Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.3/rdft/simd/common/hc2cfdftv_10.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
9:c0fb53affa76 | 10:37bf6b4a2645 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-11 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Sun Nov 25 07:42:29 EST 2012 */ | |
23 | |
24 #include "codelet-rdft.h" | |
25 | |
26 #ifdef HAVE_FMA | |
27 | |
28 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 10 -dit -name hc2cfdftv_10 -include hc2cfv.h */ | |
29 | |
30 /* | |
31 * This function contains 61 FP additions, 60 FP multiplications, | |
32 * (or, 33 additions, 32 multiplications, 28 fused multiply/add), | |
33 * 77 stack variables, 5 constants, and 20 memory accesses | |
34 */ | |
35 #include "hc2cfv.h" | |
36 | |
37 static void hc2cfdftv_10(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) | |
38 { | |
39 DVK(KP559016994, +0.559016994374947424102293417182819058860154590); | |
40 DVK(KP500000000, +0.500000000000000000000000000000000000000000000); | |
41 DVK(KP250000000, +0.250000000000000000000000000000000000000000000); | |
42 DVK(KP618033988, +0.618033988749894848204586834365638117720309180); | |
43 DVK(KP951056516, +0.951056516295153572116439333379382143405698634); | |
44 { | |
45 INT m; | |
46 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 18)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 18), MAKE_VOLATILE_STRIDE(40, rs)) { | |
47 V T5, T6, Tw, Tr, Tc, Tj, Tl, Tm, Tk, Ts, Tg, Ty, T3, T4, T1; | |
48 V T2, Tv, Tq, Ta, Tb, T9, Ti, Te, Tf, Td, Tx, Tn, Tt, Th, TQ; | |
49 V TT, Tz, T7, TR, To, Tu, TU; | |
50 T1 = LD(&(Rp[0]), ms, &(Rp[0])); | |
51 T2 = LD(&(Rm[0]), -ms, &(Rm[0])); | |
52 Tv = LDW(&(W[0])); | |
53 T5 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0])); | |
54 T6 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0])); | |
55 Tq = LDW(&(W[TWVL * 6])); | |
56 Ta = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)])); | |
57 Tb = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)])); | |
58 T9 = LDW(&(W[TWVL * 2])); | |
59 Ti = LDW(&(W[TWVL * 4])); | |
60 Tw = VZMULIJ(Tv, VFNMSCONJ(T2, T1)); | |
61 Te = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)])); | |
62 Tf = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)])); | |
63 Tr = VZMULJ(Tq, VFMACONJ(T6, T5)); | |
64 Td = LDW(&(W[TWVL * 12])); | |
65 Tx = LDW(&(W[TWVL * 10])); | |
66 Tc = VZMULJ(T9, VFMACONJ(Tb, Ta)); | |
67 Tj = VZMULIJ(Ti, VFNMSCONJ(Tb, Ta)); | |
68 Tl = LD(&(Rp[WS(rs, 4)]), ms, &(Rp[0])); | |
69 Tm = LD(&(Rm[WS(rs, 4)]), -ms, &(Rm[0])); | |
70 Tk = LDW(&(W[TWVL * 14])); | |
71 Ts = LDW(&(W[TWVL * 16])); | |
72 Tg = VZMULIJ(Td, VFNMSCONJ(Tf, Te)); | |
73 Ty = VZMULJ(Tx, VFMACONJ(Tf, Te)); | |
74 T3 = VFMACONJ(T2, T1); | |
75 T4 = LDW(&(W[TWVL * 8])); | |
76 Tn = VZMULJ(Tk, VFMACONJ(Tm, Tl)); | |
77 Tt = VZMULIJ(Ts, VFNMSCONJ(Tm, Tl)); | |
78 Th = VSUB(Tc, Tg); | |
