Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.3/rdft/scalar/r2cf/hf_20.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
9:c0fb53affa76 | 10:37bf6b4a2645 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-11 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Sun Nov 25 07:40:00 EST 2012 */ | |
23 | |
24 #include "codelet-rdft.h" | |
25 | |
26 #ifdef HAVE_FMA | |
27 | |
28 /* Generated by: ../../../genfft/gen_hc2hc.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 20 -dit -name hf_20 -include hf.h */ | |
29 | |
30 /* | |
31 * This function contains 246 FP additions, 148 FP multiplications, | |
32 * (or, 136 additions, 38 multiplications, 110 fused multiply/add), | |
33 * 100 stack variables, 4 constants, and 80 memory accesses | |
34 */ | |
35 #include "hf.h" | |
36 | |
37 static void hf_20(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) | |
38 { | |
39 DK(KP951056516, +0.951056516295153572116439333379382143405698634); | |
40 DK(KP559016994, +0.559016994374947424102293417182819058860154590); | |
41 DK(KP250000000, +0.250000000000000000000000000000000000000000000); | |
42 DK(KP618033988, +0.618033988749894848204586834365638117720309180); | |
43 { | |
44 INT m; | |
45 for (m = mb, W = W + ((mb - 1) * 38); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 38, MAKE_VOLATILE_STRIDE(40, rs)) { | |
46 E T54, T5a, T5c, T56, T53, T55, T5b, T57; | |
47 { | |
48 E T4N, T4q, T8, T2i, T4r, T2n, T4O, Tl, T2v, T3v, T43, T4b, TN, T2b, T3F; | |
49 E T3a, T2R, T3z, T3T, T4f, T27, T2f, T3J, T3i, T2K, T3y, T3W, T4e, T1G, T2e; | |
50 E T3I, T3p, T2C, T3w, T40, T4c, T1e, T2c, T3G, T33; | |
51 { | |
52 E T1, T4p, T3, T6, T2, T5; | |
53 T1 = cr[0]; | |
54 T4p = ci[0]; | |
55 T3 = cr[WS(rs, 10)]; | |
56 T6 = ci[WS(rs, 10)]; | |
57 T2 = W[18]; | |
58 T5 = W[19]; | |
59 { | |
60 E Ta, Td, Tg, T2j, Tb, Tj, Tf, Tc, Ti; | |
61 { | |
62 E T4n, T4, T9, T4o, T7; | |
63 Ta = cr[WS(rs, 5)]; | |
64 Td = ci[WS(rs, 5)]; | |
65 T4n = T2 * T6; | |
66 T4 = T2 * T3; | |
67 T9 = W[8]; | |
68 Tg = cr[WS(rs, 15)]; | |
69 T4o = FNMS(T5, T3, T4n); | |
70 T7 = FMA(T5, T6, T4); | |
71 T2j = T9 * Td; | |
72 Tb = T9 * Ta; | |
73 T4N = T4p - T4o; | |
74 T4q = T4o + T4p; | |
75 T8 = T1 + T7; | |
76 T2i = T1 - T7; | |
77 Tj = ci[WS(rs, 15)]; | |
78 Tf = W[28]; | |
79 } | |
80 Tc = W[9]; | |
81 Ti = W[29]; | |
82 { | |
83 E T36, Ts, T2t, TL, TB, TE, TD, T38, Ty, T2q, TC; | |
84 { | |
85 E TH, TK, TJ, T2s, TI; | |
86 { | |
87 E To, Tr, Tp, T35, Tq, TG; | |
88 { | |
89 E T2k, Te, T2m, Tk, T2l, Th, Tn; | |
90 To = cr[WS(rs, 4)]; | |
91 T2l = Tf * Tj; | |
92 Th = Tf * Tg; | |
93 T2k = FNMS(Tc, Ta, T2j); | |
94 Te = FMA(Tc, Td, Tb); | |
95 T2m = FNMS(Ti, Tg, T2l); | |
96 Tk = FMA(Ti, Tj, Th); | |
97 Tr = ci[WS(rs, 4)]; | |
98 Tn = W[6]; | |
99 T4r = T2k + T2m; | |
100 T2n = T2k - T2m; | |
101 T4O = Te - Tk; | |
102 Tl = Te + Tk; | |
103 Tp = Tn * To; | |
104 T35 = Tn * Tr; | |
105 } | |
106 Tq = W[7]; | |
107 TH = cr[WS(rs, 19)]; | |
108 TK = ci[WS(rs, 19)]; | |
109 TG = W[36]; | |
110 T36 = FNMS(Tq, To, T35); | |
111 Ts = FMA(Tq, Tr, Tp); | |
112 TJ = W[37]; | |
113 T2s = TG * TK; | |
114 TI = TG * TH; | |
115 } | |
116 { | |
117 E Tu, Tx, Tt, Tw, T37, Tv, TA; | |
118 Tu = cr[WS(rs, 14)]; | |
119 Tx = ci[WS(rs, 14)]; | |
120 T2t = FNMS(TJ, TH, T2s); | |
121 TL = FMA(TJ, TK, TI); | |
122 Tt = W[26]; | |
123 Tw = W[27]; | |
124 TB = cr[WS(rs, 9)]; | |
125 TE = ci[WS(rs, 9)]; | |
126 T37 = Tt * Tx; | |
127 Tv = Tt * Tu; | |
128 TA = W[16]; | |
129 TD = W[17]; | |
130 T38 = FNMS(Tw, Tu, T37); | |
131 Ty = FMA(Tw, Tx, Tv); | |
132 T2q = TA * TE; | |
133 TC = TA * TB; | |
134 } | |
135 } | |
