, in the sense of move semantics. After returning, the original promise is no longer
171 // valid, but `then()` returns a new promise.
172 //
173 // *Advanced implementation tips:* Most users will never need to worry about the below, but
174 // it is good to be aware of.
175 //
176 // As an optimization, if the callback function `func` does _not_ return another promise, then
177 // execution of `func` itself may be delayed until its result is known to be needed. The
178 // expectation here is that `func` is just doing some transformation on the results, not
179 // scheduling any other actions, therefore the system doesn't need to be proactive about
180 // evaluating it. This way, a chain of trivial then() transformations can be executed all at
181 // once without repeatedly re-scheduling through the event loop. Use the `eagerlyEvaluate()`
182 // method to suppress this behavior.
183 //
184 // On the other hand, if `func` _does_ return another promise, then the system evaluates `func`
185 // as soon as possible, because the promise it returns might be for a newly-scheduled
186 // long-running asynchronous task.
187 //
188 // As another optimization, when a callback function registered with `then()` is actually
189 // scheduled, it is scheduled to occur immediately, preempting other work in the event queue.
190 // This allows a long chain of `then`s to execute all at once, improving cache locality by
191 // clustering operations on the same data. However, this implies that starvation can occur
192 // if a chain of `then()`s takes a very long time to execute without ever stopping to wait for
193 // actual I/O. To solve this, use `kj::evalLater()` to yield control; this way, all other events
194 // in the queue will get a chance to run before your callback is executed.
195
196 Promise<void> ignoreResult() KJ_WARN_UNUSED_RESULT { return then([](T&&) {}); }
197 // Convenience method to convert the promise to a void promise by ignoring the return value.
198 //
199 // You must still wait on the returned promise if you want the task to execute.
200
201 template <typename ErrorFunc>
202 Promise<T> catch_(ErrorFunc&& errorHandler) KJ_WARN_UNUSED_RESULT;
203 // Equivalent to `.then(identityFunc, errorHandler)`, where `identifyFunc` is a function that
204 // just returns its input.
205
206 T wait(WaitScope& waitScope);
207 // Run the event loop until the promise is fulfilled, then return its result. If the promise
208 // is rejected, throw an exception.
209 //
210 // wait() is primarily useful at the top level of a program -- typically, within the function
211 // that allocated the EventLoop. For example, a program that performs one or two RPCs and then
212 // exits would likely use wait() in its main() function to wait on each RPC. On the other hand,
213 // server-side code generally cannot use wait(), because it has to be able to accept multiple
214 // requests at once.
215 //
216 // If the promise is rejected, `wait()` throws an exception. If the program was compiled without
217 // exceptions (-fno-exceptions), this will usually abort. In this case you really should first
218 // use `then()` to set an appropriate handler for the exception case, so that the promise you
219 // actually wait on never throws.
220 //
221 // `waitScope` is an object proving that the caller is in a scope where wait() is allowed. By
222 // convention, any function which might call wait(), or which might call another function which
223 // might call wait(), must take `WaitScope&` as one of its parameters. This is needed for two
224 // reasons:
225 // * `wait()` is not allowed during an event callback, because event callbacks are themselves
226 // called during some other `wait()`, and such recursive `wait()`s would only be able to
227 // complete in LIFO order, which might mean that the outer `wait()` ends up waiting longer
228 // than it is supposed to. To prevent this, a `WaitScope` cannot be constructed or used during
229 // an event callback.
230 // * Since `wait()` runs the event loop, unrelated event callbacks may execute before `wait()`
231 // returns. This means that anyone calling `wait()` must be reentrant -- state may change
232 // around them in arbitrary ways. Therefore, callers really need to know if a function they
233 // are calling might wait(), and the `WaitScope&` parameter makes this clear.
234 //
235 // TODO(someday): Implement fibers, and let them call wait() even when they are handling an
236 // event.
237
238 ForkedPromise<T> fork() KJ_WARN_UNUSED_RESULT;
239 // Forks the promise, so that multiple different clients can independently wait on the result.