79 TQ = VADD(Tc, Tg); | |
80 TT = VADD(Tw, Ty); | |
81 Tz = VSUB(Tw, Ty); | |
82 T7 = VZMULIJ(T4, VFNMSCONJ(T6, T5)); | |
83 TR = VADD(Tj, Tn); | |
84 To = VSUB(Tj, Tn); | |
85 Tu = VSUB(Tr, Tt); | |
86 TU = VADD(Tr, Tt); | |
87 { | |
88 V TP, T8, TS, T11, Tp, TH, TA, TG, TV, T12, TE, TB, TM, TI, TZ; | |
89 V TW, T17, T13, TD, TC, TY, TX, TL, TF, T10, T16, TN, TO, TK, TJ; | |
90 V T18, T19, T15, T14; | |
91 TP = VADD(T3, T7); | |
92 T8 = VSUB(T3, T7); | |
93 TS = VADD(TQ, TR); | |
94 T11 = VSUB(TQ, TR); | |
95 Tp = VSUB(Th, To); | |
96 TH = VADD(Th, To); | |
97 TA = VSUB(Tu, Tz); | |
98 TG = VADD(Tz, Tu); | |
99 TV = VADD(TT, TU); | |
100 T12 = VSUB(TU, TT); | |
101 TE = VSUB(Tp, TA); | |
102 TB = VADD(Tp, TA); | |
103 TM = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), TG, TH)); | |
104 TI = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), TH, TG)); | |
105 TZ = VSUB(TS, TV); | |
106 TW = VADD(TS, TV); | |
107 T17 = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), T11, T12)); | |
108 T13 = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), T12, T11)); | |
109 TD = VFNMS(LDK(KP250000000), TB, T8); | |
110 TC = VMUL(LDK(KP500000000), VADD(T8, TB)); | |
111 TY = VFNMS(LDK(KP250000000), TW, TP); | |
112 TX = VCONJ(VMUL(LDK(KP500000000), VADD(TP, TW))); | |
113 TL = VFMA(LDK(KP559016994), TE, TD); | |
114 TF = VFNMS(LDK(KP559016994), TE, TD); | |
115 ST(&(Rp[0]), TC, ms, &(Rp[0])); | |
116 T10 = VFMA(LDK(KP559016994), TZ, TY); | |
117 T16 = VFNMS(LDK(KP559016994), TZ, TY); | |
118 ST(&(Rm[WS(rs, 4)]), TX, -ms, &(Rm[0])); | |
119 TN = VCONJ(VMUL(LDK(KP500000000), VFNMSI(TM, TL))); | |
120 TO = VMUL(LDK(KP500000000), VFMAI(TM, TL)); | |
121 TK = VMUL(LDK(KP500000000), VFMAI(TI, TF)); | |
122 TJ = VCONJ(VMUL(LDK(KP500000000), VFNMSI(TI, TF))); | |
123 T18 = VMUL(LDK(KP500000000), VFNMSI(T17, T16)); | |
124 T19 = VCONJ(VMUL(LDK(KP500000000), VFMAI(T17, T16))); | |
125 T15 = VCONJ(VMUL(LDK(KP500000000), VFMAI(T13, T10))); | |
126 T14 = VMUL(LDK(KP500000000), VFNMSI(T13, T10)); | |
127 ST(&(Rm[WS(rs, 3)]), TN, -ms, &(Rm[WS(rs, 1)])); | |
128 ST(&(Rp[WS(rs, 4)]), TO, ms, &(Rp[0])); | |
129 ST(&(Rp[WS(rs, 2)]), TK, ms, &(Rp[0])); | |
130 ST(&(Rm[WS(rs, 1)]), TJ, -ms, &(Rm[WS(rs, 1)])); | |
131 ST(&(Rp[WS(rs, 3)]), T18, ms, &(Rp[WS(rs, 1)])); | |
132 ST(&(Rm[WS(rs, 2)]), T19, -ms, &(Rm[0])); | |
133 ST(&(Rm[0]), T15, -ms, &(Rm[0])); | |
134 ST(&(Rp[WS(rs, 1)]), T14, ms, &(Rp[WS(rs, 1)])); | |
135 } | |
136 } | |
137 } | |
138 VLEAVE(); | |
139 } | |
140 | |
141 static const tw_instr twinstr[] = { | |
142 VTW(1, 1), | |
143 VTW(1, 2), | |
144 VTW(1, 3), | |
145 VTW(1, 4), | |
146 VTW(1, 5), | |
147 VTW(1, 6), | |
148 VTW(1, 7), | |
149 VTW(1, 8), | |
150 VTW(1, 9), | |
151 {TW_NEXT, VL, 0} | |
152 }; | |
153 | |
154 static const hc2c_desc desc = { 10, XSIMD_STRING("hc2cfdftv_10"), twinstr, &GENUS, {33, 32, 28, 0} }; | |
155 | |
