Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.3/rdft/simd/common/hc2cbdftv_20.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
9:c0fb53affa76 | 10:37bf6b4a2645 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-11 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Sun Nov 25 07:42:30 EST 2012 */ | |
23 | |
24 #include "codelet-rdft.h" | |
25 | |
26 #ifdef HAVE_FMA | |
27 | |
28 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 20 -dif -sign 1 -name hc2cbdftv_20 -include hc2cbv.h */ | |
29 | |
30 /* | |
31 * This function contains 143 FP additions, 108 FP multiplications, | |
32 * (or, 77 additions, 42 multiplications, 66 fused multiply/add), | |
33 * 134 stack variables, 4 constants, and 40 memory accesses | |
34 */ | |
35 #include "hc2cbv.h" | |
36 | |
37 static void hc2cbdftv_20(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) | |
38 { | |
39 DVK(KP559016994, +0.559016994374947424102293417182819058860154590); | |
40 DVK(KP951056516, +0.951056516295153572116439333379382143405698634); | |
41 DVK(KP250000000, +0.250000000000000000000000000000000000000000000); | |
42 DVK(KP618033988, +0.618033988749894848204586834365638117720309180); | |
43 { | |
44 INT m; | |
45 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 38)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 38), MAKE_VOLATILE_STRIDE(80, rs)) { | |
46 V T1M, T1T, T4, TF, T12, Te, T16, Ts, Tb, TN, TA, TG, TU, T1Y, T11; | |
47 V T1e, T29, T21, T15, Th, T13, Tp; | |
48 { | |
49 V TS, TT, Tf, T10, T20, T1Z, TX, Tg, Tn, To, T2, T3, TD, TE, T8; | |
50 V TV, T7, TZ, Tz, T9, Tu, Tv, T5, T6, Tx, Ty, Tc, Td, Tq, Tr; | |
51 V TY, Ta, TW, Tw; | |
52 T2 = LD(&(Rp[0]), ms, &(Rp[0])); | |
53 T3 = LD(&(Rm[WS(rs, 9)]), -ms, &(Rm[WS(rs, 1)])); | |
54 TD = LD(&(Rp[WS(rs, 5)]), ms, &(Rp[WS(rs, 1)])); | |
55 TE = LD(&(Rm[WS(rs, 4)]), -ms, &(Rm[0])); | |
56 T5 = LD(&(Rp[WS(rs, 4)]), ms, &(Rp[0])); | |
57 T6 = LD(&(Rm[WS(rs, 5)]), -ms, &(Rm[WS(rs, 1)])); | |
58 Tx = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)])); | |
59 Ty = LD(&(Rm[WS(rs, 8)]), -ms, &(Rm[0])); | |
60 T8 = LD(&(Rp[WS(rs, 6)]), ms, &(Rp[0])); | |
61 TS = VFMACONJ(T3, T2); | |
62 T4 = VFNMSCONJ(T3, T2); | |
63 TT = VFMACONJ(TE, TD); | |
64 TF = VFNMSCONJ(TE, TD); | |
65 TV = VFMACONJ(T6, T5); | |
66 T7 = VFNMSCONJ(T6, T5); | |
67 TZ = VFMACONJ(Ty, Tx); | |
68 Tz = VFNMSCONJ(Ty, Tx); | |
69 T9 = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)])); | |
70 Tu = LD(&(Rp[WS(rs, 9)]), ms, &(Rp[WS(rs, 1)])); | |
71 Tv = LD(&(Rm[0]), -ms, &(Rm[0])); | |
72 Tc = LD(&(Rp[WS(rs, 8)]), ms, &(Rp[0])); | |