136 { | |
137 E T39, T42, Tz, T2p, T2r, TF; | |
138 T39 = T36 - T38; | |
139 T42 = T36 + T38; | |
140 Tz = Ts + Ty; | |
141 T2p = Ts - Ty; | |
142 T2r = FNMS(TD, TB, T2q); | |
143 TF = FMA(TD, TE, TC); | |
144 { | |
145 E T41, T2u, TM, T34; | |
146 T41 = T2r + T2t; | |
147 T2u = T2r - T2t; | |
148 TM = TF + TL; | |
149 T34 = TL - TF; | |
150 T2v = T2p - T2u; | |
151 T3v = T2p + T2u; | |
152 T43 = T41 - T42; | |
153 T4b = T42 + T41; | |
154 TN = Tz - TM; | |
155 T2b = Tz + TM; | |
156 T3F = T39 + T34; | |
157 T3a = T34 - T39; | |
158 } | |
159 } | |
160 } | |
161 } | |
162 } | |
163 { | |
164 E T3e, T1M, T2P, T25, T1V, T1Y, T1X, T3g, T1S, T2M, T1W; | |
165 { | |
166 E T21, T24, T23, T2O, T22; | |
167 { | |
168 E T1I, T1L, T1H, T1K, T3d, T1J, T20; | |
169 T1I = cr[WS(rs, 12)]; | |
170 T1L = ci[WS(rs, 12)]; | |
171 T1H = W[22]; | |
172 T1K = W[23]; | |
173 T21 = cr[WS(rs, 7)]; | |
174 T24 = ci[WS(rs, 7)]; | |
175 T3d = T1H * T1L; | |
176 T1J = T1H * T1I; | |
177 T20 = W[12]; | |
178 T23 = W[13]; | |
179 T3e = FNMS(T1K, T1I, T3d); | |
180 T1M = FMA(T1K, T1L, T1J); | |
181 T2O = T20 * T24; | |
182 T22 = T20 * T21; | |
183 } | |
184 { | |
185 E T1O, T1R, T1N, T1Q, T3f, T1P, T1U; | |
186 T1O = cr[WS(rs, 2)]; | |
187 T1R = ci[WS(rs, 2)]; | |
188 T2P = FNMS(T23, T21, T2O); | |
189 T25 = FMA(T23, T24, T22); | |
190 T1N = W[2]; | |
191 T1Q = W[3]; | |
192 T1V = cr[WS(rs, 17)]; | |
193 T1Y = ci[WS(rs, 17)]; | |
194 T3f = T1N * T1R; | |
195 T1P = T1N * T1O; | |
196 T1U = W[32]; | |
197 T1X = W[33]; | |
198 T3g = FNMS(T1Q, T1O, T3f); | |
199 T1S = FMA(T1Q, T1R, T1P); | |
200 T2M = T1U * T1Y; | |
201 T1W = T1U * T1V; | |
202 } | |
203 } | |
204 { | |
205 E T3h, T3S, T1T, T2L, T2N, T1Z; | |
206 T3h = T3e - T3g; | |
207 T3S = T3e + T3g; | |
208 T1T = T1M + T1S; | |
209 T2L = T1M - T1S; | |
210 T2N = FNMS(T1X, T1V, T2M); | |
211 T1Z = FMA(T1X, T1Y, T1W); | |
212 { | |
213 E T3R, T2Q, T26, T3c; | |
214 T3R = T2N + T2P; | |
215 T2Q = T2N - T2P; | |
216 T26 = T1Z + T25; | |
217 T3c = T25 - T1Z; | |
218 T2R = T2L - T2Q; | |
219 T3z = T2L + T2Q; | |
220 T3T = T3R - T3S; | |
221 T4f = T3S + T3R; | |
222 T27 = T1T - T26; | |
223 T2f = T1T + T26; | |
224 T3J = T3h + T3c; | |
225 T3i = T3c - T3h; | |
226 } | |
227 } | |
228 } | |
229 { | |
230 E T3l, T1l, T2I, T1E, T1u, T1x, T1w, T3n, T1r, T2F, T1v; | |
231 { | |
232 E T1A, T1D, T1C, T2H, T1B; | |
233 { | |
234 E T1h, T1k, T1g, T1j, T3k, T1i, T1z; | |
235 T1h = cr[WS(rs, 8)]; | |
236 T1k = ci[WS(rs, 8)]; | |
237 T1g = W[14]; | |
238 T1j = W[15]; | |
239 T1A = cr[WS(rs, 3)]; | |
240 T1D = ci[WS(rs, 3)]; | |
241 T3k = T1g * T1k; | |
242 T1i = T1g * T1h; | |
243 T1z = W[4]; | |
244 T1C = W[5]; | |
245 T3l = FNMS(T1j, T1h, T3k); | |
246 T1l = FMA(T1j, T1k, T1i); | |
247 T2H = T1z * T1D; | |
248 T1B = T1z * T1A; | |
249 } | |
250 { | |
251 E T1n, T1q, T1m, T1p, T3m, T1o, T1t; | |
252 T1n = cr[WS(rs, 18)]; | |
253 T1q = ci[WS(rs, 18)]; | |
254 T2I = FNMS(T1C, T1A, T2H); | |
255 T1E = FMA(T1C, T1D, T1B); | |
256 T1m = W[34]; | |
257 T1p = W[35]; | |
258 T1u = cr[WS(rs, 13)]; | |
259 T1x = ci[WS(rs, 13)]; | |
260 T3m = T1m * T1q; | |
261 T1o = T1m * T1n; | |
262 T1t = W[24]; | |
263 T1w = W[25]; | |
264 T3n = FNMS(T1p, T1n, T3m); | |
265 T1r = FMA(T1p, T1q, T1o); | |
266 T2F = T1t * T1x; | |
267 T1v = T1t * T1u; | |
268 } | |
269 } | |
270 { | |
271 E T3o, T3V, T1s, T2E, T2G, T1y; | |
272 T3o = T3l - T3n; | |
273 T3V = T3l + T3n; | |
274 T1s = T1l + T1r; | |
275 T2E = T1l - T1r; | |
276 T2G = FNMS(T1w, T1u, T2F); | |
277 T1y = FMA(T1w, T1x, T1v); | |
278 { | |
279 E T3U, T2J, T1F, T3j; | |
280 T3U = T2G + T2I; | |
281 T2J = T2G - T2I; | |