240 // `T` must be copy-constructable for this to work. Or, in the special case where `T` is
241 // `Own<U>`, `U` must have a method `Own<U> addRef()` which returns a new reference to the same
242 // (or an equivalent) object (probably implemented via reference counting).
243
244 _::SplitTuplePromise<T> split();
245 // Split a promise for a tuple into a tuple of promises.
246 //
247 // E.g. if you have `Promise<kj::Tuple<T, U>>`, `split()` returns
248 // `kj::Tuple<Promise<T>, Promise<U>>`.
249
250 Promise<T> exclusiveJoin(Promise<T>&& other) KJ_WARN_UNUSED_RESULT;
251 // Return a new promise that resolves when either the original promise resolves or `other`
252 // resolves (whichever comes first). The promise that didn't resolve first is canceled.
253
254 // TODO(someday): inclusiveJoin(), or perhaps just join(), which waits for both completions
255 // and produces a tuple?
256
257 template <typename... Attachments>
258 Promise<T> attach(Attachments&&... attachments) KJ_WARN_UNUSED_RESULT;
259 // "Attaches" one or more movable objects (often, Own<T>s) to the promise, such that they will
260 // be destroyed when the promise resolves. This is useful when a promise's callback contains
261 // pointers into some object and you want to make sure the object still exists when the callback
262 // runs -- after calling then(), use attach() to add necessary objects to the result.
263
264 template <typename ErrorFunc>
265 Promise<T> eagerlyEvaluate(ErrorFunc&& errorHandler) KJ_WARN_UNUSED_RESULT;
266 Promise<T> eagerlyEvaluate(decltype(nullptr)) KJ_WARN_UNUSED_RESULT;
267 // Force eager evaluation of this promise. Use this if you are going to hold on to the promise
268 // for awhile without consuming the result, but you want to make sure that the system actually
269 // processes it.
270 //
271 // `errorHandler` is a function that takes `kj::Exception&&`, like the second parameter to
272 // `then()`, except that it must return void. We make you specify this because otherwise it's
273 // easy to forget to handle errors in a promise that you never use. You may specify nullptr for
274 // the error handler if you are sure that ignoring errors is fine, or if you know that you'll
275 // eventually wait on the promise somewhere.
276
277 template <typename ErrorFunc>
278 void detach(ErrorFunc&& errorHandler);
279 // Allows the promise to continue running in the background until it completes or the
280 // `EventLoop` is destroyed. Be careful when using this: since you can no longer cancel this
281 // promise, you need to make sure that the promise owns all the objects it touches or make sure
282 // those objects outlive the EventLoop.
283 //
284 // `errorHandler` is a function that takes `kj::Exception&&`, like the second parameter to
285 // `then()`, except that it must return void.
286 //
287 // This function exists mainly to implement the Cap'n Proto requirement that RPC calls cannot be
288 // canceled unless the callee explicitly permits it.
289
290 kj::String trace();
291 // Returns a dump of debug info about this promise. Not for production use. Requires RTTI.
292 // This method does NOT consume the promise as other methods do.
293
294 private:
295 Promise(bool, Own<_::PromiseNode>&& node): PromiseBase(kj::mv(node)) {}
296 // Second parameter prevent ambiguity with immediate-value constructor.
297
298 template <typename>
299 friend class Promise;
300 friend class EventLoop;
301 template <typename U, typename Adapter, typename... Params>
302 friend Promise<U> newAdaptedPromise(Params&&... adapterConstructorParams);
303 template <typename U>
304 friend PromiseFulfillerPair<U> newPromiseAndFulfiller();
305 template <typename>
306 friend class _::ForkHub;
307 friend class _::TaskSetImpl;
308 friend Promise<void> _::yield();
309 friend class _::NeverDone;
310 template <typename U>
311 friend Promise<Array<U>> joinPromises(Array<Promise<U>>&& promises);
312 friend Promise<void> joinPromises(Array<Promise<void>>&& promises);
313 };
314
315 template <typename T>
316 class ForkedPromise {
317 // The result of `Promise::fork()` and `EventLoop::fork()`. Allows branches to be created.
