comparison src/fftw-3.3.3/rdft/scalar/r2cf/hf_20.c @ 10:37bf6b4a2645

Add FFTW3
author Chris Cannam
date Wed, 20 Mar 2013 15:35:50 +0000
parents
children
comparison
equal deleted inserted replaced
9:c0fb53affa76 10:37bf6b4a2645
1 /*
2 * Copyright (c) 2003, 2007-11 Matteo Frigo
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 */
20
21 /* This file was automatically generated --- DO NOT EDIT */
22 /* Generated on Sun Nov 25 07:40:00 EST 2012 */
23
24 #include "codelet-rdft.h"
25
26 #ifdef HAVE_FMA
27
28 /* Generated by: ../../../genfft/gen_hc2hc.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 20 -dit -name hf_20 -include hf.h */
29
30 /*
31 * This function contains 246 FP additions, 148 FP multiplications,
32 * (or, 136 additions, 38 multiplications, 110 fused multiply/add),
33 * 100 stack variables, 4 constants, and 80 memory accesses
34 */
35 #include "hf.h"
36
37 static void hf_20(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
38 {
39 DK(KP951056516, +0.951056516295153572116439333379382143405698634);
40 DK(KP559016994, +0.559016994374947424102293417182819058860154590);
41 DK(KP250000000, +0.250000000000000000000000000000000000000000000);
42 DK(KP618033988, +0.618033988749894848204586834365638117720309180);
43 {
44 INT m;
45 for (m = mb, W = W + ((mb - 1) * 38); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 38, MAKE_VOLATILE_STRIDE(40, rs)) {
46 E T54, T5a, T5c, T56, T53, T55, T5b, T57;
47 {
48 E T4N, T4q, T8, T2i, T4r, T2n, T4O, Tl, T2v, T3v, T43, T4b, TN, T2b, T3F;
49 E T3a, T2R, T3z, T3T, T4f, T27, T2f, T3J, T3i, T2K, T3y, T3W, T4e, T1G, T2e;
50 E T3I, T3p, T2C, T3w, T40, T4c, T1e, T2c, T3G, T33;
51 {
52 E T1, T4p, T3, T6, T2, T5;
53 T1 = cr[0];
54 T4p = ci[0];
55 T3 = cr[WS(rs, 10)];
56 T6 = ci[WS(rs, 10)];
57 T2 = W[18];
58 T5 = W[19];
59 {
60 E Ta, Td, Tg, T2j, Tb, Tj, Tf, Tc, Ti;
61 {
62 E T4n, T4, T9, T4o, T7;
63 Ta = cr[WS(rs, 5)];
64 Td = ci[WS(rs, 5)];
65 T4n = T2 * T6;
66 T4 = T2 * T3;
67 T9 = W[8];
68 Tg = cr[WS(rs, 15)];
69 T4o = FNMS(T5, T3, T4n);
70 T7 = FMA(T5, T6, T4);
71 T2j = T9 * Td;
72 Tb = T9 * Ta;
73 T4N = T4p - T4o;
74 T4q = T4o + T4p;
75 T8 = T1 + T7;
76 T2i = T1 - T7;
77 Tj = ci[WS(rs, 15)];
78 Tf = W[28];
79 }
80 Tc = W[9];
81 Ti = W[29];
82 {
83 E T36, Ts, T2t, TL, TB, TE, TD, T38, Ty, T2q, TC;
84 {
85 E TH, TK, TJ, T2s, TI;
86 {
87 E To, Tr, Tp, T35, Tq, TG;
88 {
89 E T2k, Te, T2m, Tk, T2l, Th, Tn;
90 To = cr[WS(rs, 4)];
91 T2l = Tf * Tj;
92 Th = Tf * Tg;
93 T2k = FNMS(Tc, Ta, T2j);
94 Te = FMA(Tc, Td, Tb);
95 T2m = FNMS(Ti, Tg, T2l);
96 Tk = FMA(Ti, Tj, Th);
97 Tr = ci[WS(rs, 4)];
98 Tn = W[6];
99 T4r = T2k + T2m;
100 T2n = T2k - T2m;
101 T4O = Te - Tk;
102 Tl = Te + Tk;
103 Tp = Tn * To;
104 T35 = Tn * Tr;
105 }
106 Tq = W[7];
107 TH = cr[WS(rs, 19)];
108 TK = ci[WS(rs, 19)];
109 TG = W[36];
110 T36 = FNMS(Tq, To, T35);
111 Ts = FMA(Tq, Tr, Tp);
112 TJ = W[37];
113 T2s = TG * TK;
114 TI = TG * TH;
115 }
116 {
117 E Tu, Tx, Tt, Tw, T37, Tv, TA;
118 Tu = cr[WS(rs, 14)];
119 Tx = ci[WS(rs, 14)];
120 T2t = FNMS(TJ, TH, T2s);
121 TL = FMA(TJ, TK, TI);
122 Tt = W[26];
123 Tw = W[27];
124 TB = cr[WS(rs, 9)];
125 TE = ci[WS(rs, 9)];