73 Td = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)])); | |
74 Tq = LD(&(Rp[WS(rs, 7)]), ms, &(Rp[WS(rs, 1)])); | |
75 Tr = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0])); | |
76 Tf = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0])); | |
77 TY = VFMACONJ(T9, T8); | |
78 Ta = VFMSCONJ(T9, T8); | |
79 TW = VFMACONJ(Tv, Tu); | |
80 Tw = VFNMSCONJ(Tv, Tu); | |
81 T12 = VFMACONJ(Td, Tc); | |
82 Te = VFNMSCONJ(Td, Tc); | |
83 T16 = VFMACONJ(Tr, Tq); | |
84 Ts = VFMSCONJ(Tr, Tq); | |
85 T10 = VSUB(TY, TZ); | |
86 T20 = VADD(TY, TZ); | |
87 Tb = VADD(T7, Ta); | |
88 TN = VSUB(T7, Ta); | |
89 T1Z = VADD(TV, TW); | |
90 TX = VSUB(TV, TW); | |
91 TA = VSUB(Tw, Tz); | |
92 TG = VADD(Tw, Tz); | |
93 Tg = LD(&(Rm[WS(rs, 7)]), -ms, &(Rm[WS(rs, 1)])); | |
94 Tn = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)])); | |
95 To = LD(&(Rm[WS(rs, 6)]), -ms, &(Rm[0])); | |
96 TU = VSUB(TS, TT); | |
97 T1Y = VADD(TS, TT); | |
98 T11 = VADD(TX, T10); | |
99 T1e = VSUB(TX, T10); | |
100 T29 = VSUB(T1Z, T20); | |
101 T21 = VADD(T1Z, T20); | |
102 T15 = VFMACONJ(Tg, Tf); | |
103 Th = VFMSCONJ(Tg, Tf); | |
104 T13 = VFMACONJ(To, Tn); | |
105 Tp = VFMSCONJ(To, Tn); | |
106 } | |
107 { | |
108 V T1S, T2B, T1W, T1I, T2q, T2w, T2i, T2c, T1C, T1K, T1s, T1g, T1, T2t, T1v; | |
109 V T1Q, T2A, T1q, T2m, TC, T1w, TP, T1x, T2f, T2r, T2g, T1E, T1D, T2y, T2x; | |
110 V T1i, T1h, T2D, T2C, T2s, T1t, T1u, T1y, T2u, TQ, T2d, T2e, T1U, T1L, T2j; | |
111 V T2k; | |
112 { | |
113 V T1R, T1F, T1V, T1o, TO, Tl, T1d, T2a, T1l, TB, TK, T1G, Tk, T1b, T19; | |
114 V T27, T25, T1H, TJ, T17, T23, TM, Ti, T14, T22, Tt, TH, Tj, T18, T24; | |
115 V TI, T2b, T2p, T1X, T2v, T2h, T2n, T1B, T1f, T28, T2o, T1a, TR, T1J, T1r; | |
116 V T1z, T26, Tm, TL, T1O, T1m, T1j, T2z, T1N, T1p, T1P, T2l, T1c, T1A, T1n; | |
117 V T1k; | |
118 T1R = LDW(&(W[TWVL * 18])); | |
119 T17 = VSUB(T15, T16); | |
120 T23 = VADD(T15, T16); | |
121 TM = VSUB(Te, Th); | |
122 Ti = VADD(Te, Th); | |
123 T14 = VSUB(T12, T13); | |
124 T22 = VADD(T12, T13); | |
125 Tt = VSUB(Tp, Ts); | |
126 TH = VADD(Tp, Ts); | |
127 T1F = LDW(&(W[TWVL * 28])); | |
128 T1V = LDW(&(W[TWVL * 8])); | |
129 T1o = VFMA(LDK(KP618033988), TM, TN); | |
130 TO = VFNMS(LDK(KP618033988), TN, TM); | |
131 Tj = VADD(Tb, Ti); | |
132 Tl = VSUB(Tb, Ti); | |
133 T18 = VADD(T14, T17); | |
134 T1d = VSUB(T14, T17); | |
135 T24 = VADD(T22, T23); | |
136 T2a = VSUB(T22, T23); | |
137 T1l = VFMA(LDK(KP618033988), Tt, TA); | |
138 TB = VFNMS(LDK(KP618033988), TA, Tt); | |
139 TI = VADD(TG, TH); | |
140 TK = VSUB(TG, TH); | |
141 T1G = VADD(T4, Tj); | |
142 Tk = VFNMS(LDK(KP250000000), Tj, T4); | |