282 T1F = T1y + T1E; | |
283 T3j = T1E - T1y; | |
284 T2K = T2E - T2J; | |
285 T3y = T2E + T2J; | |
286 T3W = T3U - T3V; | |
287 T4e = T3V + T3U; | |
288 T1G = T1s - T1F; | |
289 T2e = T1s + T1F; | |
290 T3I = T3o + T3j; | |
291 T3p = T3j - T3o; | |
292 } | |
293 } | |
294 } | |
295 { | |
296 E T2Z, TT, T2A, T1c, T12, T15, T14, T31, TZ, T2x, T13; | |
297 { | |
298 E T18, T1b, T1a, T2z, T19; | |
299 { | |
300 E TP, TS, TO, TR, T2Y, TQ, T17; | |
301 TP = cr[WS(rs, 16)]; | |
302 TS = ci[WS(rs, 16)]; | |
303 TO = W[30]; | |
304 TR = W[31]; | |
305 T18 = cr[WS(rs, 11)]; | |
306 T1b = ci[WS(rs, 11)]; | |
307 T2Y = TO * TS; | |
308 TQ = TO * TP; | |
309 T17 = W[20]; | |
310 T1a = W[21]; | |
311 T2Z = FNMS(TR, TP, T2Y); | |
312 TT = FMA(TR, TS, TQ); | |
313 T2z = T17 * T1b; | |
314 T19 = T17 * T18; | |
315 } | |
316 { | |
317 E TV, TY, TU, TX, T30, TW, T11; | |
318 TV = cr[WS(rs, 6)]; | |
319 TY = ci[WS(rs, 6)]; | |
320 T2A = FNMS(T1a, T18, T2z); | |
321 T1c = FMA(T1a, T1b, T19); | |
322 TU = W[10]; | |
323 TX = W[11]; | |
324 T12 = cr[WS(rs, 1)]; | |
325 T15 = ci[WS(rs, 1)]; | |
326 T30 = TU * TY; | |
327 TW = TU * TV; | |
328 T11 = W[0]; | |
329 T14 = W[1]; | |
330 T31 = FNMS(TX, TV, T30); | |
331 TZ = FMA(TX, TY, TW); | |
332 T2x = T11 * T15; | |
333 T13 = T11 * T12; | |
334 } | |
335 } | |
336 { | |
337 E T32, T3Z, T10, T2w, T2y, T16; | |
338 T32 = T2Z - T31; | |
339 T3Z = T2Z + T31; | |
340 T10 = TT + TZ; | |
341 T2w = TT - TZ; | |
342 T2y = FNMS(T14, T12, T2x); | |
343 T16 = FMA(T14, T15, T13); | |
344 { | |
345 E T3Y, T2B, T1d, T2X; | |
346 T3Y = T2y + T2A; | |
347 T2B = T2y - T2A; | |
348 T1d = T16 + T1c; | |
349 T2X = T1c - T16; | |
350 T2C = T2w - T2B; | |
351 T3w = T2w + T2B; | |
352 T40 = T3Y - T3Z; | |
353 T4c = T3Z + T3Y; | |
354 T1e = T10 - T1d; | |
355 T2c = T10 + T1d; | |
356 T3G = T32 + T2X; | |
357 T33 = T2X - T32; | |
358 } | |
359 } | |
360 } | |
361 { | |
362 E T4l, T4k, T4w, T4x, T4Q, T4R, T2o, T4X, T4W, T4C, T4D, T4J, T4h, T4j, T4I; | |
363 E T51, T52, T49, T3r, T3t, T58, T2D, T48, T2S, T59; | |
364 { | |
365 E T2a, T47, T45, T3u, T3x, T3N, T3L, T3A, T46, T3Q; | |
366 { | |
367 E Tm, T1f, T28, T3X, T44; | |
368 T4l = T3W + T3T; | |
369 T3X = T3T - T3W; | |
370 T44 = T40 - T43; | |
371 T4k = T43 + T40; | |
372 T2a = T8 + Tl; | |
373 Tm = T8 - Tl; | |
374 T1f = TN + T1e; | |
375 T4w = T1e - TN; | |
376 T4x = T1G - T27; | |
377 T28 = T1G + T27; | |
378 T47 = FMA(KP618033988, T3X, T44); | |
379 T45 = FNMS(KP618033988, T44, T3X); | |
380 { | |
381 E T3H, T29, T3P, T3K, T3O; | |
382 T3H = T3F - T3G; | |
383 T4Q = T3F + T3G; | |
384 T29 = T1f + T28; | |
385 T3P = T1f - T28; | |
386 T4R = T3I + T3J; | |
387 T3K = T3I - T3J; | |
388 T3u = T2i + T2n; | |
389 T2o = T2i - T2n; | |
390 T4X = T3v - T3w; | |
391 T3x = T3v + T3w; | |
392 ci[WS(rs, 9)] = Tm + T29; | |
393 T3O = FNMS(KP250000000, T29, Tm); | |
394 T3N = FNMS(KP618033988, T3H, T3K); | |
395 T3L = FMA(KP618033988, T3K, T3H); | |
396 T3A = T3y + T3z; | |
397 T4W = T3y - T3z; | |
398 T46 = FMA(KP559016994, T3P, T3O); | |
399 T3Q = FNMS(KP559016994, T3P, T3O); | |
400 } | |
401 } | |
402 { | |
403 E T2d, T2g, T3b, T3q, T2h; | |
404 { | |
405 E T4d, T3D, T3C, T4g, T3B, T3M, T3E; | |
406 T4C = T4b + T4c; | |
407 T4d = T4b - T4c; | |
408 T3D = T3x - T3A; | |
409 T3B = T3x + T3A; | |
410 ci[WS(rs, 1)] = FMA(KP951056516, T45, T3Q); | |
411 cr[WS(rs, 2)] = FNMS(KP951056516, T45, T3Q); | |
412 cr[WS(rs, 6)] = FMA(KP951056516, T47, T46); | |
413 ci[WS(rs, 5)] = FNMS(KP951056516, T47, T46); | |
414 cr[WS(rs, 5)] = T3u + T3B; | |
415 T3C = FNMS(KP250000000, T3B, T3u); | |
416 T4g = T4e - T4f; | |