126 T37 = Tt * Tx;
127 Tv = Tt * Tu;
128 TA = W[16];
129 TD = W[17];
130 T38 = FNMS(Tw, Tu, T37);
131 Ty = FMA(Tw, Tx, Tv);
132 T2q = TA * TE;
133 TC = TA * TB;
134 }
135 }
136 {
137 E T39, T42, Tz, T2p, T2r, TF;
138 T39 = T36 - T38;
139 T42 = T36 + T38;
140 Tz = Ts + Ty;
141 T2p = Ts - Ty;
142 T2r = FNMS(TD, TB, T2q);
143 TF = FMA(TD, TE, TC);
144 {
145 E T41, T2u, TM, T34;
146 T41 = T2r + T2t;
147 T2u = T2r - T2t;
148 TM = TF + TL;
149 T34 = TL - TF;
150 T2v = T2p - T2u;
151 T3v = T2p + T2u;
152 T43 = T41 - T42;
153 T4b = T42 + T41;
154 TN = Tz - TM;
155 T2b = Tz + TM;
156 T3F = T39 + T34;
157 T3a = T34 - T39;
158 }
159 }
160 }
161 }
162 }
163 {
164 E T3e, T1M, T2P, T25, T1V, T1Y, T1X, T3g, T1S, T2M, T1W;
165 {
166 E T21, T24, T23, T2O, T22;
167 {
168 E T1I, T1L, T1H, T1K, T3d, T1J, T20;
169 T1I = cr[WS(rs, 12)];
170 T1L = ci[WS(rs, 12)];
171 T1H = W[22];
172 T1K = W[23];
173 T21 = cr[WS(rs, 7)];
174 T24 = ci[WS(rs, 7)];
175 T3d = T1H * T1L;
176 T1J = T1H * T1I;
177 T20 = W[12];
178 T23 = W[13];
179 T3e = FNMS(T1K, T1I, T3d);
180 T1M = FMA(T1K, T1L, T1J);
181 T2O = T20 * T24;
182 T22 = T20 * T21;
183 }
184 {
185 E T1O, T1R, T1N, T1Q, T3f, T1P, T1U;
186 T1O = cr[WS(rs, 2)];
187 T1R = ci[WS(rs, 2)];
188 T2P = FNMS(T23, T21, T2O);
189 T25 = FMA(T23, T24, T22);
190 T1N = W[2];
191 T1Q = W[3];
192 T1V = cr[WS(rs, 17)];
193 T1Y = ci[WS(rs, 17)];
194 T3f = T1N * T1R;
195 T1P = T1N * T1O;
196 T1U = W[32];
197 T1X = W[33];
198 T3g = FNMS(T1Q, T1O, T3f);
199 T1S = FMA(T1Q, T1R, T1P);
200 T2M = T1U * T1Y;
201 T1W = T1U * T1V;
202 }
203 }
204 {
205 E T3h, T3S, T1T, T2L, T2N, T1Z;
206 T3h = T3e - T3g;
207 T3S = T3e + T3g;
208 T1T = T1M + T1S;
209 T2L = T1M - T1S;
210 T2N = FNMS(T1X, T1V, T2M);
211 T1Z = FMA(T1X, T1Y, T1W);
212 {
213 E T3R, T2Q, T26, T3c;
214 T3R = T2N + T2P;
215 T2Q = T2N - T2P;
216 T26 = T1Z + T25;
217 T3c = T25 - T1Z;
218 T2R = T2L - T2Q;
219 T3z = T2L + T2Q;
220 T3T = T3R - T3S;
221 T4f = T3S + T3R;
222 T27 = T1T - T26;
223 T2f = T1T + T26;
224 T3J = T3h + T3c;
225 T3i = T3c - T3h;
226 }
227 }
228 }
229 {
230 E T3l, T1l, T2I, T1E, T1u, T1x, T1w, T3n, T1r, T2F, T1v;
231 {
232 E T1A, T1D, T1C, T2H, T1B;
233 {
234 E T1h, T1k, T1g, T1j, T3k, T1i, T1z;
235 T1h = cr[WS(rs, 8)];
236 T1k = ci[WS(rs, 8)];
237 T1g = W[14];
238 T1j = W[15];
239 T1A = cr[WS(rs, 3)];
240 T1D = ci[WS(rs, 3)];
241 T3k = T1g * T1k;
242 T1i = T1g * T1h;
243 T1z = W[4];
244 T1C = W[5];
245 T3l = FNMS(T1j, T1h, T3k);
246 T1l = FMA(T1j, T1k, T1i);
247 T2H = T1z * T1D;
248 T1B = T1z * T1A;
249 }
250 {
251 E T1n, T1q, T1m, T1p, T3m, T1o, T1t;
252 T1n = cr[WS(rs, 18)];
253 T1q = ci[WS(rs, 18)];
254 T2I = FNMS(T1C, T1A, T2H);
255 T1E = FMA(T1C, T1D, T1B);
256 T1m = W[34];
257 T1p = W[35];
258 T1u = cr[WS(rs, 13)];
259 T1x = ci[WS(rs, 13)];
260 T3m = T1m * T1q;
261 T1o = T1m * T1n;
262 T1t = W[24];
263 T1w = W[25];
264 T3n = FNMS(T1p, T1n, T3m);
265 T1r = FMA(T1p, T1q, T1o);
266 T2F = T1t * T1x;
267 T1v = T1t * T1u;
268 }
269 }
270 {
271 E T3o, T3V, T1s, T2E, T2G, T1y;
272 T3o = T3l - T3n;
273 T3V = T3l + T3n;
274 T1s = T1l + T1r;
275 T2E = T1l - T1r;
276 T2G = FNMS(T1w, T1u, T2F);
277 T1y = FMA(T1w, T1x, T1v);