156 void XSIMD(codelet_hc2cfdftv_10) (planner *p) { | |
157 X(khc2c_register) (p, hc2cfdftv_10, &desc, HC2C_VIA_DFT); | |
158 } | |
159 #else /* HAVE_FMA */ | |
160 | |
161 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 10 -dit -name hc2cfdftv_10 -include hc2cfv.h */ | |
162 | |
163 /* | |
164 * This function contains 61 FP additions, 38 FP multiplications, | |
165 * (or, 55 additions, 32 multiplications, 6 fused multiply/add), | |
166 * 82 stack variables, 5 constants, and 20 memory accesses | |
167 */ | |
168 #include "hc2cfv.h" | |
169 | |
170 static void hc2cfdftv_10(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) | |
171 { | |
172 DVK(KP125000000, +0.125000000000000000000000000000000000000000000); | |
173 DVK(KP279508497, +0.279508497187473712051146708591409529430077295); | |
174 DVK(KP587785252, +0.587785252292473129168705954639072768597652438); | |
175 DVK(KP951056516, +0.951056516295153572116439333379382143405698634); | |
176 DVK(KP500000000, +0.500000000000000000000000000000000000000000000); | |
177 { | |
178 INT m; | |
179 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 18)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 18), MAKE_VOLATILE_STRIDE(40, rs)) { | |
180 V Tl, Tt, Tu, TY, TZ, T10, Tz, TE, TF, TV, TW, TX, Ta, TU, TN; | |
181 V TR, TH, TQ, TK, TL, TM, TI, TG, TJ, TT, TO, TP, TS, T18, T1c; | |
182 V T12, T1b, T15, T16, T17, T14, T11, T13, T1e, T19, T1a, T1d; | |
183 { | |
184 V T1, T3, Ty, T8, T7, TB, Tf, Ts, Tk, Tw, Tq, TD, T2, Tx, T6; | |
185 V TA, Tc, Te, Td, Tb, Tr, Tj, Ti, Th, Tg, Tv, Tn, Tp, To, Tm; | |
186 V TC, T4, T9, T5; | |
187 T1 = LD(&(Rp[0]), ms, &(Rp[0])); | |
188 T2 = LD(&(Rm[0]), -ms, &(Rm[0])); | |
189 T3 = VCONJ(T2); | |
190 Tx = LDW(&(W[0])); | |
191 Ty = VZMULIJ(Tx, VSUB(T3, T1)); | |
192 T8 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0])); | |
193 T6 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0])); | |
194 T7 = VCONJ(T6); | |
195 TA = LDW(&(W[TWVL * 6])); | |
196 TB = VZMULJ(TA, VADD(T7, T8)); | |
197 Tc = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)])); | |
198 Td = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)])); | |
199 Te = VCONJ(Td); | |
200 Tb = LDW(&(W[TWVL * 2])); | |
201 Tf = VZMULJ(Tb, VADD(Tc, Te)); | |
202 Tr = LDW(&(W[TWVL * 4])); | |
203 Ts = VZMULIJ(Tr, VSUB(Te, Tc)); | |
204 Tj = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)])); | |
205 Th = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)])); | |
206 Ti = VCONJ(Th); | |
207 Tg = LDW(&(W[TWVL * 12])); | |
208 Tk = VZMULIJ(Tg, VSUB(Ti, Tj)); | |
209 Tv = LDW(&(W[TWVL * 10])); | |
210 Tw = VZMULJ(Tv, VADD(Ti, Tj)); | |
211 Tn = LD(&(Rp[WS(rs, 4)]), ms, &(Rp[0])); | |
212 To = LD(&(Rm[WS(rs, 4)]), -ms, &(Rm[0])); | |
213 Tp = VCONJ(To); | |
214 Tm = LDW(&(W[TWVL * 14])); | |
215 Tq = VZMULJ(Tm, VADD(Tn, Tp)); | |
216 TC = LDW(&(W[TWVL * 16])); | |
217 TD = VZMULIJ(TC, VSUB(Tp, Tn)); | |
