Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.3/rdft/scalar/r2cf/hf_9.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
9:c0fb53affa76 | 10:37bf6b4a2645 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-11 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Sun Nov 25 07:39:51 EST 2012 */ | |
23 | |
24 #include "codelet-rdft.h" | |
25 | |
26 #ifdef HAVE_FMA | |
27 | |
28 /* Generated by: ../../../genfft/gen_hc2hc.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 9 -dit -name hf_9 -include hf.h */ | |
29 | |
30 /* | |
31 * This function contains 96 FP additions, 88 FP multiplications, | |
32 * (or, 24 additions, 16 multiplications, 72 fused multiply/add), | |
33 * 69 stack variables, 10 constants, and 36 memory accesses | |
34 */ | |
35 #include "hf.h" | |
36 | |
37 static void hf_9(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) | |
38 { | |
39 DK(KP777861913, +0.777861913430206160028177977318626690410586096); | |
40 DK(KP852868531, +0.852868531952443209628250963940074071936020296); | |
41 DK(KP839099631, +0.839099631177280011763127298123181364687434283); | |
42 DK(KP492403876, +0.492403876506104029683371512294761506835321626); | |
43 DK(KP984807753, +0.984807753012208059366743024589523013670643252); | |
44 DK(KP954188894, +0.954188894138671133499268364187245676532219158); | |
45 DK(KP363970234, +0.363970234266202361351047882776834043890471784); | |
46 DK(KP176326980, +0.176326980708464973471090386868618986121633062); | |
47 DK(KP866025403, +0.866025403784438646763723170752936183471402627); | |
48 DK(KP500000000, +0.500000000000000000000000000000000000000000000); | |
49 { | |
50 INT m; | |
51 for (m = mb, W = W + ((mb - 1) * 16); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 16, MAKE_VOLATILE_STRIDE(18, rs)) { | |
52 E T20, T1Z; | |
53 { | |
54 E T1, T1P, T1Q, T10, T1S, Te, TB, T1d, T1a, T19, T1M, TE, T1c, Tz, T1n; | |
55 E TC, TH, TK, T1k, TR, TG, TJ, TD; | |
56 T1 = cr[0]; | |
57 T1P = ci[0]; | |
58 { | |
59 E T9, Tc, TY, Ta, Tb, TX, T7; | |
60 { | |
61 E T3, T6, T8, TW, T4, T2, T5; | |
62 T3 = cr[WS(rs, 3)]; | |
63 T6 = ci[WS(rs, 3)]; | |
64 T2 = W[4]; | |
65 T9 = cr[WS(rs, 6)]; | |
66 Tc = ci[WS(rs, 6)]; | |
67 T8 = W[10]; | |
68 TW = T2 * T6; | |
69 T4 = T2 * T3; | |
70 T5 = W[5]; | |
71 TY = T8 * Tc; | |
72 Ta = T8 * T9; | |
73 Tb = W[11]; | |
74 TX = FNMS(T5, T3, TW); | |
75 T7 = FMA(T5, T6, T4); | |
76 } | |
77 { | |
78 E Th, Tk, Ti, T12, Tn, Tq, Tp, T17, Tx, T14, To, Tj, TZ, Td, Tg; | |