278 {
279 E T3U, T2J, T1F, T3j;
280 T3U = T2G + T2I;
281 T2J = T2G - T2I;
282 T1F = T1y + T1E;
283 T3j = T1E - T1y;
284 T2K = T2E - T2J;
285 T3y = T2E + T2J;
286 T3W = T3U - T3V;
287 T4e = T3V + T3U;
288 T1G = T1s - T1F;
289 T2e = T1s + T1F;
290 T3I = T3o + T3j;
291 T3p = T3j - T3o;
292 }
293 }
294 }
295 {
296 E T2Z, TT, T2A, T1c, T12, T15, T14, T31, TZ, T2x, T13;
297 {
298 E T18, T1b, T1a, T2z, T19;
299 {
300 E TP, TS, TO, TR, T2Y, TQ, T17;
301 TP = cr[WS(rs, 16)];
302 TS = ci[WS(rs, 16)];
303 TO = W[30];
304 TR = W[31];
305 T18 = cr[WS(rs, 11)];
306 T1b = ci[WS(rs, 11)];
307 T2Y = TO * TS;
308 TQ = TO * TP;
309 T17 = W[20];
310 T1a = W[21];
311 T2Z = FNMS(TR, TP, T2Y);
312 TT = FMA(TR, TS, TQ);
313 T2z = T17 * T1b;
314 T19 = T17 * T18;
315 }
316 {
317 E TV, TY, TU, TX, T30, TW, T11;
318 TV = cr[WS(rs, 6)];
319 TY = ci[WS(rs, 6)];
320 T2A = FNMS(T1a, T18, T2z);
321 T1c = FMA(T1a, T1b, T19);
322 TU = W[10];
323 TX = W[11];
324 T12 = cr[WS(rs, 1)];
325 T15 = ci[WS(rs, 1)];
326 T30 = TU * TY;
327 TW = TU * TV;
328 T11 = W[0];
329 T14 = W[1];
330 T31 = FNMS(TX, TV, T30);
331 TZ = FMA(TX, TY, TW);
332 T2x = T11 * T15;
333 T13 = T11 * T12;
334 }
335 }
336 {
337 E T32, T3Z, T10, T2w, T2y, T16;
338 T32 = T2Z - T31;
339 T3Z = T2Z + T31;
340 T10 = TT + TZ;
341 T2w = TT - TZ;
342 T2y = FNMS(T14, T12, T2x);
343 T16 = FMA(T14, T15, T13);
344 {
345 E T3Y, T2B, T1d, T2X;
346 T3Y = T2y + T2A;
347 T2B = T2y - T2A;
348 T1d = T16 + T1c;
349 T2X = T1c - T16;
350 T2C = T2w - T2B;
351 T3w = T2w + T2B;
352 T40 = T3Y - T3Z;
353 T4c = T3Z + T3Y;
354 T1e = T10 - T1d;
355 T2c = T10 + T1d;
356 T3G = T32 + T2X;
357 T33 = T2X - T32;
358 }
359 }
360 }
361 {
362 E T4l, T4k, T4w, T4x, T4Q, T4R, T2o, T4X, T4W, T4C, T4D, T4J, T4h, T4j, T4I;
363 E T51, T52, T49, T3r, T3t, T58, T2D, T48, T2S, T59;
364 {
365 E T2a, T47, T45, T3u, T3x, T3N, T3L, T3A, T46, T3Q;
366 {
367 E Tm, T1f, T28, T3X, T44;
368 T4l = T3W + T3T;
369 T3X = T3T - T3W;
370 T44 = T40 - T43;
371 T4k = T43 + T40;
372 T2a = T8 + Tl;
373 Tm = T8 - Tl;
374 T1f = TN + T1e;
375 T4w = T1e - TN;
376 T4x = T1G - T27;
377 T28 = T1G + T27;
378 T47 = FMA(KP618033988, T3X, T44);
379 T45 = FNMS(KP618033988, T44, T3X);
380 {
381 E T3H, T29, T3P, T3K, T3O;
382 T3H = T3F - T3G;
383 T4Q = T3F + T3G;
384 T29 = T1f + T28;
385 T3P = T1f - T28;
386 T4R = T3I + T3J;
387 T3K = T3I - T3J;
388 T3u = T2i + T2n;
389 T2o = T2i - T2n;
390 T4X = T3v - T3w;
391 T3x = T3v + T3w;
392 ci[WS(rs, 9)] = Tm + T29;
393 T3O = FNMS(KP250000000, T29, Tm);
394 T3N = FNMS(KP618033988, T3H, T3K);
395 T3L = FMA(KP618033988, T3K, T3H);
396 T3A = T3y + T3z;
397 T4W = T3y - T3z;
398 T46 = FMA(KP559016994, T3P, T3O);
399 T3Q = FNMS(KP559016994, T3P, T3O);
400 }
401 }
402 {
403 E T2d, T2g, T3b, T3q, T2h;
404 {
405 E T4d, T3D, T3C, T4g, T3B, T3M, T3E;
406 T4C = T4b + T4c;
407 T4d = T4b - T4c;
408 T3D = T3x - T3A;
409 T3B = T3x + T3A;
410 ci[WS(rs, 1)] = FMA(KP951056516, T45, T3Q);
411 cr[WS(rs, 2)] = FNMS(KP951056516, T45, T3Q);
412 cr[WS(rs, 6)] = FMA(KP951056516, T47, T46);
413 ci[WS(rs, 5)] = FNMS(KP951056516, T47, T46);
414 cr[WS(rs, 5)] = T3u + T3B;
415 T3C = FNMS(KP250000000, T3B, T3u);
416 T4g = T4e - T4f;