143 T1b = VSUB(T11, T18); | |
144 T19 = VADD(T11, T18); | |
145 T27 = VSUB(T21, T24); | |
146 T25 = VADD(T21, T24); | |
147 T1H = VADD(TF, TI); | |
148 TJ = VFNMS(LDK(KP250000000), TI, TF); | |
149 T2b = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), T2a, T29)); | |
150 T2p = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), T29, T2a)); | |
151 T1X = LDW(&(W[TWVL * 6])); | |
152 T1S = VZMUL(T1R, VADD(TU, T19)); | |
153 T2v = LDW(&(W[TWVL * 22])); | |
154 T2B = VADD(T1Y, T25); | |
155 T26 = VFNMS(LDK(KP250000000), T25, T1Y); | |
156 T1W = VZMULI(T1V, VFMAI(T1H, T1G)); | |
157 T1I = VZMULI(T1F, VFNMSI(T1H, T1G)); | |
158 T2h = LDW(&(W[TWVL * 30])); | |
159 T2n = LDW(&(W[TWVL * 14])); | |
160 T1B = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), T1d, T1e)); | |
161 T1f = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), T1e, T1d)); | |
162 T28 = VFMA(LDK(KP559016994), T27, T26); | |
163 T2o = VFNMS(LDK(KP559016994), T27, T26); | |
164 T1a = VFNMS(LDK(KP250000000), T19, TU); | |
165 TR = LDW(&(W[TWVL * 2])); | |
166 T1J = LDW(&(W[TWVL * 26])); | |
167 T1r = LDW(&(W[TWVL * 34])); | |
168 T1z = LDW(&(W[TWVL * 10])); | |
169 T1k = VFMA(LDK(KP559016994), Tl, Tk); | |
170 Tm = VFNMS(LDK(KP559016994), Tl, Tk); | |
171 T2q = VZMUL(T2n, VFMAI(T2p, T2o)); | |
172 T2w = VZMUL(T2v, VFNMSI(T2p, T2o)); | |
173 T2i = VZMUL(T2h, VFMAI(T2b, T28)); | |
174 T2c = VZMUL(T1X, VFNMSI(T2b, T28)); | |
175 T1c = VFNMS(LDK(KP559016994), T1b, T1a); | |
176 T1A = VFMA(LDK(KP559016994), T1b, T1a); | |
177 TL = VFNMS(LDK(KP559016994), TK, TJ); | |
178 T1n = VFMA(LDK(KP559016994), TK, TJ); | |
179 T1O = VFMA(LDK(KP951056516), T1l, T1k); | |
180 T1m = VFNMS(LDK(KP951056516), T1l, T1k); | |
181 T1j = LDW(&(W[TWVL * 36])); | |
182 T2z = LDW(&(W[0])); | |
183 T1N = LDW(&(W[TWVL * 20])); | |
184 T1C = VZMUL(T1z, VFMAI(T1B, T1A)); | |
185 T1K = VZMUL(T1J, VFNMSI(T1B, T1A)); | |
186 T1s = VZMUL(T1r, VFMAI(T1f, T1c)); | |
187 T1g = VZMUL(TR, VFNMSI(T1f, T1c)); | |
188 T1p = VFMA(LDK(KP951056516), T1o, T1n); | |
189 T1P = VFNMS(LDK(KP951056516), T1o, T1n); | |
190 T2l = LDW(&(W[TWVL * 16])); | |
191 T1 = LDW(&(W[TWVL * 4])); | |
192 T2t = LDW(&(W[TWVL * 24])); | |
193 T1v = LDW(&(W[TWVL * 12])); | |
194 T1Q = VZMULI(T1N, VFNMSI(T1P, T1O)); | |
195 T2A = VZMULI(T2z, VFMAI(T1p, T1m)); | |
196 T1q = VZMULI(T1j, VFNMSI(T1p, T1m)); | |
197 T2m = VZMULI(T2l, VFMAI(T1P, T1O)); | |
198 TC = VFMA(LDK(KP951056516), TB, Tm); | |
199 T1w = VFNMS(LDK(KP951056516), TB, Tm); | |
200 TP = VFNMS(LDK(KP951056516), TO, TL); | |
201 T1x = VFMA(LDK(KP951056516), TO, TL); | |
202 T2f = LDW(&(W[TWVL * 32])); | |
