Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.3/rdft/scalar/r2cf/hf_16.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
9:c0fb53affa76 | 10:37bf6b4a2645 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-11 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Sun Nov 25 07:39:54 EST 2012 */ | |
23 | |
24 #include "codelet-rdft.h" | |
25 | |
26 #ifdef HAVE_FMA | |
27 | |
28 /* Generated by: ../../../genfft/gen_hc2hc.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 16 -dit -name hf_16 -include hf.h */ | |
29 | |
30 /* | |
31 * This function contains 174 FP additions, 100 FP multiplications, | |
32 * (or, 104 additions, 30 multiplications, 70 fused multiply/add), | |
33 * 95 stack variables, 3 constants, and 64 memory accesses | |
34 */ | |
35 #include "hf.h" | |
36 | |
37 static void hf_16(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) | |
38 { | |
39 DK(KP923879532, +0.923879532511286756128183189396788286822416626); | |
40 DK(KP414213562, +0.414213562373095048801688724209698078569671875); | |
41 DK(KP707106781, +0.707106781186547524400844362104849039284835938); | |
42 { | |
43 INT m; | |
44 for (m = mb, W = W + ((mb - 1) * 30); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 30, MAKE_VOLATILE_STRIDE(32, rs)) { | |
45 E T2T, T2Q; | |
46 { | |
47 E T3A, T3o, T8, T1I, T2w, T35, T2k, T1s, T2p, T36, T2r, T1F, T3k, T1N, T3z; | |
48 E Tl, T1U, T2W, T1P, Tz, T2g, T30, T25, T11, TB, TE, T2a, T31, T2h, T1e; | |
49 E TC, T1X, TH, TK, TG, TD, TJ; | |
50 { | |
51 E Ta, Td, Tb, T1J, Tg, Tj, Tf, Tc, Ti; | |
52 { | |
53 E T1h, T1k, T1n, T2s, T1i, T1q, T1m, T1j, T1p; | |
54 { | |
55 E T1, T3n, T3, T6, T2, T5; | |
56 T1 = cr[0]; | |
57 T3n = ci[0]; | |
58 T3 = cr[WS(rs, 8)]; | |
59 T6 = ci[WS(rs, 8)]; | |
60 T2 = W[14]; | |
61 T5 = W[15]; | |
62 { | |
63 E T3l, T4, T1g, T3m, T7; | |
64 T1h = cr[WS(rs, 15)]; | |
65 T1k = ci[WS(rs, 15)]; | |
66 T3l = T2 * T6; | |
67 T4 = T2 * T3; | |
68 T1g = W[28]; | |
69 T1n = cr[WS(rs, 7)]; | |
70 T3m = FNMS(T5, T3, T3l); | |
71 T7 = FMA(T5, T6, T4); | |
72 T2s = T1g * T1k; | |
73 T1i = T1g * T1h; | |
74 T3A = T3n - T3m; | |
75 T3o = T3m + T3n; | |
76 T8 = T1 + T7; | |
77 T1I = T1 - T7; | |
78 T1q = ci[WS(rs, 7)]; | |
79 T1m = W[12]; | |
80 } | |
81 T1j = W[29]; | |
82 T1p = W[13]; | |
83 } | |
84 { | |
85 E T1u, T1x, T1v, T2l, T1A, T1D, T1z, T1w, T1C; | |