417 T4D = T4e + T4f;
418 T2d = T2b + T2c;
419 T4J = T2b - T2c;
420 T3M = FNMS(KP559016994, T3D, T3C);
421 T3E = FMA(KP559016994, T3D, T3C);
422 T4h = FMA(KP618033988, T4g, T4d);
423 T4j = FNMS(KP618033988, T4d, T4g);
424 cr[WS(rs, 9)] = FNMS(KP951056516, T3L, T3E);
425 cr[WS(rs, 1)] = FMA(KP951056516, T3L, T3E);
426 ci[WS(rs, 6)] = FMA(KP951056516, T3N, T3M);
427 ci[WS(rs, 2)] = FNMS(KP951056516, T3N, T3M);
428 T4I = T2f - T2e;
429 T2g = T2e + T2f;
430 }
431 T3b = T33 - T3a;
432 T51 = T3a + T33;
433 T52 = T3p + T3i;
434 T3q = T3i - T3p;
435 T2h = T2d + T2g;
436 T49 = T2d - T2g;
437 T3r = FMA(KP618033988, T3q, T3b);
438 T3t = FNMS(KP618033988, T3b, T3q);
439 T58 = T2v - T2C;
440 T2D = T2v + T2C;
441 cr[0] = T2a + T2h;
442 T48 = FNMS(KP250000000, T2h, T2a);
443 T2S = T2K + T2R;
444 T59 = T2K - T2R;
445 }
446 }
447 {
448 E T4B, T4P, T4Y, T50, T4U, T4S;
449 {
450 E T4A, T4y, T4s, T4m, T4u, T4t, T4z, T4v;
451 {
452 E T2V, T2U, T4i, T4a, T2T, T2W, T3s;
453 T4i = FNMS(KP559016994, T49, T48);
454 T4a = FMA(KP559016994, T49, T48);
455 T2T = T2D + T2S;
456 T2V = T2D - T2S;
457 ci[WS(rs, 3)] = FMA(KP951056516, T4h, T4a);
458 cr[WS(rs, 4)] = FNMS(KP951056516, T4h, T4a);
459 cr[WS(rs, 8)] = FMA(KP951056516, T4j, T4i);
460 ci[WS(rs, 7)] = FNMS(KP951056516, T4j, T4i);
461 ci[WS(rs, 4)] = T2o + T2T;
462 T2U = FNMS(KP250000000, T2T, T2o);
463 T4A = FMA(KP618033988, T4w, T4x);
464 T4y = FNMS(KP618033988, T4x, T4w);
465 T4B = T4r + T4q;
466 T4s = T4q - T4r;
467 T2W = FMA(KP559016994, T2V, T2U);
468 T3s = FNMS(KP559016994, T2V, T2U);
469 ci[WS(rs, 8)] = FMA(KP951056516, T3r, T2W);
470 ci[0] = FNMS(KP951056516, T3r, T2W);
471 cr[WS(rs, 7)] = FNMS(KP951056516, T3t, T3s);
472 cr[WS(rs, 3)] = FMA(KP951056516, T3t, T3s);
473 T4m = T4k + T4l;
474 T4u = T4l - T4k;
475 }
476 cr[WS(rs, 10)] = T4m - T4s;
477 T4t = FMA(KP250000000, T4m, T4s);
478 T4P = T4N - T4O;
479 T54 = T4O + T4N;
480 T4Y = FNMS(KP618033988, T4X, T4W);
481 T50 = FMA(KP618033988, T4W, T4X);
482 T4z = FNMS(KP559016994, T4u, T4t);
483 T4v = FMA(KP559016994, T4u, T4t);
484 ci[WS(rs, 13)] = FMA(KP951056516, T4y, T4v);
485 cr[WS(rs, 14)] = FMS(KP951056516, T4y, T4v);
486 ci[WS(rs, 17)] = FMA(KP951056516, T4A, T4z);
487 cr[WS(rs, 18)] = FMS(KP951056516, T4A, T4z);
488 T4U = T4Q - T4R;
489 T4S = T4Q + T4R;
490 }
491 {
492 E T4M, T4K, T4E, T4G, T4T, T4V, T4Z, T4F, T4L, T4H;
493 ci[WS(rs, 14)] = T4S + T4P;
494 T4T = FNMS(KP250000000, T4S, T4P);
495 T4M = FNMS(KP618033988, T4I, T4J);
496 T4K = FMA(KP618033988, T4J, T4I);
497 T4V = FNMS(KP559016994, T4U, T4T);
498 T4Z = FMA(KP559016994, T4U, T4T);
499 cr[WS(rs, 17)] = -(FMA(KP951056516, T4Y, T4V));
500 cr[WS(rs, 13)] = FMS(KP951056516, T4Y, T4V);
501 ci[WS(rs, 18)] = FNMS(KP951056516, T50, T4Z);
502 ci[WS(rs, 10)] = FMA(KP951056516, T50, T4Z);
503 T4E = T4C + T4D;
504 T4G = T4C - T4D;
505 ci[WS(rs, 19)] = T4E + T4B;
506 T4F = FNMS(KP250000000, T4E, T4B);
507 T5a = FMA(KP618033988, T59, T58);
508 T5c = FNMS(KP618033988, T58, T59);
509 T4L = FMA(KP559016994, T4G, T4F);
510 T4H = FNMS(KP559016994, T4G, T4F);
511 ci[WS(rs, 11)] = FMA(KP951056516, T4K, T4H);
512 cr[WS(rs, 12)] = FMS(KP951056516, T4K, T4H);
