Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.3/rdft/simd/common/hc2cfdftv_20.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
9:c0fb53affa76 | 10:37bf6b4a2645 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-11 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Sun Nov 25 07:42:29 EST 2012 */ | |
23 | |
24 #include "codelet-rdft.h" | |
25 | |
26 #ifdef HAVE_FMA | |
27 | |
28 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 20 -dit -name hc2cfdftv_20 -include hc2cfv.h */ | |
29 | |
30 /* | |
31 * This function contains 143 FP additions, 128 FP multiplications, | |
32 * (or, 77 additions, 62 multiplications, 66 fused multiply/add), | |
33 * 130 stack variables, 5 constants, and 40 memory accesses | |
34 */ | |
35 #include "hc2cfv.h" | |
36 | |
37 static void hc2cfdftv_20(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) | |
38 { | |
39 DVK(KP559016994, +0.559016994374947424102293417182819058860154590); | |
40 DVK(KP500000000, +0.500000000000000000000000000000000000000000000); | |
41 DVK(KP951056516, +0.951056516295153572116439333379382143405698634); | |
42 DVK(KP250000000, +0.250000000000000000000000000000000000000000000); | |
43 DVK(KP618033988, +0.618033988749894848204586834365638117720309180); | |
44 { | |
45 INT m; | |
46 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 38)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 38), MAKE_VOLATILE_STRIDE(80, rs)) { | |
47 V T2g, T2f, T2w, T2k, T2A, T2u, T2e, T2o, T1O, T2b, T2i, T1R, T1X, T1k, TN; | |
48 V T1w, T1G, T1t, Ti, T2c, T12, T1x, T2j, T1U, T1y, T1d, T24, T2v, T2h, T2x; | |
49 V T2B, T2p, T2l, T2z, T2y, T2D, T2C, T2r, T2q, T2n, T2m; | |
50 { | |
51 V T3, T7, TC, T1Y, Tc, Tg, Tn, T1P, T1Z, Tw, T1S, TS, TY, TZ, T1Q; | |
52 V TL, T17, T21, TW, T19, TX, T1a, T8, T20, Th, Tx, T1u, T1v, TM, T10; | |
53 V T1b, T22, T11, T1T, T1c, T23; | |
54 { | |
55 V Ta, Tb, Tz, Te, TB, Tf, Tl, T9, Td, Tk, T1, T2, Ty, T5, T6; | |
56 V TA, T4, Tj, Tt, Tu, Ts, TQ, Tr, TP, Tp, Tq, Tm, To, TO, TG; | |
57 V T14, TK, T16, TE, TF, Tv, TD, T13, TR, TI, TJ, TH, T15, TU, TV; | |
58 V TT, T18; | |
59 T1 = LD(&(Rp[0]), ms, &(Rp[0])); | |
60 T2 = LD(&(Rm[0]), -ms, &(Rm[0])); | |
61 Ty = LDW(&(W[0])); | |
62 T5 = LD(&(Rp[WS(rs, 5)]), ms, &(Rp[WS(rs, 1)])); | |
63 T6 = LD(&(Rm[WS(rs, 5)]), -ms, &(Rm[WS(rs, 1)])); | |
64 TA = LDW(&(W[TWVL * 20])); | |
65 T4 = LDW(&(W[TWVL * 18])); | |
66 Ta = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0])); | |
67 Tb = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0])); | |
68 T3 = VFMACONJ(T2, T1); | |
69 Tz = VZMULIJ(Ty, VFNMSCONJ(T2, T1)); | |
70 Tj = LDW(&(W[TWVL * 6])); | |
71 Te = LD(&(Rp[WS(rs, 7)]), ms, &(Rp[WS(rs, 1)])); | |
72 TB = VZMULIJ(TA, VFNMSCONJ(T6, T5)); | |
73 T7 = VZMULJ(T4, VFMACONJ(T6, T5)); | |