86 { | |
87 E T2t, T1l, T2v, T1r, T2u, T1o, T1t; | |
88 T1u = cr[WS(rs, 3)]; | |
89 T2u = T1m * T1q; | |
90 T1o = T1m * T1n; | |
91 T2t = FNMS(T1j, T1h, T2s); | |
92 T1l = FMA(T1j, T1k, T1i); | |
93 T2v = FNMS(T1p, T1n, T2u); | |
94 T1r = FMA(T1p, T1q, T1o); | |
95 T1x = ci[WS(rs, 3)]; | |
96 T1t = W[4]; | |
97 T2w = T2t - T2v; | |
98 T35 = T2t + T2v; | |
99 T2k = T1l - T1r; | |
100 T1s = T1l + T1r; | |
101 T1v = T1t * T1u; | |
102 T2l = T1t * T1x; | |
103 } | |
104 T1A = cr[WS(rs, 11)]; | |
105 T1D = ci[WS(rs, 11)]; | |
106 T1z = W[20]; | |
107 T1w = W[5]; | |
108 T1C = W[21]; | |
109 { | |
110 E T2m, T1y, T2o, T1E, T2n, T1B, T9; | |
111 Ta = cr[WS(rs, 4)]; | |
112 T2n = T1z * T1D; | |
113 T1B = T1z * T1A; | |
114 T2m = FNMS(T1w, T1u, T2l); | |
115 T1y = FMA(T1w, T1x, T1v); | |
116 T2o = FNMS(T1C, T1A, T2n); | |
117 T1E = FMA(T1C, T1D, T1B); | |
118 Td = ci[WS(rs, 4)]; | |
119 T9 = W[6]; | |
120 T2p = T2m - T2o; | |
121 T36 = T2m + T2o; | |
122 T2r = T1E - T1y; | |
123 T1F = T1y + T1E; | |
124 Tb = T9 * Ta; | |
125 T1J = T9 * Td; | |
126 } | |
127 Tg = cr[WS(rs, 12)]; | |
128 Tj = ci[WS(rs, 12)]; | |
129 Tf = W[22]; | |
130 Tc = W[7]; | |
131 Ti = W[23]; | |
132 } | |
133 } | |
134 { | |
135 E TQ, TT, TR, T2c, TW, TZ, TV, TS, TY; | |
136 { | |
137 E To, Tr, Tp, T1Q, Tu, Tx, Tt, Tq, Tw; | |
138 { | |
139 E T1K, Te, T1M, Tk, T1L, Th, Tn; | |
140 To = cr[WS(rs, 2)]; | |
141 T1L = Tf * Tj; | |
142 Th = Tf * Tg; | |
143 T1K = FNMS(Tc, Ta, T1J); | |
144 Te = FMA(Tc, Td, Tb); | |
145 T1M = FNMS(Ti, Tg, T1L); | |
146 Tk = FMA(Ti, Tj, Th); | |
147 Tr = ci[WS(rs, 2)]; | |
148 Tn = W[2]; | |
149 T3k = T1K + T1M; | |
150 T1N = T1K - T1M; | |
151 T3z = Te - Tk; | |
152 Tl = Te + Tk; | |
153 Tp = Tn * To; | |
154 T1Q = Tn * Tr; | |
155 } | |
156 Tu = cr[WS(rs, 10)]; | |
157 Tx = ci[WS(rs, 10)]; | |
158 Tt = W[18]; | |
159 Tq = W[3]; | |
160 Tw = W[19]; | |
161 { | |
162 E T1R, Ts, T1T, Ty, T1S, Tv, TP; | |
163 TQ = cr[WS(rs, 1)]; | |
164 T1S = Tt * Tx; | |
165 Tv = Tt * Tu; | |
166 T1R = FNMS(Tq, To, T1Q); | |
167 Ts = FMA(Tq, Tr, Tp); | |
168 T1T = FNMS(Tw, Tu, T1S); | |
169 Ty = FMA(Tw, Tx, Tv); | |
170 TT = ci[WS(rs, 1)]; | |
171 TP = W[0]; | |
172 T1U = T1R - T1T; | |
173 T2W = T1R + T1T; | |
174 T1P = Ts - Ty; | |
175 Tz = Ts + Ty; | |
176 TR = TP * TQ; | |
177 T2c = TP * TT; | |
178 } | |
179 TW = cr[WS(rs, 9)]; | |
