Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.3/simd-support/simd-sse2.h @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
9:c0fb53affa76 | 10:37bf6b4a2645 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-11 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 #if defined(FFTW_LDOUBLE) || defined(FFTW_QUAD) | |
22 # error "SSE/SSE2 only works in single/double precision" | |
23 #endif | |
24 | |
25 #ifdef FFTW_SINGLE | |
26 # define DS(d,s) s /* single-precision option */ | |
27 # define SUFF(name) name ## s | |
28 #else | |
29 # define DS(d,s) d /* double-precision option */ | |
30 # define SUFF(name) name ## d | |
31 #endif | |
32 | |
33 #define SIMD_SUFFIX _sse2 /* for renaming */ | |
34 #define VL DS(1,2) /* SIMD vector length, in term of complex numbers */ | |
35 #define SIMD_VSTRIDE_OKA(x) DS(1,((x) == 2)) | |
36 #define SIMD_STRIDE_OKPAIR SIMD_STRIDE_OK | |
37 | |
38 #if defined(__GNUC__) && !defined(FFTW_SINGLE) && !defined(__SSE2__) | |
39 # error "compiling simd-sse2.h in double precision without -msse2" | |
40 #elif defined(__GNUC__) && defined(FFTW_SINGLE) && !defined(__SSE__) | |
41 # error "compiling simd-sse2.h in single precision without -msse" | |
42 #endif | |
43 | |
44 #ifdef _MSC_VER | |
45 #ifndef inline | |
46 #define inline __inline | |
47 #endif | |
48 #endif | |
49 | |
50 /* some versions of glibc's sys/cdefs.h define __inline to be empty, | |
51 which is wrong because emmintrin.h defines several inline | |
52 procedures */ | |
53 #ifndef _MSC_VER | |
54 #undef __inline | |
55 #endif | |
56 | |
57 #ifdef FFTW_SINGLE | |
58 # include <xmmintrin.h> | |
59 #else | |
60 # include <emmintrin.h> | |
61 #endif | |
62 | |
63 typedef DS(__m128d,__m128) V; | |
64 #define VADD SUFF(_mm_add_p) | |
65 #define VSUB SUFF(_mm_sub_p) | |
66 #define VMUL SUFF(_mm_mul_p) | |
67 #define VXOR SUFF(_mm_xor_p) | |
68 #define SHUF SUFF(_mm_shuffle_p) | |
69 #define UNPCKL SUFF(_mm_unpacklo_p) | |
70 #define UNPCKH SUFF(_mm_unpackhi_p) | |
71 | |
72 #define SHUFVALS(fp0,fp1,fp2,fp3) \ | |
73 (((fp3) << 6) | ((fp2) << 4) | ((fp1) << 2) | ((fp0))) | |
74 | |
75 #define VDUPL(x) DS(UNPCKL(x, x), SHUF(x, x, SHUFVALS(0, 0, 2, 2))) | |
76 #define VDUPH(x) DS(UNPCKH(x, x), SHUF(x, x, SHUFVALS(1, 1, 3, 3))) | |
77 #define STOREH(a, v) DS(_mm_storeh_pd(a, v), _mm_storeh_pi((__m64 *)(a), v)) | |
78 #define STOREL(a, v) DS(_mm_storel_pd(a, v), _mm_storel_pi((__m64 *)(a), v)) | |
79 | |
80 | |
81 #ifdef __GNUC__ | |
82 /* | |
83 * gcc-3.3 generates slow code for mm_set_ps (write all elements to | |
84 * the stack and load __m128 from the stack). | |
85 * | |
86 * gcc-3.[34] generates slow code for mm_set_ps1 (load into low element | |
87 * and shuffle). | |
88 * | |
89 * This hack forces gcc to generate a constant __m128 at compile time. | |
90 */ | |
91 union rvec { | |