74 Tf = LD(&(Rm[WS(rs, 7)]), -ms, &(Rm[WS(rs, 1)])); | |
75 Tl = LDW(&(W[TWVL * 26])); | |
76 T9 = LDW(&(W[TWVL * 8])); | |
77 Td = LDW(&(W[TWVL * 28])); | |
78 Tk = VZMULJ(Tj, VFMACONJ(Tb, Ta)); | |
79 Tp = LD(&(Rp[WS(rs, 4)]), ms, &(Rp[0])); | |
80 TC = VADD(Tz, TB); | |
81 T1Y = VSUB(TB, Tz); | |
82 Tq = LD(&(Rm[WS(rs, 4)]), -ms, &(Rm[0])); | |
83 Tm = VZMULJ(Tl, VFMACONJ(Tf, Te)); | |
84 Tc = VZMULIJ(T9, VFNMSCONJ(Tb, Ta)); | |
85 Tg = VZMULIJ(Td, VFNMSCONJ(Tf, Te)); | |
86 To = LDW(&(W[TWVL * 16])); | |
87 TO = LDW(&(W[TWVL * 14])); | |
88 Tt = LD(&(Rp[WS(rs, 9)]), ms, &(Rp[WS(rs, 1)])); | |
89 Tu = LD(&(Rm[WS(rs, 9)]), -ms, &(Rm[WS(rs, 1)])); | |
90 Ts = LDW(&(W[TWVL * 36])); | |
91 Tn = VADD(Tk, Tm); | |
92 T1P = VSUB(Tk, Tm); | |
93 TQ = LDW(&(W[TWVL * 34])); | |
94 Tr = VZMULIJ(To, VFNMSCONJ(Tq, Tp)); | |
95 TP = VZMULJ(TO, VFMACONJ(Tq, Tp)); | |
96 TE = LD(&(Rp[WS(rs, 8)]), ms, &(Rp[0])); | |
97 TF = LD(&(Rm[WS(rs, 8)]), -ms, &(Rm[0])); | |
98 Tv = VZMULIJ(Ts, VFNMSCONJ(Tu, Tt)); | |
99 TD = LDW(&(W[TWVL * 30])); | |
100 T13 = LDW(&(W[TWVL * 32])); | |
101 TR = VZMULJ(TQ, VFMACONJ(Tu, Tt)); | |
102 TI = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)])); | |
103 TJ = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)])); | |
104 TH = LDW(&(W[TWVL * 10])); | |
105 T15 = LDW(&(W[TWVL * 12])); | |
106 T1Z = VSUB(Tv, Tr); | |
107 Tw = VADD(Tr, Tv); | |
108 TG = VZMULJ(TD, VFMACONJ(TF, TE)); | |
109 T14 = VZMULIJ(T13, VFNMSCONJ(TF, TE)); | |
110 T1S = VSUB(TP, TR); | |
111 TS = VADD(TP, TR); | |
112 TK = VZMULJ(TH, VFMACONJ(TJ, TI)); | |
113 T16 = VZMULIJ(T15, VFNMSCONJ(TJ, TI)); | |
114 TU = LD(&(Rp[WS(rs, 6)]), ms, &(Rp[0])); | |
115 TV = LD(&(Rm[WS(rs, 6)]), -ms, &(Rm[0])); | |
116 TT = LDW(&(W[TWVL * 24])); | |
117 T18 = LDW(&(W[TWVL * 22])); | |
118 TY = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)])); | |
119 TZ = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)])); | |
120 T1Q = VSUB(TK, TG); | |
121 TL = VADD(TG, TK); | |
122 T17 = VADD(T14, T16); | |
123 T21 = VSUB(T16, T14); | |
124 TW = VZMULIJ(TT, VFNMSCONJ(TV, TU)); | |
125 T19 = VZMULJ(T18, VFMACONJ(TV, TU)); | |
126 TX = LDW(&(W[TWVL * 4])); | |
127 T1a = LDW(&(W[TWVL * 2])); | |
128 } | |
129 T1O = VSUB(T3, T7); | |
130 T8 = VADD(T3, T7); | |
131 T20 = VADD(T1Y, T1Z); | |
132 T2b = VSUB(T1Y, T1Z); | |
133 T2i = VADD(T1P, T1Q); | |
134 T1R = VSUB(T1P, T1Q); | |
135 Th = VADD(Tc, Tg); | |
136 T1X = VSUB(Tg, Tc); | |
137 Tx = VSUB(Tn, Tw); | |
138 T1u = VADD(Tn, Tw); | |
139 T1v = VADD(TC, TL); | |
140 TM = VSUB(TC, TL); | |
141 T10 = VZMULIJ(TX, VFNMSCONJ(TZ, TY)); | |
142 T1b = VZMULJ(T1a, VFMACONJ(TZ, TY)); | |
143 T1k = VADD(Tx, TM); | |
144 TN = VSUB(Tx, TM); | |
145 T22 = VSUB(T10, TW); | |
146 T11 = VADD(TW, T10); | |
147 T1T = VSUB(T1b, T19); | |