513 ci[WS(rs, 15)] = FMA(KP951056516, T4M, T4L);
514 cr[WS(rs, 16)] = FMS(KP951056516, T4M, T4L);
515 T56 = T51 - T52;
516 T53 = T51 + T52;
517 }
518 }
519 }
520 }
521 cr[WS(rs, 15)] = T53 - T54;
522 T55 = FMA(KP250000000, T53, T54);
523 T5b = FMA(KP559016994, T56, T55);
524 T57 = FNMS(KP559016994, T56, T55);
525 cr[WS(rs, 19)] = -(FMA(KP951056516, T5a, T57));
526 cr[WS(rs, 11)] = FMS(KP951056516, T5a, T57);
527 ci[WS(rs, 16)] = FNMS(KP951056516, T5c, T5b);
528 ci[WS(rs, 12)] = FMA(KP951056516, T5c, T5b);
529 }
530 }
531 }
532
533 static const tw_instr twinstr[] = {
534 {TW_FULL, 1, 20},
535 {TW_NEXT, 1, 0}
536 };
537
538 static const hc2hc_desc desc = { 20, "hf_20", twinstr, &GENUS, {136, 38, 110, 0} };
539
540 void X(codelet_hf_20) (planner *p) {
541 X(khc2hc_register) (p, hf_20, &desc);
542 }
543 #else /* HAVE_FMA */
544
545 /* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -n 20 -dit -name hf_20 -include hf.h */
546
547 /*
548 * This function contains 246 FP additions, 124 FP multiplications,
549 * (or, 184 additions, 62 multiplications, 62 fused multiply/add),
550 * 85 stack variables, 4 constants, and 80 memory accesses
551 */
552 #include "hf.h"
553
554 static void hf_20(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
555 {
556 DK(KP587785252, +0.587785252292473129168705954639072768597652438);
557 DK(KP951056516, +0.951056516295153572116439333379382143405698634);
558 DK(KP250000000, +0.250000000000000000000000000000000000000000000);
559 DK(KP559016994, +0.559016994374947424102293417182819058860154590);
560 {
561 INT m;
562 for (m = mb, W = W + ((mb - 1) * 38); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 38, MAKE_VOLATILE_STRIDE(40, rs)) {
563 E Tj, T1R, T4j, T4s, T2q, T37, T3Q, T42, T1r, T1O, T1P, T3i, T3l, T3J, T3D;
564 E T3E, T44, T1V, T1W, T1X, T2e, T2j, T2k, T2W, T2X, T4f, T33, T34, T35, T2J;
565 E T2O, T4q, TG, T13, T14, T3p, T3s, T3K, T3A, T3B, T43, T1S, T1T, T1U, T23;
566 E T28, T29, T2T, T2U, T4e, T30, T31, T32, T2y, T2D, T4p;
567 {
568 E T1, T3N, T6, T3M, Tc, T2n, Th, T2o;
569 T1 = cr[0];
570 T3N = ci[0];
571 {
572 E T3, T5, T2, T4;
573 T3 = cr[WS(rs, 10)];
574 T5 = ci[WS(rs, 10)];
575 T2 = W[18];
576 T4 = W[19];
577 T6 = FMA(T2, T3, T4 * T5);
578 T3M = FNMS(T4, T3, T2 * T5);
579 }
580 {
581 E T9, Tb, T8, Ta;
582 T9 = cr[WS(rs, 5)];
583 Tb = ci[WS(rs, 5)];
584 T8 = W[8];
585 Ta = W[9];
586 Tc = FMA(T8, T9, Ta * Tb);
587 T2n = FNMS(Ta, T9, T8 * Tb);
588 }
589 {
590 E Te, Tg, Td, Tf;
591 Te = cr[WS(rs, 15)];
592 Tg = ci[WS(rs, 15)];
593 Td = W[28];
594 Tf = W[29];
595 Th = FMA(Td, Te, Tf * Tg);
596 T2o = FNMS(Tf, Te, Td * Tg);
597 }
598 {
599 E T7, Ti, T4h, T4i;
600 T7 = T1 + T6;
601 Ti = Tc + Th;
602 Tj = T7 - Ti;
603 T1R = T7 + Ti;
604 T4h = T3N - T3M;
605 T4i = Tc - Th;
606 T4j = T4h - T4i;
607 T4s = T4i + T4h;
608 }
609 {
610 E T2m, T2p, T3O, T3P;
611 T2m = T1 - T6;
612 T2p = T2n - T2o;
613 T2q = T2m - T2p;
614 T37 = T2m + T2p;
615 T3O = T3M + T3N;
616 T3P = T2n + T2o;
617 T3Q = T3O - T3P;
618 T42 = T3P + T3O;
619 }
620 }
621 {
622 E T1f, T3g, T2a, T2H, T1N, T3j, T2i, T2N, T1q, T3h, T2d, T2I, T1C, T3k, T2f;
623 E T2M;
624 {
625 E T19, T2F, T1e, T2G;