203 } | |
204 T2D = VCONJ(VSUB(T2B, T2A)); | |
205 T2C = VADD(T2A, T2B); | |
206 T2s = VCONJ(VSUB(T2q, T2m)); | |
207 T2r = VADD(T2m, T2q); | |
208 T1t = VADD(T1q, T1s); | |
209 T1u = VCONJ(VSUB(T1s, T1q)); | |
210 T1y = VZMULI(T1v, VFNMSI(T1x, T1w)); | |
211 T2u = VZMULI(T2t, VFMAI(T1x, T1w)); | |
212 TQ = VZMULI(T1, VFNMSI(TP, TC)); | |
213 T2g = VZMULI(T2f, VFMAI(TP, TC)); | |
214 ST(&(Rm[0]), T2D, -ms, &(Rm[0])); | |
215 ST(&(Rp[0]), T2C, ms, &(Rp[0])); | |
216 ST(&(Rm[WS(rs, 4)]), T2s, -ms, &(Rm[0])); | |
217 ST(&(Rm[WS(rs, 9)]), T1u, -ms, &(Rm[WS(rs, 1)])); | |
218 T1E = VCONJ(VSUB(T1C, T1y)); | |
219 T1D = VADD(T1y, T1C); | |
220 T2y = VCONJ(VSUB(T2w, T2u)); | |
221 T2x = VADD(T2u, T2w); | |
222 T1i = VCONJ(VSUB(T1g, TQ)); | |
223 T1h = VADD(TQ, T1g); | |
224 ST(&(Rp[WS(rs, 9)]), T1t, ms, &(Rp[WS(rs, 1)])); | |
225 T1L = VADD(T1I, T1K); | |
226 T1M = VCONJ(VSUB(T1K, T1I)); | |
227 ST(&(Rp[WS(rs, 3)]), T1D, ms, &(Rp[WS(rs, 1)])); | |
228 ST(&(Rm[WS(rs, 6)]), T2y, -ms, &(Rm[0])); | |
229 ST(&(Rp[WS(rs, 6)]), T2x, ms, &(Rp[0])); | |
230 ST(&(Rm[WS(rs, 1)]), T1i, -ms, &(Rm[WS(rs, 1)])); | |
231 ST(&(Rp[WS(rs, 1)]), T1h, ms, &(Rp[WS(rs, 1)])); | |
232 T2d = VADD(T1W, T2c); | |
233 T2e = VCONJ(VSUB(T2c, T1W)); | |
234 ST(&(Rm[WS(rs, 3)]), T1E, -ms, &(Rm[WS(rs, 1)])); | |
235 ST(&(Rp[WS(rs, 7)]), T1L, ms, &(Rp[WS(rs, 1)])); | |
236 T1U = VCONJ(VSUB(T1S, T1Q)); | |
237 T1T = VADD(T1Q, T1S); | |
238 T2j = VADD(T2g, T2i); | |
239 T2k = VCONJ(VSUB(T2i, T2g)); | |
240 ST(&(Rp[WS(rs, 2)]), T2d, ms, &(Rp[0])); | |
241 ST(&(Rp[WS(rs, 4)]), T2r, ms, &(Rp[0])); | |
242 ST(&(Rm[WS(rs, 5)]), T1U, -ms, &(Rm[WS(rs, 1)])); | |
243 ST(&(Rm[WS(rs, 2)]), T2e, -ms, &(Rm[0])); | |
244 ST(&(Rp[WS(rs, 8)]), T2j, ms, &(Rp[0])); | |
245 ST(&(Rm[WS(rs, 8)]), T2k, -ms, &(Rm[0])); | |
246 } | |
247 ST(&(Rp[WS(rs, 5)]), T1T, ms, &(Rp[WS(rs, 1)])); | |
248 ST(&(Rm[WS(rs, 7)]), T1M, -ms, &(Rm[WS(rs, 1)])); | |
249 } | |
250 } | |
251 VLEAVE(); | |
252 } | |
253 | |
254 static const tw_instr twinstr[] = { | |
255 VTW(1, 1), | |
256 VTW(1, 2), | |
257 VTW(1, 3), | |
258 VTW(1, 4), | |
259 VTW(1, 5), | |
260 VTW(1, 6), | |
261 VTW(1, 7), | |
262 VTW(1, 8), | |
263 VTW(1, 9), | |
264 VTW(1, 10), | |
265 VTW(1, 11), | |
266 VTW(1, 12), | |
267 VTW(1, 13), | |
268 VTW(1, 14), | |
269 VTW(1, 15), | |
270 VTW(1, 16), | |
271 VTW(1, 17), | |
272 VTW(1, 18), | |
273 VTW(1, 19), | |
274 {TW_NEXT, VL, 0} | |
275 }; | |
276 | |
277 static const hc2c_desc desc = { 20, XSIMD_STRING("hc2cbdftv_20"), twinstr, &GENUS, {77, 42, 66, 0} }; | |
278 | |
279 void XSIMD(codelet_hc2cbdftv_20) (planner *p) { | |