148 T1c = VADD(T19, T1b); | |
149 T1w = VADD(T1u, T1v); | |
150 T1G = VSUB(T1u, T1v); | |
151 T1t = VADD(T8, Th); | |
152 Ti = VSUB(T8, Th); | |
153 T23 = VADD(T21, T22); | |
154 T2c = VSUB(T21, T22); | |
155 T12 = VSUB(TS, T11); | |
156 T1x = VADD(TS, T11); | |
157 T2j = VADD(T1S, T1T); | |
158 T1U = VSUB(T1S, T1T); | |
159 T1y = VADD(T17, T1c); | |
160 T1d = VSUB(T17, T1c); | |
161 T2g = VSUB(T23, T20); | |
162 T24 = VADD(T20, T23); | |
163 } | |
164 { | |
165 V T2d, T2t, T29, T25, T1m, T1q, T1i, T1H, T1L, T1D, T1A, T28, T1W, T1h, T1g; | |
166 V T1e, T1l, T1z, T1F, T1V, T1f, T1C, T1B, T26, T27, T2a, T2s, T1j, T1p, T1K; | |
167 V T1E, T1n, T1o, T1s, T1r, T1I, T1J, T1N, T1M; | |
168 T2d = VFMA(LDK(KP618033988), T2c, T2b); | |
169 T2t = VFNMS(LDK(KP618033988), T2b, T2c); | |
170 T1e = VSUB(T12, T1d); | |
171 T1l = VADD(T12, T1d); | |
172 T1z = VADD(T1x, T1y); | |
173 T1F = VSUB(T1x, T1y); | |
174 T1V = VADD(T1R, T1U); | |
175 T29 = VSUB(T1R, T1U); | |
176 T2f = VFNMS(LDK(KP250000000), T24, T1X); | |
177 T25 = VADD(T1X, T24); | |
178 T1m = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), T1l, T1k)); | |
179 T1q = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), T1k, T1l)); | |
180 T1i = VSUB(TN, T1e); | |
181 T1f = VADD(TN, T1e); | |
182 T1H = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), T1G, T1F)); | |
183 T1L = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), T1F, T1G)); | |
184 T1D = VSUB(T1w, T1z); | |
185 T1A = VADD(T1w, T1z); | |
186 T28 = VFNMS(LDK(KP250000000), T1V, T1O); | |
187 T1W = VADD(T1O, T1V); | |
188 T1h = VFNMS(LDK(KP250000000), T1f, Ti); | |
189 T1g = VMUL(LDK(KP500000000), VADD(Ti, T1f)); | |
190 T2w = VFNMS(LDK(KP618033988), T2i, T2j); | |
191 T2k = VFMA(LDK(KP618033988), T2j, T2i); | |
192 T1C = VFNMS(LDK(KP250000000), T1A, T1t); | |
193 T1B = VCONJ(VMUL(LDK(KP500000000), VADD(T1t, T1A))); | |
194 T26 = VMUL(LDK(KP500000000), VFNMSI(T25, T1W)); | |
195 T27 = VCONJ(VMUL(LDK(KP500000000), VFMAI(T25, T1W))); | |
196 T2a = VFMA(LDK(KP559016994), T29, T28); | |
197 T2s = VFNMS(LDK(KP559016994), T29, T28); | |
198 ST(&(Rp[0]), T1g, ms, &(Rp[0])); | |
199 T1j = VFMA(LDK(KP559016994), T1i, T1h); | |
200 T1p = VFNMS(LDK(KP559016994), T1i, T1h); | |
201 ST(&(Rm[WS(rs, 9)]), T1B, -ms, &(Rm[WS(rs, 1)])); | |
202 T1K = VFMA(LDK(KP559016994), T1D, T1C); | |
203 T1E = VFNMS(LDK(KP559016994), T1D, T1C); | |
204 ST(&(Rm[WS(rs, 4)]), T27, -ms, &(Rm[0])); | |
205 ST(&(Rp[WS(rs, 5)]), T26, ms, &(Rp[WS(rs, 1)])); | |
206 T2A = VFMA(LDK(KP951056516), T2t, T2s); | |
207 T2u = VFNMS(LDK(KP951056516), T2t, T2s); | |
208 T2e = VFNMS(LDK(KP951056516), T2d, T2a); | |
209 T2o = VFMA(LDK(KP951056516), T2d, T2a); | |
210 T1n = VCONJ(VMUL(LDK(KP500000000), VFNMSI(T1m, T1j))); | |
211 T1o = VMUL(LDK(KP500000000), VFMAI(T1m, T1j)); | |