92 R r[DS(2,4)]; | |
93 V v; | |
94 }; | |
95 | |
96 # ifdef FFTW_SINGLE | |
97 # define DVK(var, val) V var = __extension__ ({ \ | |
98 static const union rvec _var = { {val,val,val,val} }; _var.v; }) | |
99 # else | |
100 # define DVK(var, val) V var = __extension__ ({ \ | |
101 static const union rvec _var = { {val,val} }; _var.v; }) | |
102 # endif | |
103 # define LDK(x) x | |
104 #else | |
105 # define DVK(var, val) const R var = K(val) | |
106 # define LDK(x) DS(_mm_set1_pd,_mm_set_ps1)(x) | |
107 #endif | |
108 | |
109 union uvec { | |
110 unsigned u[4]; | |
111 V v; | |
112 }; | |
113 | |
114 static inline V LDA(const R *x, INT ivs, const R *aligned_like) | |
115 { | |
116 (void)aligned_like; /* UNUSED */ | |
117 (void)ivs; /* UNUSED */ | |
118 return *(const V *)x; | |
119 } | |
120 | |
121 static inline void STA(R *x, V v, INT ovs, const R *aligned_like) | |
122 { | |
123 (void)aligned_like; /* UNUSED */ | |
124 (void)ovs; /* UNUSED */ | |
125 *(V *)x = v; | |
126 } | |
127 | |
128 #ifdef FFTW_SINGLE | |
129 | |
130 # ifdef _MSC_VER | |
131 /* Temporarily disable the warning "uninitialized local variable | |
132 'name' used" and runtime checks for using a variable before it is | |
133 defined which is erroneously triggered by the LOADL0 / LOADH macros | |
134 as they only modify VAL partly each. */ | |
135 # pragma warning(disable : 4700) | |
136 # pragma runtime_checks("u", off) | |
137 # endif | |
138 | |
139 static inline V LD(const R *x, INT ivs, const R *aligned_like) | |
140 { | |
141 V var; | |
142 (void)aligned_like; /* UNUSED */ | |
143 # ifdef __GNUC__ | |
144 /* We use inline asm because gcc-3.x generates slow code for | |
145 _mm_loadh_pi(). gcc-3.x insists upon having an existing variable for | |
146 VAL, which is however never used. Thus, it generates code to move | |
147 values in and out the variable. Worse still, gcc-4.0 stores VAL on | |
148 the stack, causing valgrind to complain about uninitialized reads. */ | |
149 __asm__("movlps %1, %0\n\tmovhps %2, %0" | |
150 : "=x"(var) : "m"(x[0]), "m"(x[ivs])); | |
151 # else | |
152 # define LOADH(addr, val) _mm_loadh_pi(val, (const __m64 *)(addr)) | |
153 # define LOADL0(addr, val) _mm_loadl_pi(val, (const __m64 *)(addr)) | |
154 var = LOADL0(x, var); | |
155 var = LOADH(x + ivs, var); | |
156 # endif | |
157 return var; | |
158 } | |
159 | |
160 # ifdef _MSC_VER | |
161 # pragma warning(default : 4700) | |
162 # pragma runtime_checks("u", restore) | |
163 # endif | |
164 | |
165 static inline void ST(R *x, V v, INT ovs, const R *aligned_like) | |
166 { | |
167 (void)aligned_like; /* UNUSED */ | |
168 /* WARNING: the extra_iter hack depends upon STOREL occurring | |
169 after STOREH */ | |
170 STOREH(x + ovs, v); | |
171 STOREL(x, v); | |
172 } | |
173 | |
174 #else /* ! FFTW_SINGLE */ | |
175 # define LD LDA | |