417 T4D = T4e + T4f; | |
418 T2d = T2b + T2c; | |
419 T4J = T2b - T2c; | |
420 T3M = FNMS(KP559016994, T3D, T3C); | |
421 T3E = FMA(KP559016994, T3D, T3C); | |
422 T4h = FMA(KP618033988, T4g, T4d); | |
423 T4j = FNMS(KP618033988, T4d, T4g); | |
424 cr[WS(rs, 9)] = FNMS(KP951056516, T3L, T3E); | |
425 cr[WS(rs, 1)] = FMA(KP951056516, T3L, T3E); | |
426 ci[WS(rs, 6)] = FMA(KP951056516, T3N, T3M); | |
427 ci[WS(rs, 2)] = FNMS(KP951056516, T3N, T3M); | |
428 T4I = T2f - T2e; | |
429 T2g = T2e + T2f; | |
430 } | |
431 T3b = T33 - T3a; | |
432 T51 = T3a + T33; | |
433 T52 = T3p + T3i; | |
434 T3q = T3i - T3p; | |
435 T2h = T2d + T2g; | |
436 T49 = T2d - T2g; | |
437 T3r = FMA(KP618033988, T3q, T3b); | |
438 T3t = FNMS(KP618033988, T3b, T3q); | |
439 T58 = T2v - T2C; | |
440 T2D = T2v + T2C; | |
441 cr[0] = T2a + T2h; | |
442 T48 = FNMS(KP250000000, T2h, T2a); | |
443 T2S = T2K + T2R; | |
444 T59 = T2K - T2R; | |
445 } | |
446 } | |
447 { | |
448 E T4B, T4P, T4Y, T50, T4U, T4S; | |
449 { | |
450 E T4A, T4y, T4s, T4m, T4u, T4t, T4z, T4v; | |
451 { | |
452 E T2V, T2U, T4i, T4a, T2T, T2W, T3s; | |
453 T4i = FNMS(KP559016994, T49, T48); | |
454 T4a = FMA(KP559016994, T49, T48); | |
455 T2T = T2D + T2S; | |
456 T2V = T2D - T2S; | |
457 ci[WS(rs, 3)] = FMA(KP951056516, T4h, T4a); | |
458 cr[WS(rs, 4)] = FNMS(KP951056516, T4h, T4a); | |
459 cr[WS(rs, 8)] = FMA(KP951056516, T4j, T4i); | |
460 ci[WS(rs, 7)] = FNMS(KP951056516, T4j, T4i); | |
461 ci[WS(rs, 4)] = T2o + T2T; | |
462 T2U = FNMS(KP250000000, T2T, T2o); | |
463 T4A = FMA(KP618033988, T4w, T4x); | |
464 T4y = FNMS(KP618033988, T4x, T4w); | |
465 T4B = T4r + T4q; | |
466 T4s = T4q - T4r; | |
467 T2W = FMA(KP559016994, T2V, T2U); | |
468 T3s = FNMS(KP559016994, T2V, T2U); | |
469 ci[WS(rs, 8)] = FMA(KP951056516, T3r, T2W); | |
470 ci[0] = FNMS(KP951056516, T3r, T2W); | |
471 cr[WS(rs, 7)] = FNMS(KP951056516, T3t, T3s); | |
472 cr[WS(rs, 3)] = FMA(KP951056516, T3t, T3s); | |
473 T4m = T4k + T4l; | |
474 T4u = T4l - T4k; | |
475 } | |
476 cr[WS(rs, 10)] = T4m - T4s; | |
477 T4t = FMA(KP250000000, T4m, T4s); | |
478 T4P = T4N - T4O; | |
479 T54 = T4O + T4N; | |
480 T4Y = FNMS(KP618033988, T4X, T4W); | |
481 T50 = FMA(KP618033988, T4W, T4X); | |
482 T4z = FNMS(KP559016994, T4u, T4t); | |
483 T4v = FMA(KP559016994, T4u, T4t); | |
484 ci[WS(rs, 13)] = FMA(KP951056516, T4y, T4v); | |
485 cr[WS(rs, 14)] = FMS(KP951056516, T4y, T4v); | |
486 ci[WS(rs, 17)] = FMA(KP951056516, T4A, T4z); | |
487 cr[WS(rs, 18)] = FMS(KP951056516, T4A, T4z); | |
488 T4U = T4Q - T4R; | |
489 T4S = T4Q + T4R; | |
490 } | |
491 { | |
492 E T4M, T4K, T4E, T4G, T4T, T4V, T4Z, T4F, T4L, T4H; | |
493 ci[WS(rs, 14)] = T4S + T4P; | |
494 T4T = FNMS(KP250000000, T4S, T4P); | |
495 T4M = FNMS(KP618033988, T4I, T4J); | |
496 T4K = FMA(KP618033988, T4J, T4I); | |
497 T4V = FNMS(KP559016994, T4U, T4T); | |
498 T4Z = FMA(KP559016994, T4U, T4T); | |
499 cr[WS(rs, 17)] = -(FMA(KP951056516, T4Y, T4V)); | |
500 cr[WS(rs, 13)] = FMS(KP951056516, T4Y, T4V); | |
501 ci[WS(rs, 18)] = FNMS(KP951056516, T50, T4Z); | |
502 ci[WS(rs, 10)] = FMA(KP951056516, T50, T4Z); | |
503 T4E = T4C + T4D; | |
504 T4G = T4C - T4D; | |
505 ci[WS(rs, 19)] = T4E + T4B; | |
506 T4F = FNMS(KP250000000, T4E, T4B); | |
507 T5a = FMA(KP618033988, T59, T58); | |
508 T5c = FNMS(KP618033988, T58, T59); | |
509 T4L = FMA(KP559016994, T4G, T4F); | |
510 T4H = FNMS(KP559016994, T4G, T4F); | |
511 ci[WS(rs, 11)] = FMA(KP951056516, T4K, T4H); | |
512 cr[WS(rs, 12)] = FMS(KP951056516, T4K, T4H); | |
513 ci[WS(rs, 15)] = FMA(KP951056516, T4M, T4L); | |
514 cr[WS(rs, 16)] = FMS(KP951056516, T4M, T4L); | |