212 T1s = VCONJ(VMUL(LDK(KP500000000), VFMAI(T1q, T1p))); | |
213 T1r = VMUL(LDK(KP500000000), VFNMSI(T1q, T1p)); | |
214 T1I = VCONJ(VMUL(LDK(KP500000000), VFNMSI(T1H, T1E))); | |
215 T1J = VMUL(LDK(KP500000000), VFMAI(T1H, T1E)); | |
216 T1N = VCONJ(VMUL(LDK(KP500000000), VFMAI(T1L, T1K))); | |
217 T1M = VMUL(LDK(KP500000000), VFNMSI(T1L, T1K)); | |
218 ST(&(Rp[WS(rs, 4)]), T1o, ms, &(Rp[0])); | |
219 ST(&(Rm[WS(rs, 3)]), T1n, -ms, &(Rm[WS(rs, 1)])); | |
220 ST(&(Rp[WS(rs, 8)]), T1r, ms, &(Rp[0])); | |
221 ST(&(Rm[WS(rs, 7)]), T1s, -ms, &(Rm[WS(rs, 1)])); | |
222 ST(&(Rp[WS(rs, 2)]), T1J, ms, &(Rp[0])); | |
223 ST(&(Rm[WS(rs, 1)]), T1I, -ms, &(Rm[WS(rs, 1)])); | |
224 ST(&(Rp[WS(rs, 6)]), T1M, ms, &(Rp[0])); | |
225 ST(&(Rm[WS(rs, 5)]), T1N, -ms, &(Rm[WS(rs, 1)])); | |
226 } | |
227 T2v = VFMA(LDK(KP559016994), T2g, T2f); | |
228 T2h = VFNMS(LDK(KP559016994), T2g, T2f); | |
229 T2x = VFNMS(LDK(KP951056516), T2w, T2v); | |
230 T2B = VFMA(LDK(KP951056516), T2w, T2v); | |
231 T2p = VFMA(LDK(KP951056516), T2k, T2h); | |
232 T2l = VFNMS(LDK(KP951056516), T2k, T2h); | |
233 T2z = VMUL(LDK(KP500000000), VFMAI(T2x, T2u)); | |
234 T2y = VCONJ(VMUL(LDK(KP500000000), VFNMSI(T2x, T2u))); | |
235 T2D = VMUL(LDK(KP500000000), VFMAI(T2B, T2A)); | |
236 T2C = VCONJ(VMUL(LDK(KP500000000), VFNMSI(T2B, T2A))); | |
237 T2r = VCONJ(VMUL(LDK(KP500000000), VFMAI(T2p, T2o))); | |
238 T2q = VMUL(LDK(KP500000000), VFNMSI(T2p, T2o)); | |
239 T2n = VCONJ(VMUL(LDK(KP500000000), VFMAI(T2l, T2e))); | |
240 T2m = VMUL(LDK(KP500000000), VFNMSI(T2l, T2e)); | |
241 ST(&(Rp[WS(rs, 3)]), T2z, ms, &(Rp[WS(rs, 1)])); | |
242 ST(&(Rm[WS(rs, 2)]), T2y, -ms, &(Rm[0])); | |
243 ST(&(Rp[WS(rs, 7)]), T2D, ms, &(Rp[WS(rs, 1)])); | |
244 ST(&(Rm[WS(rs, 6)]), T2C, -ms, &(Rm[0])); | |
245 ST(&(Rm[0]), T2r, -ms, &(Rm[0])); | |
246 ST(&(Rp[WS(rs, 1)]), T2q, ms, &(Rp[WS(rs, 1)])); | |
247 ST(&(Rm[WS(rs, 8)]), T2n, -ms, &(Rm[0])); | |
248 ST(&(Rp[WS(rs, 9)]), T2m, ms, &(Rp[WS(rs, 1)])); | |
249 } | |
250 } | |
251 VLEAVE(); | |
252 } | |
253 | |
254 static const tw_instr twinstr[] = { | |
255 VTW(1, 1), | |
256 VTW(1, 2), | |
257 VTW(1, 3), | |
258 VTW(1, 4), | |
259 VTW(1, 5), | |
260 VTW(1, 6), | |
261 VTW(1, 7), | |
262 VTW(1, 8), | |
263 VTW(1, 9), | |
264 VTW(1, 10), | |
265 VTW(1, 11), | |
266 VTW(1, 12), | |
267 VTW(1, 13), | |
268 VTW(1, 14), | |
269 VTW(1, 15), | |
270 VTW(1, 16), | |
271 VTW(1, 17), | |
272 VTW(1, 18), | |
273 VTW(1, 19), | |
274 {TW_NEXT, VL, 0} | |
275 }; | |
276 | |
277 static const hc2c_desc desc = { 20, XSIMD_STRING("hc2cfdftv_20"), twinstr, &GENUS, {77, 62, 66, 0} }; | |
278 | |
279 void XSIMD(codelet_hc2cfdftv_20) (planner *p) { | |
280 X(khc2c_register) (p, hc2cfdftv_20, &desc, HC2C_VIA_DFT); | |
281 } | |
282 #else /* HAVE_FMA */ | |