280 X(khc2c_register) (p, hc2cbdftv_20, &desc, HC2C_VIA_DFT); | |
281 } | |
282 #else /* HAVE_FMA */ | |
283 | |
284 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 20 -dif -sign 1 -name hc2cbdftv_20 -include hc2cbv.h */ | |
285 | |
286 /* | |
287 * This function contains 143 FP additions, 62 FP multiplications, | |
288 * (or, 131 additions, 50 multiplications, 12 fused multiply/add), | |
289 * 114 stack variables, 4 constants, and 40 memory accesses | |
290 */ | |
291 #include "hc2cbv.h" | |
292 | |
293 static void hc2cbdftv_20(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) | |
294 { | |
295 DVK(KP250000000, +0.250000000000000000000000000000000000000000000); | |
296 DVK(KP559016994, +0.559016994374947424102293417182819058860154590); | |
297 DVK(KP951056516, +0.951056516295153572116439333379382143405698634); | |
298 DVK(KP587785252, +0.587785252292473129168705954639072768597652438); | |
299 { | |
300 INT m; | |
301 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 38)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 38), MAKE_VOLATILE_STRIDE(80, rs)) { | |
302 V TK, T1v, TY, T1x, T1j, T2f, TS, TT, TO, TU, T5, To, Tp, Tq, T2a; | |
303 V T2d, T2g, T2k, T2j, T1k, T1l, T18, T1m, T1f; | |
304 { | |
305 V T2, TP, T4, TR, TI, T1d, T9, T12, Td, T15, TE, T1a, Tv, T13, Tm; | |
306 V T1c, Tz, T16, Ti, T19, T3, TQ, TH, TG, TF, T6, T8, T7, Tc, Tb; | |
307 V Ta, TD, TC, TB, Ts, Tu, Tt, Tl, Tk, Tj, Tw, Ty, Tx, Tf, Th; | |
308 V Tg, TA, TJ, TW, TX, T1h, T1i, TM, TN, Te, Tn, T28, T29, T2b, T2c; | |
309 V T14, T17, T1b, T1e; | |
310 T2 = LD(&(Rp[0]), ms, &(Rp[0])); | |
311 TP = LD(&(Rp[WS(rs, 5)]), ms, &(Rp[WS(rs, 1)])); | |
312 T3 = LD(&(Rm[WS(rs, 9)]), -ms, &(Rm[WS(rs, 1)])); | |
313 T4 = VCONJ(T3); | |
314 TQ = LD(&(Rm[WS(rs, 4)]), -ms, &(Rm[0])); | |
315 TR = VCONJ(TQ); | |
316 TH = LD(&(Rp[WS(rs, 7)]), ms, &(Rp[WS(rs, 1)])); | |
317 TF = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0])); | |
318 TG = VCONJ(TF); | |
319 TI = VSUB(TG, TH); | |
320 T1d = VADD(TG, TH); | |
321 T6 = LD(&(Rp[WS(rs, 4)]), ms, &(Rp[0])); | |
322 T7 = LD(&(Rm[WS(rs, 5)]), -ms, &(Rm[WS(rs, 1)])); | |
323 T8 = VCONJ(T7); | |
324 T9 = VSUB(T6, T8); | |
325 T12 = VADD(T6, T8); | |
326 Tc = LD(&(Rp[WS(rs, 6)]), ms, &(Rp[0])); | |
327 Ta = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)])); | |
328 Tb = VCONJ(Ta); | |
329 Td = VSUB(Tb, Tc); | |
330 T15 = VADD(Tb, Tc); | |
331 TD = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)])); | |
332 TB = LD(&(Rm[WS(rs, 6)]), -ms, &(Rm[0])); | |
333 TC = VCONJ(TB); | |
334 TE = VSUB(TC, TD); | |
335 T1a = VADD(TC, TD); | |