515 T56 = T51 - T52; | |
516 T53 = T51 + T52; | |
517 } | |
518 } | |
519 } | |
520 } | |
521 cr[WS(rs, 15)] = T53 - T54; | |
522 T55 = FMA(KP250000000, T53, T54); | |
523 T5b = FMA(KP559016994, T56, T55); | |
524 T57 = FNMS(KP559016994, T56, T55); | |
525 cr[WS(rs, 19)] = -(FMA(KP951056516, T5a, T57)); | |
526 cr[WS(rs, 11)] = FMS(KP951056516, T5a, T57); | |
527 ci[WS(rs, 16)] = FNMS(KP951056516, T5c, T5b); | |
528 ci[WS(rs, 12)] = FMA(KP951056516, T5c, T5b); | |
529 } | |
530 } | |
531 } | |
532 | |
533 static const tw_instr twinstr[] = { | |
534 {TW_FULL, 1, 20}, | |
535 {TW_NEXT, 1, 0} | |
536 }; | |
537 | |
538 static const hc2hc_desc desc = { 20, "hf_20", twinstr, &GENUS, {136, 38, 110, 0} }; | |
539 | |
540 void X(codelet_hf_20) (planner *p) { | |
541 X(khc2hc_register) (p, hf_20, &desc); | |
542 } | |
543 #else /* HAVE_FMA */ | |
544 | |
545 /* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -n 20 -dit -name hf_20 -include hf.h */ | |
546 | |
547 /* | |
548 * This function contains 246 FP additions, 124 FP multiplications, | |
549 * (or, 184 additions, 62 multiplications, 62 fused multiply/add), | |
550 * 85 stack variables, 4 constants, and 80 memory accesses | |
551 */ | |
552 #include "hf.h" | |
553 | |
554 static void hf_20(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) | |
555 { | |
556 DK(KP587785252, +0.587785252292473129168705954639072768597652438); | |
557 DK(KP951056516, +0.951056516295153572116439333379382143405698634); | |
558 DK(KP250000000, +0.250000000000000000000000000000000000000000000); | |
559 DK(KP559016994, +0.559016994374947424102293417182819058860154590); | |
560 { | |
561 INT m; | |
562 for (m = mb, W = W + ((mb - 1) * 38); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 38, MAKE_VOLATILE_STRIDE(40, rs)) { | |
563 E Tj, T1R, T4j, T4s, T2q, T37, T3Q, T42, T1r, T1O, T1P, T3i, T3l, T3J, T3D; | |
564 E T3E, T44, T1V, T1W, T1X, T2e, T2j, T2k, T2W, T2X, T4f, T33, T34, T35, T2J; | |
565 E T2O, T4q, TG, T13, T14, T3p, T3s, T3K, T3A, T3B, T43, T1S, T1T, T1U, T23; | |
566 E T28, T29, T2T, T2U, T4e, T30, T31, T32, T2y, T2D, T4p; | |
567 { | |
568 E T1, T3N, T6, T3M, Tc, T2n, Th, T2o; | |
569 T1 = cr[0]; | |
570 T3N = ci[0]; | |
571 { | |
572 E T3, T5, T2, T4; | |
573 T3 = cr[WS(rs, 10)]; | |
574 T5 = ci[WS(rs, 10)]; | |
575 T2 = W[18]; | |
576 T4 = W[19]; | |
577 T6 = FMA(T2, T3, T4 * T5); | |
578 T3M = FNMS(T4, T3, T2 * T5); | |
579 } | |
580 { | |
581 E T9, Tb, T8, Ta; | |
582 T9 = cr[WS(rs, 5)]; | |
583 Tb = ci[WS(rs, 5)]; | |
584 T8 = W[8]; | |
585 Ta = W[9]; | |
586 Tc = FMA(T8, T9, Ta * Tb); | |
587 T2n = FNMS(Ta, T9, T8 * Tb); | |
588 } | |
589 { | |
590 E Te, Tg, Td, Tf; | |
591 Te = cr[WS(rs, 15)]; | |
592 Tg = ci[WS(rs, 15)]; | |
593 Td = W[28]; | |
594 Tf = W[29]; | |
595 Th = FMA(Td, Te, Tf * Tg); | |
596 T2o = FNMS(Tf, Te, Td * Tg); | |
597 } | |
598 { | |
599 E T7, Ti, T4h, T4i; | |
600 T7 = T1 + T6; | |
601 Ti = Tc + Th; | |
602 Tj = T7 - Ti; | |
603 T1R = T7 + Ti; | |
604 T4h = T3N - T3M; | |
605 T4i = Tc - Th; | |
606 T4j = T4h - T4i; | |
607 T4s = T4i + T4h; | |
608 } | |
609 { | |
610 E T2m, T2p, T3O, T3P; | |
611 T2m = T1 - T6; | |
612 T2p = T2n - T2o; | |
613 T2q = T2m - T2p; | |
614 T37 = T2m + T2p; | |
615 T3O = T3M + T3N; | |
616 T3P = T2n + T2o; | |
617 T3Q = T3O - T3P; | |
618 T42 = T3P + T3O; | |
619 } | |
620 } | |
621 { | |
622 E T1f, T3g, T2a, T2H, T1N, T3j, T2i, T2N, T1q, T3h, T2d, T2I, T1C, T3k, T2f; | |
623 E T2M; | |
624 { | |
625 E T19, T2F, T1e, T2G; | |
626 { | |
627 E T16, T18, T15, T17; | |
628 T16 = cr[WS(rs, 8)]; | |
629 T18 = ci[WS(rs, 8)]; | |
630 T15 = W[14]; | |
631 T17 = W[15]; | |