79 E TA, Tl, Ty; | |
80 Th = cr[WS(rs, 1)]; | |
81 TZ = FNMS(Tb, T9, TY); | |
82 Td = FMA(Tb, Tc, Ta); | |
83 Tk = ci[WS(rs, 1)]; | |
84 Tg = W[0]; | |
85 T1Q = TX + TZ; | |
86 T10 = TX - TZ; | |
87 T1S = Td - T7; | |
88 Te = T7 + Td; | |
89 Ti = Tg * Th; | |
90 T12 = Tg * Tk; | |
91 { | |
92 E Tt, Tw, Ts, Tv, T16, Tu, Tm; | |
93 Tt = cr[WS(rs, 7)]; | |
94 Tw = ci[WS(rs, 7)]; | |
95 Ts = W[12]; | |
96 Tv = W[13]; | |
97 Tn = cr[WS(rs, 4)]; | |
98 Tq = ci[WS(rs, 4)]; | |
99 T16 = Ts * Tw; | |
100 Tu = Ts * Tt; | |
101 Tm = W[6]; | |
102 Tp = W[7]; | |
103 T17 = FNMS(Tv, Tt, T16); | |
104 Tx = FMA(Tv, Tw, Tu); | |
105 T14 = Tm * Tq; | |
106 To = Tm * Tn; | |
107 } | |
108 Tj = W[1]; | |
109 TB = cr[WS(rs, 2)]; | |
110 { | |
111 E T15, Tr, T13, T18; | |
112 T15 = FNMS(Tp, Tn, T14); | |
113 Tr = FMA(Tp, Tq, To); | |
114 T13 = FNMS(Tj, Th, T12); | |
115 Tl = FMA(Tj, Tk, Ti); | |
116 T18 = T15 + T17; | |
117 T1d = T15 - T17; | |
118 Ty = Tr + Tx; | |
119 T1a = Tr - Tx; | |
120 T19 = FNMS(KP500000000, T18, T13); | |
121 T1M = T13 + T18; | |
122 TE = ci[WS(rs, 2)]; | |
123 } | |
124 T1c = FNMS(KP500000000, Ty, Tl); | |
125 Tz = Tl + Ty; | |
126 TA = W[2]; | |
127 { | |
128 E TN, TQ, TP, T1j, TO, TM; | |
129 TN = cr[WS(rs, 8)]; | |
130 TQ = ci[WS(rs, 8)]; | |
131 TM = W[14]; | |
132 T1n = TA * TE; | |
133 TC = TA * TB; | |
134 TP = W[15]; | |
135 T1j = TM * TQ; | |
136 TO = TM * TN; | |
137 TH = cr[WS(rs, 5)]; | |
138 TK = ci[WS(rs, 5)]; | |
139 T1k = FNMS(TP, TN, T1j); | |
140 TR = FMA(TP, TQ, TO); | |
141 TG = W[8]; | |
142 TJ = W[9]; | |
143 } | |
144 TD = W[3]; | |
145 } | |
146 } | |
147 { | |
148 E TV, Tf, T21, T1R, T1l, T1r, T1q, T1N, TT, T1g; | |
149 { | |
150 E T1o, TF, T1i, TL, T1h, TI, TS, T1p; | |
151 TV = FNMS(KP500000000, Te, T1); | |
152 Tf = T1 + Te; | |
153 T1h = TG * TK; | |
154 TI = TG * TH; | |
155 T1o = FNMS(TD, TB, T1n); | |
156 TF = FMA(TD, TE, TC); | |
157 T1i = FNMS(TJ, TH, T1h); | |
158 TL = FMA(TJ, TK, TI); | |
159 T21 = T1Q + T1P; | |
160 T1R = FNMS(KP500000000, T1Q, T1P); | |
161 T1p = T1i + T1k; | |
162 T1l = T1i - T1k; | |
163 TS = TL + TR; | |
164 T1r = TR - TL; | |
165 T1q = FNMS(KP500000000, T1p, T1o); | |
166 T1N = T1o + T1p; | |
167 TT = TF + TS; | |
168 T1g = FNMS(KP500000000, TS, TF); | |
169 } | |
170 { | |
171 E T11, T1z, T1E, T1D, T1X, T1T, T1I, T1C, T1Y, T1y, T1u, T24, TU; | |
172 T24 = TT - Tz; | |
173 TU = Tz + TT; | |
174 { | |
175 E T22, T1O, T1L, T23; | |