180 TZ = ci[WS(rs, 9)]; | |
181 TV = W[16]; | |
182 TS = W[1]; | |
183 TY = W[17]; | |
184 } | |
185 { | |
186 E T13, T16, T14, T26, T19, T1c, T18, T15, T1b; | |
187 { | |
188 E T2d, TU, T2f, T10, T2e, TX, T12; | |
189 T13 = cr[WS(rs, 5)]; | |
190 T2e = TV * TZ; | |
191 TX = TV * TW; | |
192 T2d = FNMS(TS, TQ, T2c); | |
193 TU = FMA(TS, TT, TR); | |
194 T2f = FNMS(TY, TW, T2e); | |
195 T10 = FMA(TY, TZ, TX); | |
196 T16 = ci[WS(rs, 5)]; | |
197 T12 = W[8]; | |
198 T2g = T2d - T2f; | |
199 T30 = T2d + T2f; | |
200 T25 = TU - T10; | |
201 T11 = TU + T10; | |
202 T14 = T12 * T13; | |
203 T26 = T12 * T16; | |
204 } | |
205 T19 = cr[WS(rs, 13)]; | |
206 T1c = ci[WS(rs, 13)]; | |
207 T18 = W[24]; | |
208 T15 = W[9]; | |
209 T1b = W[25]; | |
210 { | |
211 E T27, T17, T29, T1d, T28, T1a, TA; | |
212 TB = cr[WS(rs, 14)]; | |
213 T28 = T18 * T1c; | |
214 T1a = T18 * T19; | |
215 T27 = FNMS(T15, T13, T26); | |
216 T17 = FMA(T15, T16, T14); | |
217 T29 = FNMS(T1b, T19, T28); | |
218 T1d = FMA(T1b, T1c, T1a); | |
219 TE = ci[WS(rs, 14)]; | |
220 TA = W[26]; | |
221 T2a = T27 - T29; | |
222 T31 = T27 + T29; | |
223 T2h = T17 - T1d; | |
224 T1e = T17 + T1d; | |
225 TC = TA * TB; | |
226 T1X = TA * TE; | |
227 } | |
228 TH = cr[WS(rs, 6)]; | |
229 TK = ci[WS(rs, 6)]; | |
230 TG = W[10]; | |
231 TD = W[27]; | |
232 TJ = W[11]; | |
233 } | |
234 } | |
235 } | |
236 { | |
237 E T2U, T3u, T2Z, T21, T1W, T34, T2X, T37, T3t, T3q, T3e, T32, T3i, T3h; | |
238 { | |
239 E T3f, T3r, T1H, T3s, TO, T3g; | |
240 { | |
241 E Tm, T1Y, TF, T20, TL, T3p, T1Z, TI; | |
242 T2U = T8 - Tl; | |
243 Tm = T8 + Tl; | |
244 T1Z = TG * TK; | |
245 TI = TG * TH; | |
246 T1Y = FNMS(TD, TB, T1X); | |
247 TF = FMA(TD, TE, TC); | |
248 T20 = FNMS(TJ, TH, T1Z); | |
249 TL = FMA(TJ, TK, TI); | |
250 T3p = T3k + T3o; | |
251 T3u = T3o - T3k; | |
252 { | |
253 E T1f, TM, T1G, T3j, T2V, TN; | |
254 T2Z = T11 - T1e; | |
255 T1f = T11 + T1e; | |
256 T21 = T1Y - T20; | |
257 T2V = T1Y + T20; | |
258 T1W = TF - TL; | |
259 TM = TF + TL; | |
260 T1G = T1s + T1F; | |
261 T34 = T1s - T1F; | |
262 T2X = T2V - T2W; | |
263 T3j = T2W + T2V; | |
264 T3f = T35 + T36; | |
265 T37 = T35 - T36; | |
266 T3t = Tz - TM; | |
267 TN = Tz + TM; | |
268 T3r = T1G - T1f; | |
269 T1H = T1f + T1G; | |
270 T3s = T3p - T3j; | |
271 T3q = T3j + T3p; | |
272 T3e = Tm - TN; | |
273 TO = Tm + TN; | |
