Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.3/rdft/simd/common/hc2cfdftv_6.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
9:c0fb53affa76 | 10:37bf6b4a2645 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-11 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Sun Nov 25 07:42:29 EST 2012 */ | |
23 | |
24 #include "codelet-rdft.h" | |
25 | |
26 #ifdef HAVE_FMA | |
27 | |
28 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 6 -dit -name hc2cfdftv_6 -include hc2cfv.h */ | |
29 | |
30 /* | |
31 * This function contains 29 FP additions, 30 FP multiplications, | |
32 * (or, 17 additions, 18 multiplications, 12 fused multiply/add), | |
33 * 38 stack variables, 2 constants, and 12 memory accesses | |
34 */ | |
35 #include "hc2cfv.h" | |
36 | |
37 static void hc2cfdftv_6(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) | |
38 { | |
39 DVK(KP500000000, +0.500000000000000000000000000000000000000000000); | |
40 DVK(KP866025403, +0.866025403784438646763723170752936183471402627); | |
41 { | |
42 INT m; | |
43 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 10)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 10), MAKE_VOLATILE_STRIDE(24, rs)) { | |
44 V T5, T6, T3, Tj, T4, T9, Te, Th, T1, T2, Ti, Tc, Td, Tb, Tg; | |
45 V T7, Ta, Tt, Tk, Tr, T8, Ts, Tf, Tx, Tu, To, Tl, Tw, Tv, Tn; | |
46 V Tm, Tz, Ty, Tp, Tq; | |
47 T1 = LD(&(Rp[0]), ms, &(Rp[0])); | |
48 T2 = LD(&(Rm[0]), -ms, &(Rm[0])); | |
49 Ti = LDW(&(W[0])); | |
50 Tc = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0])); | |
51 Td = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0])); | |
52 Tb = LDW(&(W[TWVL * 8])); | |
53 Tg = LDW(&(W[TWVL * 6])); | |
54 T5 = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)])); | |
55 T6 = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)])); | |
56 T3 = VFMACONJ(T2, T1); | |
57 Tj = VZMULIJ(Ti, VFNMSCONJ(T2, T1)); | |
58 T4 = LDW(&(W[TWVL * 4])); | |
59 T9 = LDW(&(W[TWVL * 2])); | |
60 Te = VZMULIJ(Tb, VFNMSCONJ(Td, Tc)); | |
61 Th = VZMULJ(Tg, VFMACONJ(Td, Tc)); | |
62 T7 = VZMULIJ(T4, VFNMSCONJ(T6, T5)); | |
63 Ta = VZMULJ(T9, VFMACONJ(T6, T5)); | |
64 Tt = VADD(Tj, Th); | |
65 Tk = VSUB(Th, Tj); | |
66 Tr = VADD(T3, T7); | |
67 T8 = VSUB(T3, T7); | |
68 Ts = VADD(Ta, Te); | |
69 Tf = VSUB(Ta, Te); | |
70 Tx = VMUL(LDK(KP866025403), VSUB(Tt, Ts)); | |
71 Tu = VADD(Ts, Tt); | |
72 To = VMUL(LDK(KP866025403), VSUB(Tk, Tf)); | |
73 Tl = VADD(Tf, Tk); | |
74 Tw = VFNMS(LDK(KP500000000), Tu, Tr); | |
75 Tv = VCONJ(VMUL(LDK(KP500000000), VADD(Tr, Tu))); | |
76 Tn = VFNMS(LDK(KP500000000), Tl, T8); | |
77 Tm = VMUL(LDK(KP500000000), VADD(T8, Tl)); | |
78 Tz = VMUL(LDK(KP500000000), VFMAI(Tx, Tw)); | |
79 Ty = VCONJ(VMUL(LDK(KP500000000), VFNMSI(Tx, Tw))); | |
80 ST(&(Rm[WS(rs, 2)]), Tv, -ms, &(Rm[0])); | |
81 Tp = VMUL(LDK(KP500000000), VFNMSI(To, Tn)); | |
82 Tq = VCONJ(VMUL(LDK(KP500000000), VFMAI(To, Tn))); | |
83 ST(&(Rp[0]), Tm, ms, &(Rp[0])); | |
84 ST(&(Rp[WS(rs, 1)]), Tz, ms, &(Rp[WS(rs, 1)])); | |
85 ST(&(Rm[0]), Ty, -ms, &(Rm[0])); | |
86 ST(&(Rm[WS(rs, 1)]), Tq, -ms, &(Rm[WS(rs, 1)])); | |
87 ST(&(Rp[WS(rs, 2)]), Tp, ms, &(Rp[0])); | |
88 } | |
89 } | |
90 VLEAVE(); | |
91 } | |
92 | |
93 static const tw_instr twinstr[] = { | |
94 VTW(1, 1), | |
95 VTW(1, 2), | |
96 VTW(1, 3), | |
97 VTW(1, 4), | |
98 VTW(1, 5), | |
99 {TW_NEXT, VL, 0} | |
100 }; | |
101 | |
102 static const hc2c_desc desc = { 6, XSIMD_STRING("hc2cfdftv_6"), twinstr, &GENUS, {17, 18, 12, 0} }; | |
103 | |
104 void XSIMD(codelet_hc2cfdftv_6) (planner *p) { | |