176 T22 = T1M + T1N; | |
177 T1O = T1M - T1N; | |
178 T11 = FNMS(KP866025403, T10, TV); | |
179 T1z = FMA(KP866025403, T10, TV); | |
180 T1L = FNMS(KP500000000, TU, Tf); | |
181 cr[0] = Tf + TU; | |
182 T23 = FNMS(KP500000000, T22, T21); | |
183 ci[WS(rs, 8)] = T22 + T21; | |
184 cr[WS(rs, 3)] = FMA(KP866025403, T1O, T1L); | |
185 ci[WS(rs, 2)] = FNMS(KP866025403, T1O, T1L); | |
186 ci[WS(rs, 5)] = FMA(KP866025403, T24, T23); | |
187 cr[WS(rs, 6)] = FMS(KP866025403, T24, T23); | |
188 } | |
189 { | |
190 E T1B, T1m, T1w, T1f, T1s, T1A, T1b, T1e, T1x, T1t; | |
191 T1E = FNMS(KP866025403, T1a, T19); | |
192 T1b = FMA(KP866025403, T1a, T19); | |
193 T1e = FNMS(KP866025403, T1d, T1c); | |
194 T1D = FMA(KP866025403, T1d, T1c); | |
195 T1B = FMA(KP866025403, T1l, T1g); | |
196 T1m = FNMS(KP866025403, T1l, T1g); | |
197 T1X = FNMS(KP866025403, T1S, T1R); | |
198 T1T = FMA(KP866025403, T1S, T1R); | |
199 T1w = FNMS(KP176326980, T1b, T1e); | |
200 T1f = FMA(KP176326980, T1e, T1b); | |
201 T1s = FNMS(KP866025403, T1r, T1q); | |
202 T1A = FMA(KP866025403, T1r, T1q); | |
203 T1x = FMA(KP363970234, T1m, T1s); | |
204 T1t = FNMS(KP363970234, T1s, T1m); | |
205 T1I = FNMS(KP176326980, T1A, T1B); | |
206 T1C = FMA(KP176326980, T1B, T1A); | |
207 T1Y = FMA(KP954188894, T1x, T1w); | |
208 T1y = FNMS(KP954188894, T1x, T1w); | |
209 T20 = FMA(KP954188894, T1t, T1f); | |
210 T1u = FNMS(KP954188894, T1t, T1f); | |
211 } | |
212 { | |
213 E T1F, T1J, T1v, T1U, T1K; | |
214 ci[WS(rs, 6)] = FNMS(KP984807753, T1Y, T1X); | |
215 T1v = FNMS(KP492403876, T1u, T11); | |
216 cr[WS(rs, 2)] = FMA(KP984807753, T1u, T11); | |
217 T1F = FMA(KP839099631, T1E, T1D); | |
218 T1J = FNMS(KP839099631, T1D, T1E); | |
219 ci[WS(rs, 3)] = FNMS(KP852868531, T1y, T1v); | |
220 ci[0] = FMA(KP852868531, T1y, T1v); | |
221 T1U = FNMS(KP777861913, T1J, T1I); | |
222 T1K = FMA(KP777861913, T1J, T1I); | |
223 { | |
224 E T1G, T1W, T1V, T1H; | |
225 T1G = FMA(KP777861913, T1F, T1C); | |
226 T1W = FNMS(KP777861913, T1F, T1C); | |
227 T1Z = FMA(KP492403876, T1Y, T1X); | |
228 T1V = FMA(KP492403876, T1U, T1T); | |
229 ci[WS(rs, 7)] = FNMS(KP984807753, T1U, T1T); | |
230 T1H = FNMS(KP492403876, T1G, T1z); | |
231 cr[WS(rs, 1)] = FMA(KP984807753, T1G, T1z); | |
232 ci[WS(rs, 4)] = FMA(KP852868531, T1W, T1V); | |
233 cr[WS(rs, 7)] = FMS(KP852868531, T1W, T1V); | |
234 cr[WS(rs, 4)] = FMA(KP852868531, T1K, T1H); | |
235 ci[WS(rs, 1)] = FNMS(KP852868531, T1K, T1H); | |