336 Ts = LD(&(Rp[WS(rs, 9)]), ms, &(Rp[WS(rs, 1)])); | |
337 Tt = LD(&(Rm[0]), -ms, &(Rm[0])); | |
338 Tu = VCONJ(Tt); | |
339 Tv = VSUB(Ts, Tu); | |
340 T13 = VADD(Ts, Tu); | |
341 Tl = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0])); | |
342 Tj = LD(&(Rm[WS(rs, 7)]), -ms, &(Rm[WS(rs, 1)])); | |
343 Tk = VCONJ(Tj); | |
344 Tm = VSUB(Tk, Tl); | |
345 T1c = VADD(Tk, Tl); | |
346 Tw = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)])); | |
347 Tx = LD(&(Rm[WS(rs, 8)]), -ms, &(Rm[0])); | |
348 Ty = VCONJ(Tx); | |
349 Tz = VSUB(Tw, Ty); | |
350 T16 = VADD(Tw, Ty); | |
351 Tf = LD(&(Rp[WS(rs, 8)]), ms, &(Rp[0])); | |
352 Tg = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)])); | |
353 Th = VCONJ(Tg); | |
354 Ti = VSUB(Tf, Th); | |
355 T19 = VADD(Tf, Th); | |
356 TA = VSUB(Tv, Tz); | |
357 TJ = VSUB(TE, TI); | |
358 TK = VFNMS(LDK(KP951056516), TJ, VMUL(LDK(KP587785252), TA)); | |
359 T1v = VFMA(LDK(KP951056516), TA, VMUL(LDK(KP587785252), TJ)); | |
360 TW = VSUB(T9, Td); | |
361 TX = VSUB(Ti, Tm); | |
362 TY = VFNMS(LDK(KP951056516), TX, VMUL(LDK(KP587785252), TW)); | |
363 T1x = VFMA(LDK(KP951056516), TW, VMUL(LDK(KP587785252), TX)); | |
364 T1h = VADD(T2, T4); | |
365 T1i = VADD(TP, TR); | |
366 T1j = VSUB(T1h, T1i); | |
367 T2f = VADD(T1h, T1i); | |
368 TS = VSUB(TP, TR); | |
369 TM = VADD(Tv, Tz); | |
370 TN = VADD(TE, TI); | |
371 TT = VADD(TM, TN); | |
372 TO = VMUL(LDK(KP559016994), VSUB(TM, TN)); | |
373 TU = VFNMS(LDK(KP250000000), TT, TS); | |
374 T5 = VSUB(T2, T4); | |
375 Te = VADD(T9, Td); | |
376 Tn = VADD(Ti, Tm); | |
377 To = VADD(Te, Tn); | |
378 Tp = VFNMS(LDK(KP250000000), To, T5); | |
379 Tq = VMUL(LDK(KP559016994), VSUB(Te, Tn)); | |
380 T28 = VADD(T12, T13); | |
381 T29 = VADD(T15, T16); | |
382 T2a = VADD(T28, T29); | |
383 T2b = VADD(T19, T1a); | |
384 T2c = VADD(T1c, T1d); | |
385 T2d = VADD(T2b, T2c); | |
386 T2g = VADD(T2a, T2d); | |
387 T2k = VSUB(T2b, T2c); | |
388 T2j = VSUB(T28, T29); | |
389 T14 = VSUB(T12, T13); | |
390 T17 = VSUB(T15, T16); | |
391 T1k = VADD(T14, T17); | |
392 T1b = VSUB(T19, T1a); | |
393 T1e = VSUB(T1c, T1d); | |
394 T1l = VADD(T1b, T1e); | |
395 T18 = VSUB(T14, T17); | |
396 T1m = VADD(T1k, T1l); | |
397 T1f = VSUB(T1b, T1e); | |
398 } | |
399 { | |
400 V T2L, T22, T1S, T26, T2m, T2G, T2s, T2A, T1q, T1U, T1C, T1M, T10, T2E, T1I; | |
401 V T2q, T1A, T2K, T20, T2w, T21, T1Q, T1R, T1P, T25, T1r, T1s, T2C, T2N, T1N; | |
402 V T2H, T2I, T2M, T1E, T1D, T1O, T1V, T2n, T2B, T24, T2o, T2t, T2u, T23, T1W; | |
403 T2L = VADD(T2f, T2g); | |
404 T21 = LDW(&(W[TWVL * 18])); | |
405 T22 = VZMUL(T21, VADD(T1j, T1m)); | |