283 | |
284 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 20 -dit -name hc2cfdftv_20 -include hc2cfv.h */ | |
285 | |
286 /* | |
287 * This function contains 143 FP additions, 77 FP multiplications, | |
288 * (or, 131 additions, 65 multiplications, 12 fused multiply/add), | |
289 * 141 stack variables, 9 constants, and 40 memory accesses | |
290 */ | |
291 #include "hc2cfv.h" | |
292 | |
293 static void hc2cfdftv_20(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) | |
294 { | |
295 DVK(KP293892626, +0.293892626146236564584352977319536384298826219); | |
296 DVK(KP475528258, +0.475528258147576786058219666689691071702849317); | |
297 DVK(KP559016994, +0.559016994374947424102293417182819058860154590); | |
298 DVK(KP250000000, +0.250000000000000000000000000000000000000000000); | |
299 DVK(KP125000000, +0.125000000000000000000000000000000000000000000); | |
300 DVK(KP279508497, +0.279508497187473712051146708591409529430077295); | |
301 DVK(KP587785252, +0.587785252292473129168705954639072768597652438); | |
302 DVK(KP951056516, +0.951056516295153572116439333379382143405698634); | |
303 DVK(KP500000000, +0.500000000000000000000000000000000000000000000); | |
304 { | |
305 INT m; | |
306 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 38)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 38), MAKE_VOLATILE_STRIDE(80, rs)) { | |
307 V TW, T1x, T2i, T2A, T1r, T1s, T1a, T1y, T1l, Tn, TK, TL, T1p, T1o, T27; | |
308 V T2t, T2a, T2u, T2e, T2C, T20, T2w, T23, T2x, T2d, T2B, T1W, T1X, T1U, T1V; | |
309 V T2z, T2K, T2G, T2N, T2J, T2v, T2y, T2F, T2D, T2E, T2M, T2H, T2I, T2L; | |
310 { | |
311 V T1u, T5, Tg, T1c, TV, T13, Ta, T1w, TQ, T11, TI, T1j, Tx, T18, Tl; | |
312 V T1e, TD, T1h, Ts, T16, T2g, T2h, T14, T19, T1f, T1k, Tb, Tm, Ty, TJ; | |
313 V T25, T26, T28, T29, T1Y, T1Z, T21, T22; | |
314 { | |
315 V T4, T3, T2, T1, Tf, Te, Td, Tc, T1b, TU, TT, TS, TR, T12, T9; | |
316 V T8, T7, T6, T1v, TP, TO, TN, TM, T10, TH, TG, TF, TE, T1i, Tw; | |
317 V Tv, Tu, Tt, T17, Tk, Tj, Ti, Th, T1d, TC, TB, TA, Tz, T1g, Tr; | |
318 V Tq, Tp, To, T15; | |
319 T4 = LD(&(Rp[0]), ms, &(Rp[0])); | |
320 T2 = LD(&(Rm[0]), -ms, &(Rm[0])); | |
321 T3 = VCONJ(T2); | |
322 T1u = VADD(T4, T3); | |
323 T1 = LDW(&(W[0])); | |
324 T5 = VZMULIJ(T1, VSUB(T3, T4)); | |
325 Tf = LD(&(Rp[WS(rs, 4)]), ms, &(Rp[0])); | |
326 Td = LD(&(Rm[WS(rs, 4)]), -ms, &(Rm[0])); | |
327 Te = VCONJ(Td); | |
328 Tc = LDW(&(W[TWVL * 16])); | |
329 Tg = VZMULIJ(Tc, VSUB(Te, Tf)); | |
330 T1b = LDW(&(W[TWVL * 14])); | |
331 T1c = VZMULJ(T1b, VADD(Te, Tf)); | |
332 TU = LD(&(Rp[WS(rs, 7)]), ms, &(Rp[WS(rs, 1)])); | |
333 TS = LD(&(Rm[WS(rs, 7)]), -ms, &(Rm[WS(rs, 1)])); | |
334 TT = VCONJ(TS); | |
335 TR = LDW(&(W[TWVL * 28])); | |
336 TV = VZMULIJ(TR, VSUB(TT, TU)); | |