318 // Like `Promise<T>`, this is a pass-by-move type.
319
320 public:
321 inline ForkedPromise(decltype(nullptr)) {}
322
323 Promise<T> addBranch();
324 // Add a new branch to the fork. The branch is equivalent to the original promise.
325
326 private:
327 Own<_::ForkHub<_::FixVoid<T>>> hub;
328
329 inline ForkedPromise(bool, Own<_::ForkHub<_::FixVoid<T>>>&& hub): hub(kj::mv(hub)) {}
330
331 friend class Promise<T>;
332 friend class EventLoop;
333 };
334
335 constexpr _::Void READY_NOW = _::Void();
336 // Use this when you need a Promise<void> that is already fulfilled -- this value can be implicitly
337 // cast to `Promise<void>`.
338
339 constexpr _::NeverDone NEVER_DONE = _::NeverDone();
340 // The opposite of `READY_NOW`, return this when the promise should never resolve. This can be
341 // implicitly converted to any promise type. You may also call `NEVER_DONE.wait()` to wait
342 // forever (useful for servers).
343
344 template <typename Func>
345 PromiseForResult<Func, void> evalLater(Func&& func) KJ_WARN_UNUSED_RESULT;
346 // Schedule for the given zero-parameter function to be executed in the event loop at some
347 // point in the near future. Returns a Promise for its result -- or, if `func()` itself returns
348 // a promise, `evalLater()` returns a Promise for the result of resolving that promise.
349 //
350 // Example usage:
351 // Promise<int> x = evalLater([]() { return 123; });
352 //
353 // The above is exactly equivalent to:
354 // Promise<int> x = Promise<void>(READY_NOW).then([]() { return 123; });
355 //
356 // If the returned promise is destroyed before the callback runs, the callback will be canceled
357 // (never called).
358 //
359 // If you schedule several evaluations with `evalLater` during the same callback, they are
360 // guaranteed to be executed in order.
361
362 template <typename Func>
363 PromiseForResult<Func, void> evalNow(Func&& func) KJ_WARN_UNUSED_RESULT;
364 // Run `func()` and return a promise for its result. `func()` executes before `evalNow()` returns.
365 // If `func()` throws an exception, the exception is caught and wrapped in a promise -- this is the
366 // main reason why `evalNow()` is useful.
367
368 template <typename T>
369 Promise<Array<T>> joinPromises(Array<Promise<T>>&& promises);
370 // Join an array of promises into a promise for an array.
371
372 // =======================================================================================
373 // Hack for creating a lambda that holds an owned pointer.
374
375 template <typename Func, typename MovedParam>
376 class CaptureByMove {
377 public:
378 inline CaptureByMove(Func&& func, MovedParam&& param)
379 : func(kj::mv(func)), param(kj::mv(param)) {}
380
381 template <typename... Params>
382 inline auto operator()(Params&&... params)
383 -> decltype(kj::instance<Func>()(kj::instance<MovedParam&&>(), kj::fwd<Params>(params)...)) {
384 return func(kj::mv(param), kj::fwd<Params>(params)...);
385 }
386
387 private:
388 Func func;
389 MovedParam param;
390 };
391
392 template <typename Func, typename MovedParam>
393 inline CaptureByMove<Func, Decay<MovedParam>> mvCapture(MovedParam&& param, Func&& func) {
394 // Hack to create a "lambda" which captures a variable by moving it rather than copying or
395 // referencing. C++14 generalized captures should make this obsolete, but for now in C++11 this
396 // is commonly needed for Promise continuations that own their state. Example usage:
397 //
398 // Own<Foo> ptr = makeFoo();
399 // Promise<int> promise = callRpc();
400 // promise.then(mvCapture(ptr, [](Own<Foo>&& ptr, int result) {
401 // return ptr->finish(result);
402 // }));
403
404 return CaptureByMove<Func, Decay<MovedParam>>(kj::fwd<Func>(func), kj::mv(param));
405 }
406
407 // =======================================================================================
408 // Advanced promise construction
409
410 template <typename T>
411 class PromiseFulfiller {
412 // A callback which can be used to fulfill a promise. Only the first call to fulfill() or
413 // reject() matters; subsequent calls are ignored.