236 } | |
237 } | |
238 } | |
239 } | |
240 } | |
241 cr[WS(rs, 8)] = -(FMA(KP852868531, T20, T1Z)); | |
242 cr[WS(rs, 5)] = FMS(KP852868531, T20, T1Z); | |
243 } | |
244 } | |
245 } | |
246 | |
247 static const tw_instr twinstr[] = { | |
248 {TW_FULL, 1, 9}, | |
249 {TW_NEXT, 1, 0} | |
250 }; | |
251 | |
252 static const hc2hc_desc desc = { 9, "hf_9", twinstr, &GENUS, {24, 16, 72, 0} }; | |
253 | |
254 void X(codelet_hf_9) (planner *p) { | |
255 X(khc2hc_register) (p, hf_9, &desc); | |
256 } | |
257 #else /* HAVE_FMA */ | |
258 | |
259 /* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -n 9 -dit -name hf_9 -include hf.h */ | |
260 | |
261 /* | |
262 * This function contains 96 FP additions, 72 FP multiplications, | |
263 * (or, 60 additions, 36 multiplications, 36 fused multiply/add), | |
264 * 41 stack variables, 8 constants, and 36 memory accesses | |
265 */ | |
266 #include "hf.h" | |
267 | |
268 static void hf_9(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) | |
269 { | |
270 DK(KP642787609, +0.642787609686539326322643409907263432907559884); | |
271 DK(KP766044443, +0.766044443118978035202392650555416673935832457); | |
272 DK(KP939692620, +0.939692620785908384054109277324731469936208134); | |
273 DK(KP342020143, +0.342020143325668733044099614682259580763083368); | |
274 DK(KP984807753, +0.984807753012208059366743024589523013670643252); | |
275 DK(KP173648177, +0.173648177666930348851716626769314796000375677); | |
276 DK(KP500000000, +0.500000000000000000000000000000000000000000000); | |
277 DK(KP866025403, +0.866025403784438646763723170752936183471402627); | |
278 { | |
279 INT m; | |
280 for (m = mb, W = W + ((mb - 1) * 16); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 16, MAKE_VOLATILE_STRIDE(18, rs)) { | |
281 E T1, T1B, TQ, T1A, Tc, TN, T1C, T1D, TL, T1x, T19, T1o, T1c, T1n, Tu; | |
282 E T1w, TW, T1k, T11, T1l; | |
283 { | |
284 E T6, TO, Tb, TP; | |
285 T1 = cr[0]; | |
286 T1B = ci[0]; | |
287 { | |
288 E T3, T5, T2, T4; | |
289 T3 = cr[WS(rs, 3)]; | |
290 T5 = ci[WS(rs, 3)]; | |
291 T2 = W[4]; | |
292 T4 = W[5]; | |
293 T6 = FMA(T2, T3, T4 * T5); | |
294 TO = FNMS(T4, T3, T2 * T5); | |
295 } | |
296 { | |
297 E T8, Ta, T7, T9; | |
298 T8 = cr[WS(rs, 6)]; | |
299 Ta = ci[WS(rs, 6)]; | |
300 T7 = W[10]; | |
301 T9 = W[11]; | |
302 Tb = FMA(T7, T8, T9 * Ta); | |
303 TP = FNMS(T9, T8, T7 * Ta); | |
304 } | |
305 TQ = KP866025403 * (TO - TP); | |
306 T1A = KP866025403 * (Tb - T6); | |