626 {
627 E T16, T18, T15, T17;
628 T16 = cr[WS(rs, 8)];
629 T18 = ci[WS(rs, 8)];
630 T15 = W[14];
631 T17 = W[15];
632 T19 = FMA(T15, T16, T17 * T18);
633 T2F = FNMS(T17, T16, T15 * T18);
634 }
635 {
636 E T1b, T1d, T1a, T1c;
637 T1b = cr[WS(rs, 18)];
638 T1d = ci[WS(rs, 18)];
639 T1a = W[34];
640 T1c = W[35];
641 T1e = FMA(T1a, T1b, T1c * T1d);
642 T2G = FNMS(T1c, T1b, T1a * T1d);
643 }
644 T1f = T19 + T1e;
645 T3g = T2F + T2G;
646 T2a = T19 - T1e;
647 T2H = T2F - T2G;
648 }
649 {
650 E T1H, T2g, T1M, T2h;
651 {
652 E T1E, T1G, T1D, T1F;
653 T1E = cr[WS(rs, 17)];
654 T1G = ci[WS(rs, 17)];
655 T1D = W[32];
656 T1F = W[33];
657 T1H = FMA(T1D, T1E, T1F * T1G);
658 T2g = FNMS(T1F, T1E, T1D * T1G);
659 }
660 {
661 E T1J, T1L, T1I, T1K;
662 T1J = cr[WS(rs, 7)];
663 T1L = ci[WS(rs, 7)];
664 T1I = W[12];
665 T1K = W[13];
666 T1M = FMA(T1I, T1J, T1K * T1L);
667 T2h = FNMS(T1K, T1J, T1I * T1L);
668 }
669 T1N = T1H + T1M;
670 T3j = T2g + T2h;
671 T2i = T2g - T2h;
672 T2N = T1H - T1M;
673 }
674 {
675 E T1k, T2b, T1p, T2c;
676 {
677 E T1h, T1j, T1g, T1i;
678 T1h = cr[WS(rs, 13)];
679 T1j = ci[WS(rs, 13)];
680 T1g = W[24];
681 T1i = W[25];
682 T1k = FMA(T1g, T1h, T1i * T1j);
683 T2b = FNMS(T1i, T1h, T1g * T1j);
684 }
685 {
686 E T1m, T1o, T1l, T1n;
687 T1m = cr[WS(rs, 3)];
688 T1o = ci[WS(rs, 3)];
689 T1l = W[4];
690 T1n = W[5];
691 T1p = FMA(T1l, T1m, T1n * T1o);
692 T2c = FNMS(T1n, T1m, T1l * T1o);
693 }
694 T1q = T1k + T1p;
695 T3h = T2b + T2c;
696 T2d = T2b - T2c;
697 T2I = T1k - T1p;
698 }
699 {
700 E T1w, T2K, T1B, T2L;
701 {
702 E T1t, T1v, T1s, T1u;
703 T1t = cr[WS(rs, 12)];
704 T1v = ci[WS(rs, 12)];
705 T1s = W[22];
706 T1u = W[23];
707 T1w = FMA(T1s, T1t, T1u * T1v);
708 T2K = FNMS(T1u, T1t, T1s * T1v);
709 }
710 {
711 E T1y, T1A, T1x, T1z;
712 T1y = cr[WS(rs, 2)];
713 T1A = ci[WS(rs, 2)];
714 T1x = W[2];
715 T1z = W[3];
716 T1B = FMA(T1x, T1y, T1z * T1A);
717 T2L = FNMS(T1z, T1y, T1x * T1A);
718 }
719 T1C = T1w + T1B;
720 T3k = T2K + T2L;
721 T2f = T1w - T1B;
722 T2M = T2K - T2L;
723 }
724 T1r = T1f - T1q;
725 T1O = T1C - T1N;
726 T1P = T1r + T1O;
727 T3i = T3g - T3h;
728 T3l = T3j - T3k;
729 T3J = T3l - T3i;
730 T3D = T3g + T3h;
731 T3E = T3k + T3j;
732 T44 = T3D + T3E;
733 T1V = T1f + T1q;
734 T1W = T1C + T1N;
735 T1X = T1V + T1W;
736 T2e = T2a - T2d;
737 T2j = T2f - T2i;
738 T2k = T2e + T2j;
739 T2W = T2H - T2I;
740 T2X = T2M - T2N;
741 T4f = T2W + T2X;
742 T33 = T2a + T2d;
743 T34 = T2f + T2i;
744 T35 = T33 + T34;
745 T2J = T2H + T2I;
746 T2O = T2M + T2N;
747 T4q = T2J + T2O;
748 }
749 {
750 E Tu, T3n, T1Z, T2w, T12, T3r, T27, T2z, TF, T3o, T22, T2x, TR, T3q, T24;
751 E T2C;
752 {
753 E To, T2u, Tt, T2v;
754 {
755 E Tl, Tn, Tk, Tm;
756 Tl = cr[WS(rs, 4)];
757 Tn = ci[WS(rs, 4)];
758 Tk = W[6];
759 Tm = W[7];
760 To = FMA(Tk, Tl, Tm * Tn);
761 T2u = FNMS(Tm, Tl, Tk * Tn);
762 }
763 {
764 E Tq, Ts, Tp, Tr;
765 Tq = cr[WS(rs, 14)];
766 Ts = ci[WS(rs, 14)];
767 Tp = W[26];
768 Tr = W[27];
769 Tt = FMA(Tp, Tq, Tr * Ts);
770 T2v = FNMS(Tr, Tq, Tp * Ts);
771 }
772 Tu = To + Tt;
773 T3n = T2u + T2v;
774 T1Z = To - Tt;
775 T2w = T2u - T2v;
776 }
777 {
778 E TW, T25, T11, T26;