337 T12 = LDW(&(W[TWVL * 26])); | |
338 T13 = VZMULJ(T12, VADD(TT, TU)); | |
339 T9 = LD(&(Rp[WS(rs, 5)]), ms, &(Rp[WS(rs, 1)])); | |
340 T7 = LD(&(Rm[WS(rs, 5)]), -ms, &(Rm[WS(rs, 1)])); | |
341 T8 = VCONJ(T7); | |
342 T6 = LDW(&(W[TWVL * 20])); | |
343 Ta = VZMULIJ(T6, VSUB(T8, T9)); | |
344 T1v = LDW(&(W[TWVL * 18])); | |
345 T1w = VZMULJ(T1v, VADD(T9, T8)); | |
346 TP = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0])); | |
347 TN = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0])); | |
348 TO = VCONJ(TN); | |
349 TM = LDW(&(W[TWVL * 8])); | |
350 TQ = VZMULIJ(TM, VSUB(TO, TP)); | |
351 T10 = LDW(&(W[TWVL * 6])); | |
352 T11 = VZMULJ(T10, VADD(TO, TP)); | |
353 TH = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)])); | |
354 TF = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)])); | |
355 TG = VCONJ(TF); | |
356 TE = LDW(&(W[TWVL * 4])); | |
357 TI = VZMULIJ(TE, VSUB(TG, TH)); | |
358 T1i = LDW(&(W[TWVL * 2])); | |
359 T1j = VZMULJ(T1i, VADD(TG, TH)); | |
360 Tw = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)])); | |
361 Tu = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)])); | |
362 Tv = VCONJ(Tu); | |
363 Tt = LDW(&(W[TWVL * 12])); | |
364 Tx = VZMULIJ(Tt, VSUB(Tv, Tw)); | |
365 T17 = LDW(&(W[TWVL * 10])); | |
366 T18 = VZMULJ(T17, VADD(Tw, Tv)); | |
367 Tk = LD(&(Rp[WS(rs, 9)]), ms, &(Rp[WS(rs, 1)])); | |
368 Ti = LD(&(Rm[WS(rs, 9)]), -ms, &(Rm[WS(rs, 1)])); | |
369 Tj = VCONJ(Ti); | |
370 Th = LDW(&(W[TWVL * 36])); | |
371 Tl = VZMULIJ(Th, VSUB(Tj, Tk)); | |
372 T1d = LDW(&(W[TWVL * 34])); | |
373 T1e = VZMULJ(T1d, VADD(Tj, Tk)); | |
374 TC = LD(&(Rp[WS(rs, 6)]), ms, &(Rp[0])); | |
375 TA = LD(&(Rm[WS(rs, 6)]), -ms, &(Rm[0])); | |
376 TB = VCONJ(TA); | |
377 Tz = LDW(&(W[TWVL * 24])); | |
378 TD = VZMULIJ(Tz, VSUB(TB, TC)); | |
379 T1g = LDW(&(W[TWVL * 22])); | |
380 T1h = VZMULJ(T1g, VADD(TB, TC)); | |
381 Tr = LD(&(Rp[WS(rs, 8)]), ms, &(Rp[0])); | |
382 Tp = LD(&(Rm[WS(rs, 8)]), -ms, &(Rm[0])); | |
383 Tq = VCONJ(Tp); | |
384 To = LDW(&(W[TWVL * 32])); | |
385 Ts = VZMULIJ(To, VSUB(Tq, Tr)); | |
386 T15 = LDW(&(W[TWVL * 30])); | |
387 T16 = VZMULJ(T15, VADD(Tr, Tq)); | |
388 } | |
389 TW = VSUB(TQ, TV); | |
390 T1x = VSUB(T1u, T1w); | |
391 T2g = VADD(T1u, T1w); | |
392 T2h = VADD(TQ, TV); | |
393 T2i = VADD(T2g, T2h); | |
394 T2A = VSUB(T2g, T2h); | |
395 T14 = VSUB(T11, T13); | |
396 T19 = VSUB(T16, T18); | |
397 T1r = VADD(T14, T19); | |
398 T1f = VSUB(T1c, T1e); | |
399 T1k = VSUB(T1h, T1j); | |
400 T1s = VADD(T1f, T1k); | |
401 T1a = VSUB(T14, T19); | |
402 T1y = VADD(T1r, T1s); | |
403 T1l = VSUB(T1f, T1k); | |
404 Tb = VSUB(T5, Ta); | |
405 Tm = VSUB(Tg, Tl); | |
406 Tn = VADD(Tb, Tm); | |
407 Ty = VSUB(Ts, Tx); | |
408 TJ = VSUB(TD, TI); | |
409 TK = VADD(Ty, TJ); | |