632 T19 = FMA(T15, T16, T17 * T18); | |
633 T2F = FNMS(T17, T16, T15 * T18); | |
634 } | |
635 { | |
636 E T1b, T1d, T1a, T1c; | |
637 T1b = cr[WS(rs, 18)]; | |
638 T1d = ci[WS(rs, 18)]; | |
639 T1a = W[34]; | |
640 T1c = W[35]; | |
641 T1e = FMA(T1a, T1b, T1c * T1d); | |
642 T2G = FNMS(T1c, T1b, T1a * T1d); | |
643 } | |
644 T1f = T19 + T1e; | |
645 T3g = T2F + T2G; | |
646 T2a = T19 - T1e; | |
647 T2H = T2F - T2G; | |
648 } | |
649 { | |
650 E T1H, T2g, T1M, T2h; | |
651 { | |
652 E T1E, T1G, T1D, T1F; | |
653 T1E = cr[WS(rs, 17)]; | |
654 T1G = ci[WS(rs, 17)]; | |
655 T1D = W[32]; | |
656 T1F = W[33]; | |
657 T1H = FMA(T1D, T1E, T1F * T1G); | |
658 T2g = FNMS(T1F, T1E, T1D * T1G); | |
659 } | |
660 { | |
661 E T1J, T1L, T1I, T1K; | |
662 T1J = cr[WS(rs, 7)]; | |
663 T1L = ci[WS(rs, 7)]; | |
664 T1I = W[12]; | |
665 T1K = W[13]; | |
666 T1M = FMA(T1I, T1J, T1K * T1L); | |
667 T2h = FNMS(T1K, T1J, T1I * T1L); | |
668 } | |
669 T1N = T1H + T1M; | |
670 T3j = T2g + T2h; | |
671 T2i = T2g - T2h; | |
672 T2N = T1H - T1M; | |
673 } | |
674 { | |
675 E T1k, T2b, T1p, T2c; | |
676 { | |
677 E T1h, T1j, T1g, T1i; | |
678 T1h = cr[WS(rs, 13)]; | |
679 T1j = ci[WS(rs, 13)]; | |
680 T1g = W[24]; | |
681 T1i = W[25]; | |
682 T1k = FMA(T1g, T1h, T1i * T1j); | |
683 T2b = FNMS(T1i, T1h, T1g * T1j); | |
684 } | |
685 { | |
686 E T1m, T1o, T1l, T1n; | |
687 T1m = cr[WS(rs, 3)]; | |
688 T1o = ci[WS(rs, 3)]; | |
689 T1l = W[4]; | |
690 T1n = W[5]; | |
691 T1p = FMA(T1l, T1m, T1n * T1o); | |
692 T2c = FNMS(T1n, T1m, T1l * T1o); | |
693 } | |
694 T1q = T1k + T1p; | |
695 T3h = T2b + T2c; | |
696 T2d = T2b - T2c; | |
697 T2I = T1k - T1p; | |
698 } | |
699 { | |
700 E T1w, T2K, T1B, T2L; | |
701 { | |
702 E T1t, T1v, T1s, T1u; | |
703 T1t = cr[WS(rs, 12)]; | |
704 T1v = ci[WS(rs, 12)]; | |
705 T1s = W[22]; | |
706 T1u = W[23]; | |
707 T1w = FMA(T1s, T1t, T1u * T1v); | |
708 T2K = FNMS(T1u, T1t, T1s * T1v); | |
709 } | |
710 { | |
711 E T1y, T1A, T1x, T1z; | |
712 T1y = cr[WS(rs, 2)]; | |
713 T1A = ci[WS(rs, 2)]; | |
714 T1x = W[2]; | |
715 T1z = W[3]; | |
716 T1B = FMA(T1x, T1y, T1z * T1A); | |
717 T2L = FNMS(T1z, T1y, T1x * T1A); | |
718 } | |
719 T1C = T1w + T1B; | |
720 T3k = T2K + T2L; | |
721 T2f = T1w - T1B; | |
722 T2M = T2K - T2L; | |
723 } | |
724 T1r = T1f - T1q; | |
725 T1O = T1C - T1N; | |
726 T1P = T1r + T1O; | |
727 T3i = T3g - T3h; | |
728 T3l = T3j - T3k; | |
729 T3J = T3l - T3i; | |
730 T3D = T3g + T3h; | |
731 T3E = T3k + T3j; | |
732 T44 = T3D + T3E; | |
733 T1V = T1f + T1q; | |
734 T1W = T1C + T1N; | |
735 T1X = T1V + T1W; | |
736 T2e = T2a - T2d; | |
737 T2j = T2f - T2i; | |
738 T2k = T2e + T2j; | |
739 T2W = T2H - T2I; | |
740 T2X = T2M - T2N; | |
741 T4f = T2W + T2X; | |
742 T33 = T2a + T2d; | |
743 T34 = T2f + T2i; | |
744 T35 = T33 + T34; | |
745 T2J = T2H + T2I; | |
746 T2O = T2M + T2N; | |
747 T4q = T2J + T2O; | |
748 } | |
749 { | |
750 E Tu, T3n, T1Z, T2w, T12, T3r, T27, T2z, TF, T3o, T22, T2x, TR, T3q, T24; | |
751 E T2C; | |
752 { | |
753 E To, T2u, Tt, T2v; | |
754 { | |
755 E Tl, Tn, Tk, Tm; | |
756 Tl = cr[WS(rs, 4)]; | |
757 Tn = ci[WS(rs, 4)]; | |
758 Tk = W[6]; | |
759 Tm = W[7]; | |
760 To = FMA(Tk, Tl, Tm * Tn); | |
761 T2u = FNMS(Tm, Tl, Tk * Tn); | |
762 } | |
763 { | |
764 E Tq, Ts, Tp, Tr; | |
765 Tq = cr[WS(rs, 14)]; | |
766 Ts = ci[WS(rs, 14)]; | |
767 Tp = W[26]; | |
768 Tr = W[27]; | |
769 Tt = FMA(Tp, Tq, Tr * Ts); | |
770 T2v = FNMS(Tr, Tq, Tp * Ts); | |
771 } | |
772 Tu = To + Tt; | |
773 T3n = T2u + T2v; | |
774 T1Z = To - Tt; | |
775 T2w = T2u - T2v; | |
776 } | |
777 { | |
778 E TW, T25, T11, T26; | |
779 { | |
780 E TT, TV, TS, TU; | |