414
415 public:
416 virtual void fulfill(T&& value) = 0;
417 // Fulfill the promise with the given value.
418
419 virtual void reject(Exception&& exception) = 0;
420 // Reject the promise with an error.
421
422 virtual bool isWaiting() = 0;
423 // Returns true if the promise is still unfulfilled and someone is potentially waiting for it.
424 // Returns false if fulfill()/reject() has already been called *or* if the promise to be
425 // fulfilled has been discarded and therefore the result will never be used anyway.
426
427 template <typename Func>
428 bool rejectIfThrows(Func&& func);
429 // Call the function (with no arguments) and return true. If an exception is thrown, call
430 // `fulfiller.reject()` and then return false. When compiled with exceptions disabled,
431 // non-fatal exceptions are still detected and handled correctly.
432 };
433
434 template <>
435 class PromiseFulfiller<void> {
436 // Specialization of PromiseFulfiller for void promises. See PromiseFulfiller<T>.
437
438 public:
439 virtual void fulfill(_::Void&& value = _::Void()) = 0;
440 // Call with zero parameters. The parameter is a dummy that only exists so that subclasses don't
441 // have to specialize for <void>.
442
443 virtual void reject(Exception&& exception) = 0;
444 virtual bool isWaiting() = 0;
445
446 template <typename Func>
447 bool rejectIfThrows(Func&& func);
448 };
449
450 template <typename T, typename Adapter, typename... Params>
451 Promise<T> newAdaptedPromise(Params&&... adapterConstructorParams);
452 // Creates a new promise which owns an instance of `Adapter` which encapsulates the operation
453 // that will eventually fulfill the promise. This is primarily useful for adapting non-KJ
454 // asynchronous APIs to use promises.
455 //
456 // An instance of `Adapter` will be allocated and owned by the returned `Promise`. A
457 // `PromiseFulfiller<T>&` will be passed as the first parameter to the adapter's constructor,
458 // and `adapterConstructorParams` will be forwarded as the subsequent parameters. The adapter
459 // is expected to perform some asynchronous operation and call the `PromiseFulfiller<T>` once
460 // it is finished.
461 //
462 // The adapter is destroyed when its owning Promise is destroyed. This may occur before the
463 // Promise has been fulfilled. In this case, the adapter's destructor should cancel the
464 // asynchronous operation. Once the adapter is destroyed, the fulfillment callback cannot be
465 // called.
466 //
467 // An adapter implementation should be carefully written to ensure that it cannot accidentally
468 // be left unfulfilled permanently because of an exception. Consider making liberal use of
469 // `PromiseFulfiller<T>::rejectIfThrows()`.
470
471 template <typename T>
472 struct PromiseFulfillerPair {
473 Promise<_::JoinPromises<T>> promise;
474 Own<PromiseFulfiller<T>> fulfiller;
475 };
476
477 template <typename T>
478 PromiseFulfillerPair<T> newPromiseAndFulfiller();
479 // Construct a Promise and a separate PromiseFulfiller which can be used to fulfill the promise.
480 // If the PromiseFulfiller is destroyed before either of its methods are called, the Promise is
481 // implicitly rejected.
482 //
483 // Although this function is easier to use than `newAdaptedPromise()`, it has the serious drawback
484 // that there is no way to handle cancellation (i.e. detect when the Promise is discarded).
485 //
486 // You can arrange to fulfill a promise with another promise by using a promise type for T. E.g.
487 // `newPromiseAndFulfiller<Promise<U>>()` will produce a promise of type `Promise<U>` but the
488 // fulfiller will be of type `PromiseFulfiller<Promise<U>>`. Thus you pass a `Promise<U>` to the
489 // `fulfill()` callback, and the promises are chained.