406 T1Q = VADD(T5, To); | |
407 T1R = VBYI(VADD(TS, TT)); | |
408 T1P = LDW(&(W[TWVL * 28])); | |
409 T1S = VZMULI(T1P, VSUB(T1Q, T1R)); | |
410 T25 = LDW(&(W[TWVL * 8])); | |
411 T26 = VZMULI(T25, VADD(T1Q, T1R)); | |
412 { | |
413 V T2l, T2z, T2i, T2y, T2e, T2h, T27, T2F, T2r, T2x, T1g, T1K, T1p, T1L, T1n; | |
414 V T1o, T11, T1T, T1B, T1J, TL, T1G, TZ, T1H, Tr, TV, T1, T2D, T1F, T2p; | |
415 V T1w, T1Y, T1z, T1Z, T1u, T1y, T1t, T2J, T1X, T2v; | |
416 T2l = VBYI(VFMA(LDK(KP951056516), T2j, VMUL(LDK(KP587785252), T2k))); | |
417 T2z = VBYI(VFNMS(LDK(KP951056516), T2k, VMUL(LDK(KP587785252), T2j))); | |
418 T2e = VMUL(LDK(KP559016994), VSUB(T2a, T2d)); | |
419 T2h = VFNMS(LDK(KP250000000), T2g, T2f); | |
420 T2i = VADD(T2e, T2h); | |
421 T2y = VSUB(T2h, T2e); | |
422 T27 = LDW(&(W[TWVL * 6])); | |
423 T2m = VZMUL(T27, VSUB(T2i, T2l)); | |
424 T2F = LDW(&(W[TWVL * 22])); | |
425 T2G = VZMUL(T2F, VADD(T2z, T2y)); | |
426 T2r = LDW(&(W[TWVL * 30])); | |
427 T2s = VZMUL(T2r, VADD(T2l, T2i)); | |
428 T2x = LDW(&(W[TWVL * 14])); | |
429 T2A = VZMUL(T2x, VSUB(T2y, T2z)); | |
430 T1g = VBYI(VFNMS(LDK(KP951056516), T1f, VMUL(LDK(KP587785252), T18))); | |
431 T1K = VBYI(VFMA(LDK(KP951056516), T18, VMUL(LDK(KP587785252), T1f))); | |
432 T1n = VFNMS(LDK(KP250000000), T1m, T1j); | |
433 T1o = VMUL(LDK(KP559016994), VSUB(T1k, T1l)); | |
434 T1p = VSUB(T1n, T1o); | |
435 T1L = VADD(T1o, T1n); | |
436 T11 = LDW(&(W[TWVL * 2])); | |
437 T1q = VZMUL(T11, VADD(T1g, T1p)); | |
438 T1T = LDW(&(W[TWVL * 26])); | |
439 T1U = VZMUL(T1T, VSUB(T1L, T1K)); | |
440 T1B = LDW(&(W[TWVL * 34])); | |
441 T1C = VZMUL(T1B, VSUB(T1p, T1g)); | |
442 T1J = LDW(&(W[TWVL * 10])); | |
443 T1M = VZMUL(T1J, VADD(T1K, T1L)); | |
444 Tr = VSUB(Tp, Tq); | |
445 TL = VSUB(Tr, TK); | |
446 T1G = VADD(Tr, TK); | |
447 TV = VSUB(TO, TU); | |
448 TZ = VBYI(VSUB(TV, TY)); | |
449 T1H = VBYI(VADD(TY, TV)); | |
450 T1 = LDW(&(W[TWVL * 4])); | |
451 T10 = VZMULI(T1, VADD(TL, TZ)); | |
452 T2D = LDW(&(W[TWVL * 24])); | |
453 T2E = VZMULI(T2D, VSUB(T1G, T1H)); | |
454 T1F = LDW(&(W[TWVL * 12])); | |
455 T1I = VZMULI(T1F, VADD(T1G, T1H)); | |
456 T2p = LDW(&(W[TWVL * 32])); | |
457 T2q = VZMULI(T2p, VSUB(TL, TZ)); | |
458 T1u = VADD(Tq, Tp); | |
459 T1w = VSUB(T1u, T1v); | |
460 T1Y = VADD(T1u, T1v); | |
461 T1y = VADD(TO, TU); | |
462 T1z = VBYI(VADD(T1x, T1y)); | |
463 T1Z = VBYI(VSUB(T1y, T1x)); | |
464 T1t = LDW(&(W[TWVL * 36])); | |
465 T1A = VZMULI(T1t, VSUB(T1w, T1z)); | |
466 T2J = LDW(&(W[0])); | |
467 T2K = VZMULI(T2J, VADD(T1w, T1z)); | |
468 T1X = LDW(&(W[TWVL * 20])); | |
469 T20 = VZMULI(T1X, VSUB(T1Y, T1Z)); | |