781 TT = cr[WS(rs, 1)]; | |
782 TV = ci[WS(rs, 1)]; | |
783 TS = W[0]; | |
784 TU = W[1]; | |
785 TW = FMA(TS, TT, TU * TV); | |
786 T25 = FNMS(TU, TT, TS * TV); | |
787 } | |
788 { | |
789 E TY, T10, TX, TZ; | |
790 TY = cr[WS(rs, 11)]; | |
791 T10 = ci[WS(rs, 11)]; | |
792 TX = W[20]; | |
793 TZ = W[21]; | |
794 T11 = FMA(TX, TY, TZ * T10); | |
795 T26 = FNMS(TZ, TY, TX * T10); | |
796 } | |
797 T12 = TW + T11; | |
798 T3r = T25 + T26; | |
799 T27 = T25 - T26; | |
800 T2z = T11 - TW; | |
801 } | |
802 { | |
803 E Tz, T20, TE, T21; | |
804 { | |
805 E Tw, Ty, Tv, Tx; | |
806 Tw = cr[WS(rs, 9)]; | |
807 Ty = ci[WS(rs, 9)]; | |
808 Tv = W[16]; | |
809 Tx = W[17]; | |
810 Tz = FMA(Tv, Tw, Tx * Ty); | |
811 T20 = FNMS(Tx, Tw, Tv * Ty); | |
812 } | |
813 { | |
814 E TB, TD, TA, TC; | |
815 TB = cr[WS(rs, 19)]; | |
816 TD = ci[WS(rs, 19)]; | |
817 TA = W[36]; | |
818 TC = W[37]; | |
819 TE = FMA(TA, TB, TC * TD); | |
820 T21 = FNMS(TC, TB, TA * TD); | |
821 } | |
822 TF = Tz + TE; | |
823 T3o = T20 + T21; | |
824 T22 = T20 - T21; | |
825 T2x = Tz - TE; | |
826 } | |
827 { | |
828 E TL, T2A, TQ, T2B; | |
829 { | |
830 E TI, TK, TH, TJ; | |
831 TI = cr[WS(rs, 16)]; | |
832 TK = ci[WS(rs, 16)]; | |
833 TH = W[30]; | |
834 TJ = W[31]; | |
835 TL = FMA(TH, TI, TJ * TK); | |
836 T2A = FNMS(TJ, TI, TH * TK); | |
837 } | |
838 { | |
839 E TN, TP, TM, TO; | |
840 TN = cr[WS(rs, 6)]; | |
841 TP = ci[WS(rs, 6)]; | |
842 TM = W[10]; | |
843 TO = W[11]; | |
844 TQ = FMA(TM, TN, TO * TP); | |
845 T2B = FNMS(TO, TN, TM * TP); | |
846 } | |
847 TR = TL + TQ; | |
848 T3q = T2A + T2B; | |
849 T24 = TL - TQ; | |
850 T2C = T2A - T2B; | |
851 } | |
852 TG = Tu - TF; | |
853 T13 = TR - T12; | |
854 T14 = TG + T13; | |
855 T3p = T3n - T3o; | |
856 T3s = T3q - T3r; | |
857 T3K = T3p + T3s; | |
858 T3A = T3n + T3o; | |
859 T3B = T3q + T3r; | |
860 T43 = T3A + T3B; | |
861 T1S = Tu + TF; | |
862 T1T = TR + T12; | |
863 T1U = T1S + T1T; | |
864 T23 = T1Z - T22; | |
865 T28 = T24 - T27; | |
866 T29 = T23 + T28; | |
867 T2T = T2w - T2x; | |
868 T2U = T2C + T2z; | |
869 T4e = T2T + T2U; | |
870 T30 = T1Z + T22; | |
871 T31 = T24 + T27; | |
872 T32 = T30 + T31; | |
873 T2y = T2w + T2x; | |
874 T2D = T2z - T2C; | |
875 T4p = T2D - T2y; | |
876 } | |
877 { | |
878 E T3e, T1Q, T3d, T3u, T3w, T3m, T3t, T3v, T3f; | |
879 T3e = KP559016994 * (T14 - T1P); | |
880 T1Q = T14 + T1P; | |
881 T3d = FNMS(KP250000000, T1Q, Tj); | |
882 T3m = T3i + T3l; | |
883 T3t = T3p - T3s; | |
884 T3u = FNMS(KP587785252, T3t, KP951056516 * T3m); | |
885 T3w = FMA(KP951056516, T3t, KP587785252 * T3m); | |
886 ci[WS(rs, 9)] = Tj + T1Q; | |
887 T3v = T3e + T3d; | |
888 ci[WS(rs, 5)] = T3v - T3w; | |
889 cr[WS(rs, 6)] = T3v + T3w; | |
890 T3f = T3d - T3e; | |
891 cr[WS(rs, 2)] = T3f - T3u; | |
892 ci[WS(rs, 1)] = T3f + T3u; | |
893 } | |
894 { | |
895 E T36, T38, T39, T2Z, T3c, T2V, T2Y, T3b, T3a; | |
896 T36 = KP559016994 * (T32 - T35); | |
897 T38 = T32 + T35; | |
898 T39 = FNMS(KP250000000, T38, T37); | |
899 T2V = T2T - T2U; | |
900 T2Y = T2W - T2X; | |
901 T2Z = FMA(KP951056516, T2V, KP587785252 * T2Y); | |
902 T3c = FNMS(KP587785252, T2V, KP951056516 * T2Y); | |
903 cr[WS(rs, 5)] = T37 + T38; | |
904 T3b = T39 - T36; | |
905 ci[WS(rs, 2)] = T3b - T3c; | |
906 ci[WS(rs, 6)] = T3c + T3b; | |
907 T3a = T36 + T39; | |
908 cr[WS(rs, 1)] = T2Z + T3a; | |
909 cr[WS(rs, 9)] = T3a - T2Z; | |
910 } | |
911 { | |
912 E T3x, T1Y, T3y, T3G, T3I, T3C, T3F, T3H, T3z; | |
913 T3x = KP559016994 * (T1U - T1X); | |
914 T1Y = T1U + T1X; | |
915 T3y = FNMS(KP250000000, T1Y, T1R); | |
916 T3C = T3A - T3B; | |
917 T3F = T3D - T3E; | |