779 {
780 E TT, TV, TS, TU;
781 TT = cr[WS(rs, 1)];
782 TV = ci[WS(rs, 1)];
783 TS = W[0];
784 TU = W[1];
785 TW = FMA(TS, TT, TU * TV);
786 T25 = FNMS(TU, TT, TS * TV);
787 }
788 {
789 E TY, T10, TX, TZ;
790 TY = cr[WS(rs, 11)];
791 T10 = ci[WS(rs, 11)];
792 TX = W[20];
793 TZ = W[21];
794 T11 = FMA(TX, TY, TZ * T10);
795 T26 = FNMS(TZ, TY, TX * T10);
796 }
797 T12 = TW + T11;
798 T3r = T25 + T26;
799 T27 = T25 - T26;
800 T2z = T11 - TW;
801 }
802 {
803 E Tz, T20, TE, T21;
804 {
805 E Tw, Ty, Tv, Tx;
806 Tw = cr[WS(rs, 9)];
807 Ty = ci[WS(rs, 9)];
808 Tv = W[16];
809 Tx = W[17];
810 Tz = FMA(Tv, Tw, Tx * Ty);
811 T20 = FNMS(Tx, Tw, Tv * Ty);
812 }
813 {
814 E TB, TD, TA, TC;
815 TB = cr[WS(rs, 19)];
816 TD = ci[WS(rs, 19)];
817 TA = W[36];
818 TC = W[37];
819 TE = FMA(TA, TB, TC * TD);
820 T21 = FNMS(TC, TB, TA * TD);
821 }
822 TF = Tz + TE;
823 T3o = T20 + T21;
824 T22 = T20 - T21;
825 T2x = Tz - TE;
826 }
827 {
828 E TL, T2A, TQ, T2B;
829 {
830 E TI, TK, TH, TJ;
831 TI = cr[WS(rs, 16)];
832 TK = ci[WS(rs, 16)];
833 TH = W[30];
834 TJ = W[31];
835 TL = FMA(TH, TI, TJ * TK);
836 T2A = FNMS(TJ, TI, TH * TK);
837 }
838 {
839 E TN, TP, TM, TO;
840 TN = cr[WS(rs, 6)];
841 TP = ci[WS(rs, 6)];
842 TM = W[10];
843 TO = W[11];
844 TQ = FMA(TM, TN, TO * TP);
845 T2B = FNMS(TO, TN, TM * TP);
846 }
847 TR = TL + TQ;
848 T3q = T2A + T2B;
849 T24 = TL - TQ;
850 T2C = T2A - T2B;
851 }
852 TG = Tu - TF;
853 T13 = TR - T12;
854 T14 = TG + T13;
855 T3p = T3n - T3o;
856 T3s = T3q - T3r;
857 T3K = T3p + T3s;
858 T3A = T3n + T3o;
859 T3B = T3q + T3r;
860 T43 = T3A + T3B;
861 T1S = Tu + TF;
862 T1T = TR + T12;
863 T1U = T1S + T1T;
864 T23 = T1Z - T22;
865 T28 = T24 - T27;
866 T29 = T23 + T28;
867 T2T = T2w - T2x;
868 T2U = T2C + T2z;
869 T4e = T2T + T2U;
870 T30 = T1Z + T22;
871 T31 = T24 + T27;
872 T32 = T30 + T31;
873 T2y = T2w + T2x;
874 T2D = T2z - T2C;
875 T4p = T2D - T2y;
876 }
877 {
878 E T3e, T1Q, T3d, T3u, T3w, T3m, T3t, T3v, T3f;
879 T3e = KP559016994 * (T14 - T1P);
880 T1Q = T14 + T1P;
881 T3d = FNMS(KP250000000, T1Q, Tj);
882 T3m = T3i + T3l;
883 T3t = T3p - T3s;
884 T3u = FNMS(KP587785252, T3t, KP951056516 * T3m);
885 T3w = FMA(KP951056516, T3t, KP587785252 * T3m);
886 ci[WS(rs, 9)] = Tj + T1Q;
887 T3v = T3e + T3d;
888 ci[WS(rs, 5)] = T3v - T3w;
889 cr[WS(rs, 6)] = T3v + T3w;
890 T3f = T3d - T3e;
891 cr[WS(rs, 2)] = T3f - T3u;
892 ci[WS(rs, 1)] = T3f + T3u;
893 }
894 {
895 E T36, T38, T39, T2Z, T3c, T2V, T2Y, T3b, T3a;
896 T36 = KP559016994 * (T32 - T35);
897 T38 = T32 + T35;
898 T39 = FNMS(KP250000000, T38, T37);
899 T2V = T2T - T2U;
900 T2Y = T2W - T2X;
901 T2Z = FMA(KP951056516, T2V, KP587785252 * T2Y);
902 T3c = FNMS(KP587785252, T2V, KP951056516 * T2Y);
903 cr[WS(rs, 5)] = T37 + T38;
904 T3b = T39 - T36;
905 ci[WS(rs, 2)] = T3b - T3c;
906 ci[WS(rs, 6)] = T3c + T3b;
907 T3a = T36 + T39;
908 cr[WS(rs, 1)] = T2Z + T3a;
909 cr[WS(rs, 9)] = T3a - T2Z;
910 }
911 {
912 E T3x, T1Y, T3y, T3G, T3I, T3C, T3F, T3H, T3z;
913 T3x = KP559016994 * (T1U - T1X);
914 T1Y = T1U + T1X;
915 T3y = FNMS(KP250000000, T1Y, T1R);
916 T3C = T3A - T3B;
917 T3F = T3D - T3E;
918 T3G = FMA(KP951056516, T3C, KP587785252 * T3F);