176 # define ST STA | |
177 #endif | |
178 | |
179 #define STM2 DS(STA,ST) | |
180 #define STN2(x, v0, v1, ovs) /* nop */ | |
181 | |
182 #ifdef FFTW_SINGLE | |
183 # define STM4(x, v, ovs, aligned_like) /* no-op */ | |
184 /* STN4 is a macro, not a function, thanks to Visual C++ developers | |
185 deciding "it would be infrequent that people would want to pass more | |
186 than 3 [__m128 parameters] by value." 3 parameters ought to be enough | |
187 for anybody. */ | |
188 # define STN4(x, v0, v1, v2, v3, ovs) \ | |
189 { \ | |
190 V xxx0, xxx1, xxx2, xxx3; \ | |
191 xxx0 = UNPCKL(v0, v2); \ | |
192 xxx1 = UNPCKH(v0, v2); \ | |
193 xxx2 = UNPCKL(v1, v3); \ | |
194 xxx3 = UNPCKH(v1, v3); \ | |
195 STA(x, UNPCKL(xxx0, xxx2), 0, 0); \ | |
196 STA(x + ovs, UNPCKH(xxx0, xxx2), 0, 0); \ | |
197 STA(x + 2 * ovs, UNPCKL(xxx1, xxx3), 0, 0); \ | |
198 STA(x + 3 * ovs, UNPCKH(xxx1, xxx3), 0, 0); \ | |
199 } | |
200 #else /* !FFTW_SINGLE */ | |
201 static inline void STM4(R *x, V v, INT ovs, const R *aligned_like) | |
202 { | |
203 (void)aligned_like; /* UNUSED */ | |
204 STOREL(x, v); | |
205 STOREH(x + ovs, v); | |
206 } | |
207 # define STN4(x, v0, v1, v2, v3, ovs) /* nothing */ | |
208 #endif | |
209 | |
210 static inline V FLIP_RI(V x) | |
211 { | |
212 return SHUF(x, x, DS(1, SHUFVALS(1, 0, 3, 2))); | |
213 } | |
214 | |
215 extern const union uvec X(sse2_pm); | |
216 static inline V VCONJ(V x) | |
217 { | |
218 return VXOR(X(sse2_pm).v, x); | |
219 } | |
220 | |
221 static inline V VBYI(V x) | |
222 { | |
223 x = VCONJ(x); | |
224 x = FLIP_RI(x); | |
225 return x; | |
226 } | |
227 | |
228 /* FMA support */ | |
229 #define VFMA(a, b, c) VADD(c, VMUL(a, b)) | |
230 #define VFNMS(a, b, c) VSUB(c, VMUL(a, b)) | |
231 #define VFMS(a, b, c) VSUB(VMUL(a, b), c) | |
232 #define VFMAI(b, c) VADD(c, VBYI(b)) | |
233 #define VFNMSI(b, c) VSUB(c, VBYI(b)) | |
234 #define VFMACONJ(b,c) VADD(VCONJ(b),c) | |
235 #define VFMSCONJ(b,c) VSUB(VCONJ(b),c) | |
236 #define VFNMSCONJ(b,c) VSUB(c, VCONJ(b)) | |
237 | |
238 static inline V VZMUL(V tx, V sr) | |
239 { | |
240 V tr = VDUPL(tx); | |
241 V ti = VDUPH(tx); | |
242 tr = VMUL(sr, tr); | |
243 sr = VBYI(sr); | |
244 return VFMA(ti, sr, tr); | |
245 } | |
246 | |
247 static inline V VZMULJ(V tx, V sr) | |
248 { | |
249 V tr = VDUPL(tx); | |
250 V ti = VDUPH(tx); | |
251 tr = VMUL(sr, tr); | |
252 sr = VBYI(sr); | |
253 return VFNMS(ti, sr, tr); | |
254 } | |
255 | |
256 static inline V VZMULI(V tx, V sr) | |
257 { | |
258 V tr = VDUPL(tx); | |
259 V ti = VDUPH(tx); | |
260 ti = VMUL(ti, sr); | |
261 sr = VBYI(sr); | |
262 return VFMS(tr, sr, ti); | |
263 } | |
264 | |
265 static inline V VZMULIJ(V tx, V sr) | |
266 { | |
267 V tr = VDUPL(tx); | |
268 V ti = VDUPH(tx); | |
269 ti = VMUL(ti, sr); | |
270 sr = VBYI(sr); | |
271 return VFMA(tr, sr, ti); | |
272 } | |