410 TL = VADD(Tn, TK); | |
411 T1p = VSUB(Ty, TJ); | |
412 T1o = VSUB(Tb, Tm); | |
413 T25 = VADD(T1c, T1e); | |
414 T26 = VADD(TD, TI); | |
415 T27 = VADD(T25, T26); | |
416 T2t = VSUB(T25, T26); | |
417 T28 = VADD(Ts, Tx); | |
418 T29 = VADD(T1h, T1j); | |
419 T2a = VADD(T28, T29); | |
420 T2u = VSUB(T29, T28); | |
421 T2e = VADD(T27, T2a); | |
422 T2C = VADD(T2t, T2u); | |
423 T1Y = VADD(T11, T13); | |
424 T1Z = VADD(Tg, Tl); | |
425 T20 = VADD(T1Y, T1Z); | |
426 T2w = VSUB(T1Y, T1Z); | |
427 T21 = VADD(T5, Ta); | |
428 T22 = VADD(T16, T18); | |
429 T23 = VADD(T21, T22); | |
430 T2x = VSUB(T22, T21); | |
431 T2d = VADD(T20, T23); | |
432 T2B = VADD(T2w, T2x); | |
433 } | |
434 T1U = VADD(T1x, T1y); | |
435 T1V = VBYI(VADD(TW, TL)); | |
436 T1W = VMUL(LDK(KP500000000), VSUB(T1U, T1V)); | |
437 T1X = VCONJ(VMUL(LDK(KP500000000), VADD(T1V, T1U))); | |
438 ST(&(Rp[WS(rs, 5)]), T1W, ms, &(Rp[WS(rs, 1)])); | |
439 ST(&(Rm[WS(rs, 4)]), T1X, -ms, &(Rm[0])); | |
440 T2v = VSUB(T2t, T2u); | |
441 T2y = VSUB(T2w, T2x); | |
442 T2z = VMUL(LDK(KP500000000), VBYI(VFNMS(LDK(KP587785252), T2y, VMUL(LDK(KP951056516), T2v)))); | |
443 T2K = VMUL(LDK(KP500000000), VBYI(VFMA(LDK(KP951056516), T2y, VMUL(LDK(KP587785252), T2v)))); | |
444 T2F = VMUL(LDK(KP279508497), VSUB(T2B, T2C)); | |
445 T2D = VADD(T2B, T2C); | |
446 T2E = VFNMS(LDK(KP125000000), T2D, VMUL(LDK(KP500000000), T2A)); | |
447 T2G = VSUB(T2E, T2F); | |
448 T2N = VCONJ(VMUL(LDK(KP500000000), VADD(T2A, T2D))); | |
449 T2J = VADD(T2F, T2E); | |
450 ST(&(Rm[WS(rs, 9)]), T2N, -ms, &(Rm[WS(rs, 1)])); | |
451 T2M = VCONJ(VADD(T2K, T2J)); | |
452 ST(&(Rm[WS(rs, 5)]), T2M, -ms, &(Rm[WS(rs, 1)])); | |
453 T2H = VADD(T2z, T2G); | |
454 ST(&(Rp[WS(rs, 2)]), T2H, ms, &(Rp[0])); | |
455 T2I = VCONJ(VSUB(T2G, T2z)); | |
456 ST(&(Rm[WS(rs, 1)]), T2I, -ms, &(Rm[WS(rs, 1)])); | |
457 T2L = VSUB(T2J, T2K); | |
458 ST(&(Rp[WS(rs, 6)]), T2L, ms, &(Rp[0])); | |
459 { | |
460 V T2c, T2p, T2l, T2s, T2o, T24, T2b, T2f, T2j, T2k, T2r, T2m, T2n, T2q, T1n; | |
461 V T1Q, T1E, T1K, T1B, T1R, T1F, T1N, T1m, T1J, TZ, T1I, TX, TY, T1q, T1M; | |
462 V T1A, T1L, T1t, T1z, T1C, T1S, T1T, T1D, T1G, T1O, T1P, T1H; | |
463 T24 = VSUB(T20, T23); | |
464 T2b = VSUB(T27, T2a); | |
465 T2c = VMUL(LDK(KP500000000), VBYI(VFMA(LDK(KP951056516), T24, VMUL(LDK(KP587785252), T2b)))); | |
466 T2p = VMUL(LDK(KP500000000), VBYI(VFNMS(LDK(KP587785252), T24, VMUL(LDK(KP951056516), T2b)))); | |
467 T2f = VMUL(LDK(KP279508497), VSUB(T2d, T2e)); | |
468 T2j = VADD(T2d, T2e); | |
469 T2k = VFNMS(LDK(KP125000000), T2j, VMUL(LDK(KP500000000), T2i)); | |
470 T2l = VADD(T2f, T2k); | |
471 T2s = VMUL(LDK(KP500000000), VADD(T2i, T2j)); | |
472 T2o = VSUB(T2k, T2f); | |
473 ST(&(Rp[0]), T2s, ms, &(Rp[0])); | |
474 T2r = VCONJ(VADD(T2p, T2o)); | |