490
491 // =======================================================================================
492 // TaskSet
493
494 class TaskSet {
495 // Holds a collection of Promise<void>s and ensures that each executes to completion. Memory
496 // associated with each promise is automatically freed when the promise completes. Destroying
497 // the TaskSet itself automatically cancels all unfinished promises.
498 //
499 // This is useful for "daemon" objects that perform background tasks which aren't intended to
500 // fulfill any particular external promise, but which may need to be canceled (and thus can't
501 // use `Promise::detach()`). The daemon object holds a TaskSet to collect these tasks it is
502 // working on. This way, if the daemon itself is destroyed, the TaskSet is detroyed as well,
503 // and everything the daemon is doing is canceled.
504
505 public:
506 class ErrorHandler {
507 public:
508 virtual void taskFailed(kj::Exception&& exception) = 0;
509 };
510
511 TaskSet(ErrorHandler& errorHandler);
512 // `loop` will be used to wait on promises. `errorHandler` will be executed any time a task
513 // throws an exception, and will execute within the given EventLoop.
514
515 ~TaskSet() noexcept(false);
516
517 void add(Promise<void>&& promise);
518
519 kj::String trace();
520 // Return debug info about all promises currently in the TaskSet.
521
522 private:
523 Own<_::TaskSetImpl> impl;
524 };
525
526 // =======================================================================================
527 // The EventLoop class
528
529 class EventPort {
530 // Interfaces between an `EventLoop` and events originating from outside of the loop's thread.
531 // All such events come in through the `EventPort` implementation.
532 //
533 // An `EventPort` implementation may interface with low-level operating system APIs and/or other
534 // threads. You can also write an `EventPort` which wraps some other (non-KJ) event loop
535 // framework, allowing the two to coexist in a single thread.
536
537 public:
538 virtual bool wait() = 0;
539 // Wait for an external event to arrive, sleeping if necessary. Once at least one event has
540 // arrived, queue it to the event loop (e.g. by fulfilling a promise) and return.
541 //
542 // This is called during `Promise::wait()` whenever the event queue becomes empty, in order to
543 // wait for new events to populate the queue.
544 //
545 // It is safe to return even if nothing has actually been queued, so long as calling `wait()` in
546 // a loop will eventually sleep. (That is to say, false positives are fine.)
547 //
548 // Returns true if wake() has been called from another thread. (Precisely, returns true if
549 // no previous call to wait `wait()` nor `poll()` has returned true since `wake()` was last
550 // called.)
551
552 virtual bool poll() = 0;
553 // Check if any external events have arrived, but do not sleep. If any events have arrived,
554 // add them to the event queue (e.g. by fulfilling promises) before returning.
555 //
556 // This may be called during `Promise::wait()` when the EventLoop has been executing for a while
557 // without a break but is still non-empty.
558 //
559 // Returns true if wake() has been called from another thread. (Precisely, returns true if
560 // no previous call to wait `wait()` nor `poll()` has returned true since `wake()` was last
561 // called.)
562
563 virtual void setRunnable(bool runnable);
564 // Called to notify the `EventPort` when the `EventLoop` has work to do; specifically when it
565 // transitions from empty -> runnable or runnable -> empty. This is typically useful when
566 // integrating with an external event loop; if the loop is currently runnable then you should
567 // arrange to call run() on it soon. The default implementation does nothing.
568
569 virtual void wake() const;
570 // Wake up the EventPort's thread from another thread.
571 //
572 // Unlike all other methods on this interface, `wake()` may be called from another thread, hence
573 // it is `const`.
574 //
575 // Technically speaking, `wake()` causes the target thread to cease sleeping and not to sleep
576 // again until `wait()` or `poll()` has returned true at least once.
577 //
578 // The default implementation throws an UNIMPLEMENTED exception.
579 };
580
581 class EventLoop {
582 // Represents a queue of events being executed in a loop. Most code won't interact with
583 // EventLoop directly, but instead use `Promise`s to interact with it indirectly. See the
584 // documentation for `Promise`.