307 Tc = T6 + Tb; | |
308 TN = FNMS(KP500000000, Tc, T1); | |
309 T1C = TO + TP; | |
310 T1D = FNMS(KP500000000, T1C, T1B); | |
311 } | |
312 { | |
313 E Tz, T13, TE, T14, TJ, T15, TK, T16; | |
314 { | |
315 E Tw, Ty, Tv, Tx; | |
316 Tw = cr[WS(rs, 2)]; | |
317 Ty = ci[WS(rs, 2)]; | |
318 Tv = W[2]; | |
319 Tx = W[3]; | |
320 Tz = FMA(Tv, Tw, Tx * Ty); | |
321 T13 = FNMS(Tx, Tw, Tv * Ty); | |
322 } | |
323 { | |
324 E TB, TD, TA, TC; | |
325 TB = cr[WS(rs, 5)]; | |
326 TD = ci[WS(rs, 5)]; | |
327 TA = W[8]; | |
328 TC = W[9]; | |
329 TE = FMA(TA, TB, TC * TD); | |
330 T14 = FNMS(TC, TB, TA * TD); | |
331 } | |
332 { | |
333 E TG, TI, TF, TH; | |
334 TG = cr[WS(rs, 8)]; | |
335 TI = ci[WS(rs, 8)]; | |
336 TF = W[14]; | |
337 TH = W[15]; | |
338 TJ = FMA(TF, TG, TH * TI); | |
339 T15 = FNMS(TH, TG, TF * TI); | |
340 } | |
341 TK = TE + TJ; | |
342 T16 = T14 + T15; | |
343 TL = Tz + TK; | |
344 T1x = T13 + T16; | |
345 { | |
346 E T17, T18, T1a, T1b; | |
347 T17 = FNMS(KP500000000, T16, T13); | |
348 T18 = KP866025403 * (TJ - TE); | |
349 T19 = T17 - T18; | |
350 T1o = T18 + T17; | |
351 T1a = FNMS(KP500000000, TK, Tz); | |
352 T1b = KP866025403 * (T14 - T15); | |
353 T1c = T1a - T1b; | |
354 T1n = T1a + T1b; | |
355 } | |
356 } | |
357 { | |
358 E Ti, TX, Tn, TT, Ts, TU, Tt, TY; | |
359 { | |
360 E Tf, Th, Te, Tg; | |
361 Tf = cr[WS(rs, 1)]; | |
362 Th = ci[WS(rs, 1)]; | |
363 Te = W[0]; | |
364 Tg = W[1]; | |
365 Ti = FMA(Te, Tf, Tg * Th); | |
366 TX = FNMS(Tg, Tf, Te * Th); | |
367 } | |
368 { | |
369 E Tk, Tm, Tj, Tl; | |
370 Tk = cr[WS(rs, 4)]; | |
371 Tm = ci[WS(rs, 4)]; | |
372 Tj = W[6]; | |
373 Tl = W[7]; | |
374 Tn = FMA(Tj, Tk, Tl * Tm); | |
375 TT = FNMS(Tl, Tk, Tj * Tm); | |
376 } | |
377 { | |
378 E Tp, Tr, To, Tq; | |
379 Tp = cr[WS(rs, 7)]; | |
380 Tr = ci[WS(rs, 7)]; | |
381 To = W[12]; | |
382 Tq = W[13]; | |
383 Ts = FMA(To, Tp, Tq * Tr); | |
384 TU = FNMS(Tq, Tp, To * Tr); | |
385 } | |
386 Tt = Tn + Ts; | |
387 TY = TT + TU; | |
388 Tu = Ti + Tt; | |
389 T1w = TX + TY; | |
390 { | |
391 E TS, TV, TZ, T10; | |
392 TS = FNMS(KP500000000, Tt, Ti); | |
393 TV = KP866025403 * (TT - TU); | |
394 TW = TS - TV; | |
395 T1k = TS + TV; | |
396 TZ = FNMS(KP500000000, TY, TX); | |
397 T10 = KP866025403 * (Ts - Tn); | |
398 T11 = TZ - T10; | |
399 T1l = T10 + TZ; | |
400 } | |
401 } | |
402 { | |
403 E T1y, Td, TM, T1v; | |
404 T1y = KP866025403 * (T1w - T1x); | |
405 Td = T1 + Tc; | |