470 T2v = LDW(&(W[TWVL * 16])); | |
471 T2w = VZMULI(T2v, VADD(T1Y, T1Z)); | |
472 } | |
473 T1r = VADD(T10, T1q); | |
474 ST(&(Rp[WS(rs, 1)]), T1r, ms, &(Rp[WS(rs, 1)])); | |
475 T1s = VCONJ(VSUB(T1q, T10)); | |
476 ST(&(Rm[WS(rs, 1)]), T1s, -ms, &(Rm[WS(rs, 1)])); | |
477 T2C = VCONJ(VSUB(T2A, T2w)); | |
478 ST(&(Rm[WS(rs, 4)]), T2C, -ms, &(Rm[0])); | |
479 T2N = VCONJ(VSUB(T2L, T2K)); | |
480 ST(&(Rm[0]), T2N, -ms, &(Rm[0])); | |
481 T1N = VADD(T1I, T1M); | |
482 ST(&(Rp[WS(rs, 3)]), T1N, ms, &(Rp[WS(rs, 1)])); | |
483 T2H = VADD(T2E, T2G); | |
484 ST(&(Rp[WS(rs, 6)]), T2H, ms, &(Rp[0])); | |
485 T2I = VCONJ(VSUB(T2G, T2E)); | |
486 ST(&(Rm[WS(rs, 6)]), T2I, -ms, &(Rm[0])); | |
487 T2M = VADD(T2K, T2L); | |
488 ST(&(Rp[0]), T2M, ms, &(Rp[0])); | |
489 T1E = VCONJ(VSUB(T1C, T1A)); | |
490 ST(&(Rm[WS(rs, 9)]), T1E, -ms, &(Rm[WS(rs, 1)])); | |
491 T1D = VADD(T1A, T1C); | |
492 ST(&(Rp[WS(rs, 9)]), T1D, ms, &(Rp[WS(rs, 1)])); | |
493 T1O = VCONJ(VSUB(T1M, T1I)); | |
494 ST(&(Rm[WS(rs, 3)]), T1O, -ms, &(Rm[WS(rs, 1)])); | |
495 T1V = VADD(T1S, T1U); | |
496 ST(&(Rp[WS(rs, 7)]), T1V, ms, &(Rp[WS(rs, 1)])); | |
497 T2n = VADD(T26, T2m); | |
498 ST(&(Rp[WS(rs, 2)]), T2n, ms, &(Rp[0])); | |
499 T2B = VADD(T2w, T2A); | |
500 ST(&(Rp[WS(rs, 4)]), T2B, ms, &(Rp[0])); | |
501 T24 = VCONJ(VSUB(T22, T20)); | |
502 ST(&(Rm[WS(rs, 5)]), T24, -ms, &(Rm[WS(rs, 1)])); | |
503 T2o = VCONJ(VSUB(T2m, T26)); | |
504 ST(&(Rm[WS(rs, 2)]), T2o, -ms, &(Rm[0])); | |
505 T2t = VADD(T2q, T2s); | |
506 ST(&(Rp[WS(rs, 8)]), T2t, ms, &(Rp[0])); | |
507 T2u = VCONJ(VSUB(T2s, T2q)); | |
508 ST(&(Rm[WS(rs, 8)]), T2u, -ms, &(Rm[0])); | |
509 T23 = VADD(T20, T22); | |
510 ST(&(Rp[WS(rs, 5)]), T23, ms, &(Rp[WS(rs, 1)])); | |
511 T1W = VCONJ(VSUB(T1U, T1S)); | |
512 ST(&(Rm[WS(rs, 7)]), T1W, -ms, &(Rm[WS(rs, 1)])); | |
513 } | |
514 } | |
515 } | |
516 VLEAVE(); | |
517 } | |
518 | |
519 static const tw_instr twinstr[] = { | |
520 VTW(1, 1), | |
521 VTW(1, 2), | |
522 VTW(1, 3), | |
523 VTW(1, 4), | |
524 VTW(1, 5), | |
525 VTW(1, 6), | |
526 VTW(1, 7), | |
527 VTW(1, 8), | |
528 VTW(1, 9), | |
529 VTW(1, 10), | |
530 VTW(1, 11), | |
531 VTW(1, 12), | |
532 VTW(1, 13), | |
533 VTW(1, 14), | |
534 VTW(1, 15), | |
535 VTW(1, 16), | |
536 VTW(1, 17), | |
537 VTW(1, 18), | |
538 VTW(1, 19), | |
539 {TW_NEXT, VL, 0} | |
540 }; | |
541 | |
542 static const hc2c_desc desc = { 20, XSIMD_STRING("hc2cbdftv_20"), twinstr, &GENUS, {131, 50, 12, 0} }; | |
543 | |
544 void XSIMD(codelet_hc2cbdftv_20) (planner *p) { | |
545 X(khc2c_register) (p, hc2cbdftv_20, &desc, HC2C_VIA_DFT); | |
546 } | |
547 #endif /* HAVE_FMA */ |