585 //
586 // Each thread can have at most one current EventLoop. To make an `EventLoop` current for
587 // the thread, create a `WaitScope`. Async APIs require that the thread has a current EventLoop,
588 // or they will throw exceptions. APIs that use `Promise::wait()` additionally must explicitly
589 // be passed a reference to the `WaitScope` to make the caller aware that they might block.
590 //
591 // Generally, you will want to construct an `EventLoop` at the top level of your program, e.g.
592 // in the main() function, or in the start function of a thread. You can then use it to
593 // construct some promises and wait on the result. Example:
594 //
595 // int main() {
596 // // `loop` becomes the official EventLoop for the thread.
597 // MyEventPort eventPort;
598 // EventLoop loop(eventPort);
599 //
600 // // Now we can call an async function.
601 // Promise<String> textPromise = getHttp("http://example.com");
602 //
603 // // And we can wait for the promise to complete. Note that you can only use `wait()`
604 // // from the top level, not from inside a promise callback.
605 // String text = textPromise.wait();
606 // print(text);
607 // return 0;
608 // }
609 //
610 // Most applications that do I/O will prefer to use `setupAsyncIo()` from `async-io.h` rather
611 // than allocate an `EventLoop` directly.
612
613 public:
614 EventLoop();
615 // Construct an `EventLoop` which does not receive external events at all.
616
617 explicit EventLoop(EventPort& port);
618 // Construct an `EventLoop` which receives external events through the given `EventPort`.
619
620 ~EventLoop() noexcept(false);
621
622 void run(uint maxTurnCount = maxValue);
623 // Run the event loop for `maxTurnCount` turns or until there is nothing left to be done,
624 // whichever comes first. This never calls the `EventPort`'s `sleep()` or `poll()`. It will
625 // call the `EventPort`'s `setRunnable(false)` if the queue becomes empty.
626
627 bool isRunnable();
628 // Returns true if run() would currently do anything, or false if the queue is empty.
629
630 private:
631 EventPort& port;
632
633 bool running = false;
634 // True while looping -- wait() is then not allowed.
635
636 bool lastRunnableState = false;
637 // What did we last pass to port.setRunnable()?
638
639 _::Event* head = nullptr;
640 _::Event** tail = &head;
641 _::Event** depthFirstInsertPoint = &head;
642
643 Own<_::TaskSetImpl> daemons;
644
645 bool turn();
646 void setRunnable(bool runnable);
647 void enterScope();
648 void leaveScope();
649
650 friend void _::detach(kj::Promise<void>&& promise);
651 friend void _::waitImpl(Own<_::PromiseNode>&& node, _::ExceptionOrValue& result,
652 WaitScope& waitScope);
653 friend class _::Event;
654 friend class WaitScope;
655 };
656
657 class WaitScope {
658 // Represents a scope in which asynchronous programming can occur. A `WaitScope` should usually
659 // be allocated on the stack and serves two purposes:
660 // * While the `WaitScope` exists, its `EventLoop` is registered as the current loop for the
661 // thread. Most operations dealing with `Promise` (including all of its methods) do not work
662 // unless the thread has a current `EventLoop`.
663 // * `WaitScope` may be passed to `Promise::wait()` to synchronously wait for a particular
664 // promise to complete. See `Promise::wait()` for an extended discussion.
665
666 public:
667 inline explicit WaitScope(EventLoop& loop): loop(loop) { loop.enterScope(); }
668 inline ~WaitScope() { loop.leaveScope(); }
669 KJ_DISALLOW_COPY(WaitScope);
670
671 private:
672 EventLoop& loop;
673 friend class EventLoop;
674 friend void _::waitImpl(Own<_::PromiseNode>&& node, _::ExceptionOrValue& result,
675 WaitScope& waitScope);
676 };
677
678 } // namespace kj
679
680 #include "async-inl.h"
681
682 #endif // KJ_ASYNC_H_