406 TM = Tu + TL; | |
407 T1v = FNMS(KP500000000, TM, Td); | |
408 cr[0] = Td + TM; | |
409 cr[WS(rs, 3)] = T1v + T1y; | |
410 ci[WS(rs, 2)] = T1v - T1y; | |
411 } | |
412 { | |
413 E TR, T1I, T1e, T1K, T1i, T1H, T1f, T1J; | |
414 TR = TN - TQ; | |
415 T1I = T1D - T1A; | |
416 { | |
417 E T12, T1d, T1g, T1h; | |
418 T12 = FMA(KP173648177, TW, KP984807753 * T11); | |
419 T1d = FNMS(KP939692620, T1c, KP342020143 * T19); | |
420 T1e = T12 + T1d; | |
421 T1K = KP866025403 * (T1d - T12); | |
422 T1g = FNMS(KP984807753, TW, KP173648177 * T11); | |
423 T1h = FMA(KP342020143, T1c, KP939692620 * T19); | |
424 T1i = KP866025403 * (T1g + T1h); | |
425 T1H = T1g - T1h; | |
426 } | |
427 cr[WS(rs, 2)] = TR + T1e; | |
428 ci[WS(rs, 6)] = T1H + T1I; | |
429 T1f = FNMS(KP500000000, T1e, TR); | |
430 ci[0] = T1f - T1i; | |
431 ci[WS(rs, 3)] = T1f + T1i; | |
432 T1J = FMS(KP500000000, T1H, T1I); | |
433 cr[WS(rs, 5)] = T1J - T1K; | |
434 cr[WS(rs, 8)] = T1K + T1J; | |
435 } | |
436 { | |
437 E T1L, T1M, T1N, T1O; | |
438 T1L = KP866025403 * (TL - Tu); | |
439 T1M = T1C + T1B; | |
440 T1N = T1w + T1x; | |
441 T1O = FNMS(KP500000000, T1N, T1M); | |
442 cr[WS(rs, 6)] = T1L - T1O; | |
443 ci[WS(rs, 8)] = T1N + T1M; | |
444 ci[WS(rs, 5)] = T1L + T1O; | |
445 } | |
446 { | |
447 E T1j, T1E, T1q, T1z, T1u, T1F, T1r, T1G; | |
448 T1j = TN + TQ; | |
449 T1E = T1A + T1D; | |
450 { | |
451 E T1m, T1p, T1s, T1t; | |
452 T1m = FMA(KP766044443, T1k, KP642787609 * T1l); | |
453 T1p = FMA(KP173648177, T1n, KP984807753 * T1o); | |
454 T1q = T1m + T1p; | |
455 T1z = KP866025403 * (T1p - T1m); | |
456 T1s = FNMS(KP642787609, T1k, KP766044443 * T1l); | |
457 T1t = FNMS(KP984807753, T1n, KP173648177 * T1o); | |
458 T1u = KP866025403 * (T1s - T1t); | |
459 T1F = T1s + T1t; | |
460 } | |
461 cr[WS(rs, 1)] = T1j + T1q; | |
462 T1r = FNMS(KP500000000, T1q, T1j); | |
463 ci[WS(rs, 1)] = T1r - T1u; | |
464 cr[WS(rs, 4)] = T1r + T1u; | |
465 ci[WS(rs, 7)] = T1F + T1E; | |
466 T1G = FNMS(KP500000000, T1F, T1E); | |
467 cr[WS(rs, 7)] = T1z - T1G; | |
468 ci[WS(rs, 4)] = T1z + T1G; | |
469 } | |
470 } | |
471 } | |
472 } | |
473 | |
474 static const tw_instr twinstr[] = { | |
475 {TW_FULL, 1, 9}, | |
476 {TW_NEXT, 1, 0} | |
477 }; | |
478 | |
479 static const hc2hc_desc desc = { 9, "hf_9", twinstr, &GENUS, {60, 36, 36, 0} }; | |
480 | |
481 void X(codelet_hf_9) (planner *p) { | |
482 X(khc2hc_register) (p, hf_9, &desc); | |
483 } | |
484 #endif /* HAVE_FMA */ |