919 T3I = FNMS(KP587785252, T3C, KP951056516 * T3F);
920 cr[0] = T1R + T1Y;
921 T3H = T3y - T3x;
922 ci[WS(rs, 7)] = T3H - T3I;
923 cr[WS(rs, 8)] = T3H + T3I;
924 T3z = T3x + T3y;
925 cr[WS(rs, 4)] = T3z - T3G;
926 ci[WS(rs, 3)] = T3z + T3G;
927 }
928 {
929 E T2l, T2r, T2s, T2Q, T2R, T2E, T2P, T2S, T2t;
930 T2l = KP559016994 * (T29 - T2k);
931 T2r = T29 + T2k;
932 T2s = FNMS(KP250000000, T2r, T2q);
933 T2E = T2y + T2D;
934 T2P = T2J - T2O;
935 T2Q = FMA(KP951056516, T2E, KP587785252 * T2P);
936 T2R = FNMS(KP587785252, T2E, KP951056516 * T2P);
937 ci[WS(rs, 4)] = T2q + T2r;
938 T2S = T2s - T2l;
939 cr[WS(rs, 3)] = T2R + T2S;
940 cr[WS(rs, 7)] = T2S - T2R;
941 T2t = T2l + T2s;
942 ci[0] = T2t - T2Q;
943 ci[WS(rs, 8)] = T2Q + T2t;
944 }
945 {
946 E T3U, T3L, T3V, T3T, T3X, T3R, T3S, T3Y, T3W;
947 T3U = KP559016994 * (T3K + T3J);
948 T3L = T3J - T3K;
949 T3V = FMA(KP250000000, T3L, T3Q);
950 T3R = T13 - TG;
951 T3S = T1r - T1O;
952 T3T = FNMS(KP587785252, T3S, KP951056516 * T3R);
953 T3X = FMA(KP587785252, T3R, KP951056516 * T3S);
954 cr[WS(rs, 10)] = T3L - T3Q;
955 T3Y = T3V - T3U;
956 cr[WS(rs, 18)] = T3X - T3Y;
957 ci[WS(rs, 17)] = T3X + T3Y;
958 T3W = T3U + T3V;
959 cr[WS(rs, 14)] = T3T - T3W;
960 ci[WS(rs, 13)] = T3T + T3W;
961 }
962 {
963 E T4g, T4k, T4l, T4d, T4n, T4b, T4c, T4o, T4m;
964 T4g = KP559016994 * (T4e - T4f);
965 T4k = T4e + T4f;
966 T4l = FNMS(KP250000000, T4k, T4j);
967 T4b = T33 - T34;
968 T4c = T30 - T31;
969 T4d = FNMS(KP587785252, T4c, KP951056516 * T4b);
970 T4n = FMA(KP951056516, T4c, KP587785252 * T4b);
971 ci[WS(rs, 14)] = T4k + T4j;
972 T4o = T4g + T4l;
973 ci[WS(rs, 10)] = T4n + T4o;
974 ci[WS(rs, 18)] = T4o - T4n;
975 T4m = T4g - T4l;
976 cr[WS(rs, 13)] = T4d + T4m;
977 cr[WS(rs, 17)] = T4m - T4d;
978 }
979 {
980 E T47, T45, T46, T41, T49, T3Z, T40, T4a, T48;
981 T47 = KP559016994 * (T43 - T44);
982 T45 = T43 + T44;
983 T46 = FNMS(KP250000000, T45, T42);
984 T3Z = T1S - T1T;
985 T40 = T1V - T1W;
986 T41 = FNMS(KP951056516, T40, KP587785252 * T3Z);
987 T49 = FMA(KP951056516, T3Z, KP587785252 * T40);
988 ci[WS(rs, 19)] = T45 + T42;
989 T4a = T47 + T46;
990 cr[WS(rs, 16)] = T49 - T4a;
991 ci[WS(rs, 15)] = T49 + T4a;
992 T48 = T46 - T47;
993 cr[WS(rs, 12)] = T41 - T48;
994 ci[WS(rs, 11)] = T41 + T48;
995 }
996 {
997 E T4w, T4r, T4x, T4v, T4z, T4t, T4u, T4A, T4y;
998 T4w = KP559016994 * (T4p + T4q);
999 T4r = T4p - T4q;
1000 T4x = FMA(KP250000000, T4r, T4s);
1001 T4t = T23 - T28;
1002 T4u = T2e - T2j;
1003 T4v = FMA(KP951056516, T4t, KP587785252 * T4u);
1004 T4z = FNMS(KP587785252, T4t, KP951056516 * T4u);
1005 cr[WS(rs, 15)] = T4r - T4s;
1006 T4A = T4w + T4x;
1007 ci[WS(rs, 12)] = T4z + T4A;
1008 ci[WS(rs, 16)] = T4A - T4z;
1009 T4y = T4w - T4x;
1010 cr[WS(rs, 11)] = T4v + T4y;
1011 cr[WS(rs, 19)] = T4y - T4v;
1012 }
1013 }
1014 }
1015 }
1016
1017 static const tw_instr twinstr[] = {
1018 {TW_FULL, 1, 20},
1019 {TW_NEXT, 1, 0}
1020 };
1021
1022 static const hc2hc_desc desc = { 20, "hf_20", twinstr, &GENUS, {184, 62, 62, 0} };
1023
1024 void X(codelet_hf_20) (planner *p) {
1025 X(khc2hc_register) (p, hf_20, &desc);
1026 }
1027 #endif /* HAVE_FMA */