218 Tl = VSUB(Tf, Tk); | |
219 Tt = VSUB(Tq, Ts); | |
220 Tu = VADD(Tl, Tt); | |
221 TY = VADD(Ty, Tw); | |
222 TZ = VADD(TB, TD); | |
223 T10 = VADD(TY, TZ); | |
224 Tz = VSUB(Tw, Ty); | |
225 TE = VSUB(TB, TD); | |
226 TF = VADD(Tz, TE); | |
227 TV = VADD(Tf, Tk); | |
228 TW = VADD(Ts, Tq); | |
229 TX = VADD(TV, TW); | |
230 T4 = VADD(T1, T3); | |
231 T5 = LDW(&(W[TWVL * 8])); | |
232 T9 = VZMULIJ(T5, VSUB(T7, T8)); | |
233 Ta = VSUB(T4, T9); | |
234 TU = VADD(T4, T9); | |
235 } | |
236 TL = VSUB(Tl, Tt); | |
237 TM = VSUB(TE, Tz); | |
238 TN = VMUL(LDK(KP500000000), VBYI(VFMA(LDK(KP951056516), TL, VMUL(LDK(KP587785252), TM)))); | |
239 TR = VMUL(LDK(KP500000000), VBYI(VFNMS(LDK(KP587785252), TL, VMUL(LDK(KP951056516), TM)))); | |
240 TI = VMUL(LDK(KP279508497), VSUB(Tu, TF)); | |
241 TG = VADD(Tu, TF); | |
242 TJ = VFNMS(LDK(KP125000000), TG, VMUL(LDK(KP500000000), Ta)); | |
243 TH = VCONJ(VMUL(LDK(KP500000000), VADD(Ta, TG))); | |
244 TQ = VSUB(TJ, TI); | |
245 TK = VADD(TI, TJ); | |
246 ST(&(Rm[WS(rs, 4)]), TH, -ms, &(Rm[0])); | |
247 TT = VCONJ(VADD(TQ, TR)); | |
248 ST(&(Rm[WS(rs, 2)]), TT, -ms, &(Rm[0])); | |
249 TO = VSUB(TK, TN); | |
250 ST(&(Rp[WS(rs, 1)]), TO, ms, &(Rp[WS(rs, 1)])); | |
251 TP = VCONJ(VADD(TK, TN)); | |
252 ST(&(Rm[0]), TP, -ms, &(Rm[0])); | |
253 TS = VSUB(TQ, TR); | |
254 ST(&(Rp[WS(rs, 3)]), TS, ms, &(Rp[WS(rs, 1)])); | |
255 T16 = VSUB(TZ, TY); | |
256 T17 = VSUB(TV, TW); | |
257 T18 = VMUL(LDK(KP500000000), VBYI(VFNMS(LDK(KP587785252), T17, VMUL(LDK(KP951056516), T16)))); | |
258 T1c = VMUL(LDK(KP500000000), VBYI(VFMA(LDK(KP951056516), T17, VMUL(LDK(KP587785252), T16)))); | |
259 T14 = VMUL(LDK(KP279508497), VSUB(TX, T10)); | |
260 T11 = VADD(TX, T10); | |
261 T13 = VFNMS(LDK(KP125000000), T11, VMUL(LDK(KP500000000), TU)); | |
262 T12 = VMUL(LDK(KP500000000), VADD(TU, T11)); | |
263 T1b = VADD(T14, T13); | |
264 T15 = VSUB(T13, T14); | |
265 ST(&(Rp[0]), T12, ms, &(Rp[0])); | |
266 T1e = VADD(T1b, T1c); | |
267 ST(&(Rp[WS(rs, 4)]), T1e, ms, &(Rp[0])); | |
268 T19 = VCONJ(VSUB(T15, T18)); | |
269 ST(&(Rm[WS(rs, 1)]), T19, -ms, &(Rm[WS(rs, 1)])); | |
270 T1a = VADD(T15, T18); | |
271 ST(&(Rp[WS(rs, 2)]), T1a, ms, &(Rp[0])); | |
272 T1d = VCONJ(VSUB(T1b, T1c)); | |
273 ST(&(Rm[WS(rs, 3)]), T1d, -ms, &(Rm[WS(rs, 1)])); | |
274 } | |
275 } | |
276 VLEAVE(); | |
277 } | |
278 | |
279 static const tw_instr twinstr[] = { | |
280 VTW(1, 1), | |
281 VTW(1, 2), | |
282 VTW(1, 3), | |
283 VTW(1, 4), | |
284 VTW(1, 5), | |
285 VTW(1, 6), | |
286 VTW(1, 7), | |
287 VTW(1, 8), | |
288 VTW(1, 9), | |
289 {TW_NEXT, VL, 0} | |
290 }; | |
291 | |
292 static const hc2c_desc desc = { 10, XSIMD_STRING("hc2cfdftv_10"), twinstr, &GENUS, {55, 32, 6, 0} }; | |
293 | |
294 void XSIMD(codelet_hc2cfdftv_10) (planner *p) { | |
295 X(khc2c_register) (p, hc2cfdftv_10, &desc, HC2C_VIA_DFT); | |
296 } | |
297 #endif /* HAVE_FMA */ |