273 | |
274 /* twiddle storage #1: compact, slower */ | |
275 #ifdef FFTW_SINGLE | |
276 # define VTW1(v,x) \ | |
277 {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_SIN, v, x}, {TW_SIN, v+1, x} | |
278 static inline V BYTW1(const R *t, V sr) | |
279 { | |
280 const V *twp = (const V *)t; | |
281 V tx = twp[0]; | |
282 V tr = UNPCKL(tx, tx); | |
283 V ti = UNPCKH(tx, tx); | |
284 tr = VMUL(tr, sr); | |
285 sr = VBYI(sr); | |
286 return VFMA(ti, sr, tr); | |
287 } | |
288 static inline V BYTWJ1(const R *t, V sr) | |
289 { | |
290 const V *twp = (const V *)t; | |
291 V tx = twp[0]; | |
292 V tr = UNPCKL(tx, tx); | |
293 V ti = UNPCKH(tx, tx); | |
294 tr = VMUL(tr, sr); | |
295 sr = VBYI(sr); | |
296 return VFNMS(ti, sr, tr); | |
297 } | |
298 #else /* !FFTW_SINGLE */ | |
299 # define VTW1(v,x) {TW_CEXP, v, x} | |
300 static inline V BYTW1(const R *t, V sr) | |
301 { | |
302 V tx = LD(t, 1, t); | |
303 return VZMUL(tx, sr); | |
304 } | |
305 static inline V BYTWJ1(const R *t, V sr) | |
306 { | |
307 V tx = LD(t, 1, t); | |
308 return VZMULJ(tx, sr); | |
309 } | |
310 #endif | |
311 #define TWVL1 (VL) | |
312 | |
313 /* twiddle storage #2: twice the space, faster (when in cache) */ | |
314 #ifdef FFTW_SINGLE | |
315 # define VTW2(v,x) \ | |
316 {TW_COS, v, x}, {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+1, x}, \ | |
317 {TW_SIN, v, -x}, {TW_SIN, v, x}, {TW_SIN, v+1, -x}, {TW_SIN, v+1, x} | |
318 #else /* !FFTW_SINGLE */ | |
319 # define VTW2(v,x) \ | |
320 {TW_COS, v, x}, {TW_COS, v, x}, {TW_SIN, v, -x}, {TW_SIN, v, x} | |
321 #endif | |
322 #define TWVL2 (2 * VL) | |
323 static inline V BYTW2(const R *t, V sr) | |
324 { | |
325 const V *twp = (const V *)t; | |
326 V si = FLIP_RI(sr); | |
327 V tr = twp[0], ti = twp[1]; | |
328 return VFMA(tr, sr, VMUL(ti, si)); | |
329 } | |
330 static inline V BYTWJ2(const R *t, V sr) | |
331 { | |
332 const V *twp = (const V *)t; | |
333 V si = FLIP_RI(sr); | |
334 V tr = twp[0], ti = twp[1]; | |
335 return VFNMS(ti, si, VMUL(tr, sr)); | |
336 } | |
337 | |
338 /* twiddle storage #3 */ | |
339 #ifdef FFTW_SINGLE | |
340 # define VTW3(v,x) {TW_CEXP, v, x}, {TW_CEXP, v+1, x} | |
341 # define TWVL3 (VL) | |
342 #else | |
343 # define VTW3(v,x) VTW1(v,x) | |
344 # define TWVL3 TWVL1 | |
345 #endif | |
346 | |
347 /* twiddle storage for split arrays */ | |
348 #ifdef FFTW_SINGLE | |
349 # define VTWS(v,x) \ | |
350 {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+2, x}, {TW_COS, v+3, x}, \ | |
351 {TW_SIN, v, x}, {TW_SIN, v+1, x}, {TW_SIN, v+2, x}, {TW_SIN, v+3, x} | |
352 #else | |
353 # define VTWS(v,x) \ | |
354 {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_SIN, v, x}, {TW_SIN, v+1, x} | |
355 #endif | |
356 #define TWVLS (2 * VL) | |
357 | |
358 #define VLEAVE() /* nothing */ | |
359 | |
360 #include "simd-common.h" |