475 ST(&(Rm[WS(rs, 7)]), T2r, -ms, &(Rm[WS(rs, 1)])); | |
476 T2m = VADD(T2c, T2l); | |
477 ST(&(Rp[WS(rs, 4)]), T2m, ms, &(Rp[0])); | |
478 T2n = VCONJ(VSUB(T2l, T2c)); | |
479 ST(&(Rm[WS(rs, 3)]), T2n, -ms, &(Rm[WS(rs, 1)])); | |
480 T2q = VSUB(T2o, T2p); | |
481 ST(&(Rp[WS(rs, 8)]), T2q, ms, &(Rp[0])); | |
482 T1m = VFMA(LDK(KP951056516), T1a, VMUL(LDK(KP587785252), T1l)); | |
483 T1J = VFNMS(LDK(KP587785252), T1a, VMUL(LDK(KP951056516), T1l)); | |
484 TX = VFMS(LDK(KP250000000), TL, TW); | |
485 TY = VMUL(LDK(KP559016994), VSUB(TK, Tn)); | |
486 TZ = VADD(TX, TY); | |
487 T1I = VSUB(TY, TX); | |
488 T1n = VMUL(LDK(KP500000000), VBYI(VSUB(TZ, T1m))); | |
489 T1Q = VMUL(LDK(KP500000000), VBYI(VADD(T1I, T1J))); | |
490 T1E = VMUL(LDK(KP500000000), VBYI(VADD(TZ, T1m))); | |
491 T1K = VMUL(LDK(KP500000000), VBYI(VSUB(T1I, T1J))); | |
492 T1q = VFMA(LDK(KP475528258), T1o, VMUL(LDK(KP293892626), T1p)); | |
493 T1M = VFNMS(LDK(KP293892626), T1o, VMUL(LDK(KP475528258), T1p)); | |
494 T1t = VMUL(LDK(KP279508497), VSUB(T1r, T1s)); | |
495 T1z = VFNMS(LDK(KP125000000), T1y, VMUL(LDK(KP500000000), T1x)); | |
496 T1A = VADD(T1t, T1z); | |
497 T1L = VSUB(T1z, T1t); | |
498 T1B = VADD(T1q, T1A); | |
499 T1R = VADD(T1M, T1L); | |
500 T1F = VSUB(T1A, T1q); | |
501 T1N = VSUB(T1L, T1M); | |
502 T1C = VADD(T1n, T1B); | |
503 ST(&(Rp[WS(rs, 1)]), T1C, ms, &(Rp[WS(rs, 1)])); | |
504 T1S = VADD(T1Q, T1R); | |
505 ST(&(Rp[WS(rs, 7)]), T1S, ms, &(Rp[WS(rs, 1)])); | |
506 T1T = VCONJ(VSUB(T1R, T1Q)); | |
507 ST(&(Rm[WS(rs, 6)]), T1T, -ms, &(Rm[0])); | |
508 T1D = VCONJ(VSUB(T1B, T1n)); | |
509 ST(&(Rm[0]), T1D, -ms, &(Rm[0])); | |
510 T1G = VADD(T1E, T1F); | |
511 ST(&(Rp[WS(rs, 9)]), T1G, ms, &(Rp[WS(rs, 1)])); | |
512 T1O = VADD(T1K, T1N); | |
513 ST(&(Rp[WS(rs, 3)]), T1O, ms, &(Rp[WS(rs, 1)])); | |
514 T1P = VCONJ(VSUB(T1N, T1K)); | |
515 ST(&(Rm[WS(rs, 2)]), T1P, -ms, &(Rm[0])); | |
516 T1H = VCONJ(VSUB(T1F, T1E)); | |
517 ST(&(Rm[WS(rs, 8)]), T1H, -ms, &(Rm[0])); | |
518 } | |
519 } | |
520 } | |
521 VLEAVE(); | |
522 } | |
523 | |
524 static const tw_instr twinstr[] = { | |
525 VTW(1, 1), | |
526 VTW(1, 2), | |
527 VTW(1, 3), | |
528 VTW(1, 4), | |
529 VTW(1, 5), | |
530 VTW(1, 6), | |
531 VTW(1, 7), | |
532 VTW(1, 8), | |
533 VTW(1, 9), | |
534 VTW(1, 10), | |
535 VTW(1, 11), | |
536 VTW(1, 12), | |
537 VTW(1, 13), | |
538 VTW(1, 14), | |
539 VTW(1, 15), | |
540 VTW(1, 16), | |
541 VTW(1, 17), | |
542 VTW(1, 18), | |
543 VTW(1, 19), | |
544 {TW_NEXT, VL, 0} | |
545 }; | |
546 | |
547 static const hc2c_desc desc = { 20, XSIMD_STRING("hc2cfdftv_20"), twinstr, &GENUS, {131, 65, 12, 0} }; | |
548 | |
549 void XSIMD(codelet_hc2cfdftv_20) (planner *p) { | |
550 X(khc2c_register) (p, hc2cfdftv_20, &desc, HC2C_VIA_DFT); | |
551 } | |
552 #endif /* HAVE_FMA */ |