918 T3G = FMA(KP951056516, T3C, KP587785252 * T3F); | |
919 T3I = FNMS(KP587785252, T3C, KP951056516 * T3F); | |
920 cr[0] = T1R + T1Y; | |
921 T3H = T3y - T3x; | |
922 ci[WS(rs, 7)] = T3H - T3I; | |
923 cr[WS(rs, 8)] = T3H + T3I; | |
924 T3z = T3x + T3y; | |
925 cr[WS(rs, 4)] = T3z - T3G; | |
926 ci[WS(rs, 3)] = T3z + T3G; | |
927 } | |
928 { | |
929 E T2l, T2r, T2s, T2Q, T2R, T2E, T2P, T2S, T2t; | |
930 T2l = KP559016994 * (T29 - T2k); | |
931 T2r = T29 + T2k; | |
932 T2s = FNMS(KP250000000, T2r, T2q); | |
933 T2E = T2y + T2D; | |
934 T2P = T2J - T2O; | |
935 T2Q = FMA(KP951056516, T2E, KP587785252 * T2P); | |
936 T2R = FNMS(KP587785252, T2E, KP951056516 * T2P); | |
937 ci[WS(rs, 4)] = T2q + T2r; | |
938 T2S = T2s - T2l; | |
939 cr[WS(rs, 3)] = T2R + T2S; | |
940 cr[WS(rs, 7)] = T2S - T2R; | |
941 T2t = T2l + T2s; | |
942 ci[0] = T2t - T2Q; | |
943 ci[WS(rs, 8)] = T2Q + T2t; | |
944 } | |
945 { | |
946 E T3U, T3L, T3V, T3T, T3X, T3R, T3S, T3Y, T3W; | |
947 T3U = KP559016994 * (T3K + T3J); | |
948 T3L = T3J - T3K; | |
949 T3V = FMA(KP250000000, T3L, T3Q); | |
950 T3R = T13 - TG; | |
951 T3S = T1r - T1O; | |
952 T3T = FNMS(KP587785252, T3S, KP951056516 * T3R); | |
953 T3X = FMA(KP587785252, T3R, KP951056516 * T3S); | |
954 cr[WS(rs, 10)] = T3L - T3Q; | |
955 T3Y = T3V - T3U; | |
956 cr[WS(rs, 18)] = T3X - T3Y; | |
957 ci[WS(rs, 17)] = T3X + T3Y; | |
958 T3W = T3U + T3V; | |
959 cr[WS(rs, 14)] = T3T - T3W; | |
960 ci[WS(rs, 13)] = T3T + T3W; | |
961 } | |
962 { | |
963 E T4g, T4k, T4l, T4d, T4n, T4b, T4c, T4o, T4m; | |
964 T4g = KP559016994 * (T4e - T4f); | |
965 T4k = T4e + T4f; | |
966 T4l = FNMS(KP250000000, T4k, T4j); | |
967 T4b = T33 - T34; | |
968 T4c = T30 - T31; | |
969 T4d = FNMS(KP587785252, T4c, KP951056516 * T4b); | |
970 T4n = FMA(KP951056516, T4c, KP587785252 * T4b); | |
971 ci[WS(rs, 14)] = T4k + T4j; | |
972 T4o = T4g + T4l; | |
973 ci[WS(rs, 10)] = T4n + T4o; | |
974 ci[WS(rs, 18)] = T4o - T4n; | |
975 T4m = T4g - T4l; | |
976 cr[WS(rs, 13)] = T4d + T4m; | |
977 cr[WS(rs, 17)] = T4m - T4d; | |
978 } | |
979 { | |
980 E T47, T45, T46, T41, T49, T3Z, T40, T4a, T48; | |
981 T47 = KP559016994 * (T43 - T44); | |
982 T45 = T43 + T44; | |
983 T46 = FNMS(KP250000000, T45, T42); | |
984 T3Z = T1S - T1T; | |
985 T40 = T1V - T1W; | |
986 T41 = FNMS(KP951056516, T40, KP587785252 * T3Z); | |
987 T49 = FMA(KP951056516, T3Z, KP587785252 * T40); | |
988 ci[WS(rs, 19)] = T45 + T42; | |
989 T4a = T47 + T46; | |
990 cr[WS(rs, 16)] = T49 - T4a; | |
991 ci[WS(rs, 15)] = T49 + T4a; | |
992 T48 = T46 - T47; | |
993 cr[WS(rs, 12)] = T41 - T48; | |
994 ci[WS(rs, 11)] = T41 + T48; | |
995 } | |
996 { | |
997 E T4w, T4r, T4x, T4v, T4z, T4t, T4u, T4A, T4y; | |
998 T4w = KP559016994 * (T4p + T4q); | |
999 T4r = T4p - T4q; | |
1000 T4x = FMA(KP250000000, T4r, T4s); | |
1001 T4t = T23 - T28; | |
1002 T4u = T2e - T2j; | |
1003 T4v = FMA(KP951056516, T4t, KP587785252 * T4u); | |
1004 T4z = FNMS(KP587785252, T4t, KP951056516 * T4u); | |
1005 cr[WS(rs, 15)] = T4r - T4s; | |
1006 T4A = T4w + T4x; | |
1007 ci[WS(rs, 12)] = T4z + T4A; | |
1008 ci[WS(rs, 16)] = T4A - T4z; | |
1009 T4y = T4w - T4x; | |
1010 cr[WS(rs, 11)] = T4v + T4y; | |
1011 cr[WS(rs, 19)] = T4y - T4v; | |
1012 } | |
1013 } | |
1014 } | |
1015 } | |
1016 | |
1017 static const tw_instr twinstr[] = { | |
1018 {TW_FULL, 1, 20}, | |
1019 {TW_NEXT, 1, 0} | |
1020 }; | |
1021 | |
1022 static const hc2hc_desc desc = { 20, "hf_20", twinstr, &GENUS, {184, 62, 62, 0} }; | |
1023 | |
1024 void X(codelet_hf_20) (planner *p) { | |
1025 X(khc2hc_register) (p, hf_20, &desc); | |
1026 } | |
1027 #endif /* HAVE_FMA */ |