105 X(khc2c_register) (p, hc2cfdftv_6, &desc, HC2C_VIA_DFT); | |
106 } | |
107 #else /* HAVE_FMA */ | |
108 | |
109 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 6 -dit -name hc2cfdftv_6 -include hc2cfv.h */ | |
110 | |
111 /* | |
112 * This function contains 29 FP additions, 20 FP multiplications, | |
113 * (or, 27 additions, 18 multiplications, 2 fused multiply/add), | |
114 * 42 stack variables, 3 constants, and 12 memory accesses | |
115 */ | |
116 #include "hc2cfv.h" | |
117 | |
118 static void hc2cfdftv_6(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) | |
119 { | |
120 DVK(KP250000000, +0.250000000000000000000000000000000000000000000); | |
121 DVK(KP866025403, +0.866025403784438646763723170752936183471402627); | |
122 DVK(KP500000000, +0.500000000000000000000000000000000000000000000); | |
123 { | |
124 INT m; | |
125 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 10)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 10), MAKE_VOLATILE_STRIDE(24, rs)) { | |
126 V Ta, Tu, Tn, Tw, Ti, Tv, T1, T8, Tg, Tf, T7, T3, Te, T6, T2; | |
127 V T4, T9, T5, Tk, Tm, Tj, Tl, Tc, Th, Tb, Td, Tr, Tp, Tq, To; | |
128 V Tt, Ts, TA, Ty, Tz, Tx, TC, TB; | |
129 T1 = LD(&(Rp[0]), ms, &(Rp[0])); | |
130 T8 = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)])); | |
131 Tg = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0])); | |
132 Te = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0])); | |
133 Tf = VCONJ(Te); | |
134 T6 = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)])); | |
135 T7 = VCONJ(T6); | |
136 T2 = LD(&(Rm[0]), -ms, &(Rm[0])); | |
137 T3 = VCONJ(T2); | |
138 T4 = VADD(T1, T3); | |
139 T5 = LDW(&(W[TWVL * 4])); | |
140 T9 = VZMULIJ(T5, VSUB(T7, T8)); | |
141 Ta = VADD(T4, T9); | |
142 Tu = VSUB(T4, T9); | |
143 Tj = LDW(&(W[0])); | |
144 Tk = VZMULIJ(Tj, VSUB(T3, T1)); | |
145 Tl = LDW(&(W[TWVL * 6])); | |
146 Tm = VZMULJ(Tl, VADD(Tf, Tg)); | |
147 Tn = VADD(Tk, Tm); | |
148 Tw = VSUB(Tm, Tk); | |
149 Tb = LDW(&(W[TWVL * 2])); | |
150 Tc = VZMULJ(Tb, VADD(T7, T8)); | |
151 Td = LDW(&(W[TWVL * 8])); | |
152 Th = VZMULIJ(Td, VSUB(Tf, Tg)); | |
153 Ti = VADD(Tc, Th); | |
154 Tv = VSUB(Tc, Th); | |
155 Tr = VMUL(LDK(KP500000000), VBYI(VMUL(LDK(KP866025403), VSUB(Tn, Ti)))); | |
156 To = VADD(Ti, Tn); | |
157 Tp = VMUL(LDK(KP500000000), VADD(Ta, To)); | |
158 Tq = VFNMS(LDK(KP250000000), To, VMUL(LDK(KP500000000), Ta)); | |
159 ST(&(Rp[0]), Tp, ms, &(Rp[0])); | |
160 Tt = VCONJ(VADD(Tq, Tr)); | |
161 ST(&(Rm[WS(rs, 1)]), Tt, -ms, &(Rm[WS(rs, 1)])); | |
162 Ts = VSUB(Tq, Tr); | |
163 ST(&(Rp[WS(rs, 2)]), Ts, ms, &(Rp[0])); | |
164 TA = VMUL(LDK(KP500000000), VBYI(VMUL(LDK(KP866025403), VSUB(Tw, Tv)))); | |
165 Tx = VADD(Tv, Tw); | |
166 Ty = VCONJ(VMUL(LDK(KP500000000), VADD(Tu, Tx))); | |
167 Tz = VFNMS(LDK(KP250000000), Tx, VMUL(LDK(KP500000000), Tu)); | |
168 ST(&(Rm[WS(rs, 2)]), Ty, -ms, &(Rm[0])); | |
169 TC = VADD(Tz, TA); | |
170 ST(&(Rp[WS(rs, 1)]), TC, ms, &(Rp[WS(rs, 1)])); | |
171 TB = VCONJ(VSUB(Tz, TA)); | |
172 ST(&(Rm[0]), TB, -ms, &(Rm[0])); | |
173 } | |
174 } | |
175 VLEAVE(); | |
176 } | |
177 | |
178 static const tw_instr twinstr[] = { | |
179 VTW(1, 1), | |
180 VTW(1, 2), | |
181 VTW(1, 3), | |
182 VTW(1, 4), | |
183 VTW(1, 5), | |
184 {TW_NEXT, VL, 0} | |
185 }; | |
186 | |
187 static const hc2c_desc desc = { 6, XSIMD_STRING("hc2cfdftv_6"), twinstr, &GENUS, {27, 18, 2, 0} }; | |
188 | |
189 void XSIMD(codelet_hc2cfdftv_6) (planner *p) { | |
190 X(khc2c_register) (p, hc2cfdftv_6, &desc, HC2C_VIA_DFT); | |
191 } | |
192 #endif /* HAVE_FMA */ |