274 T3g = T30 + T31; | |
275 T32 = T30 - T31; | |
276 } | |
277 } | |
278 cr[WS(rs, 12)] = T3r - T3s; | |
279 ci[WS(rs, 11)] = T3r + T3s; | |
280 ci[WS(rs, 7)] = TO - T1H; | |
281 T3i = T3g + T3f; | |
282 T3h = T3f - T3g; | |
283 cr[0] = TO + T1H; | |
284 } | |
285 { | |
286 E T3a, T2Y, T3x, T3v; | |
287 ci[WS(rs, 15)] = T3i + T3q; | |
288 cr[WS(rs, 8)] = T3i - T3q; | |
289 ci[WS(rs, 3)] = T3e + T3h; | |
290 cr[WS(rs, 4)] = T3e - T3h; | |
291 T3a = T2U + T2X; | |
292 T2Y = T2U - T2X; | |
293 T3x = T3u - T3t; | |
294 T3v = T3t + T3u; | |
295 { | |
296 E T2E, T1O, T3B, T3H, T2q, T2x, T3I, T23, T2R, T2O, T2J, T2K, T3C, T2H, T2B; | |
297 E T2j; | |
298 { | |
299 E T2F, T1V, T22, T2G; | |
300 { | |
301 E T3b, T33, T3c, T38; | |
302 T2E = T1I + T1N; | |
303 T1O = T1I - T1N; | |
304 T3b = T2Z - T32; | |
305 T33 = T2Z + T32; | |
306 T3c = T34 + T37; | |
307 T38 = T34 - T37; | |
308 T3B = T3z + T3A; | |
309 T3H = T3A - T3z; | |
310 { | |
311 E T3d, T3y, T3w, T39; | |
312 T3d = T3b + T3c; | |
313 T3y = T3c - T3b; | |
314 T3w = T38 - T33; | |
315 T39 = T33 + T38; | |
316 ci[WS(rs, 1)] = FMA(KP707106781, T3d, T3a); | |
317 cr[WS(rs, 6)] = FNMS(KP707106781, T3d, T3a); | |
318 ci[WS(rs, 13)] = FMA(KP707106781, T3y, T3x); | |
319 cr[WS(rs, 10)] = FMS(KP707106781, T3y, T3x); | |
320 ci[WS(rs, 9)] = FMA(KP707106781, T3w, T3v); | |
321 cr[WS(rs, 14)] = FMS(KP707106781, T3w, T3v); | |
322 cr[WS(rs, 2)] = FMA(KP707106781, T39, T2Y); | |
323 ci[WS(rs, 5)] = FNMS(KP707106781, T39, T2Y); | |
324 T2F = T1P + T1U; | |
325 T1V = T1P - T1U; | |
326 T22 = T1W + T21; | |
327 T2G = T1W - T21; | |
328 } | |
329 } | |
330 { | |
331 E T2M, T2N, T2b, T2i; | |
332 T2q = T2k - T2p; | |
333 T2M = T2k + T2p; | |
334 T2N = T2w + T2r; | |
335 T2x = T2r - T2w; | |
336 T3I = T22 - T1V; | |
337 T23 = T1V + T22; | |
338 T2R = FMA(KP414213562, T2M, T2N); | |
339 T2O = FNMS(KP414213562, T2N, T2M); | |
340 T2J = T25 + T2a; | |
341 T2b = T25 - T2a; | |
342 T2i = T2g + T2h; | |
343 T2K = T2g - T2h; | |
344 T3C = T2F - T2G; | |
345 T2H = T2F + T2G; | |
346 T2B = FMA(KP414213562, T2b, T2i); | |
347 T2j = FNMS(KP414213562, T2i, T2b); | |
348 } | |
349 } | |
350 { | |
351 E T2A, T3G, T2P, T2D, T3E, T3F, T3D, T2I; | |
352 { | |
353 E T24, T2L, T2C, T2y, T3J, T3L, T3K, T2S, T2z, T3M; | |
354 T2A = FNMS(KP707106781, T23, T1O); | |
355 T24 = FMA(KP707106781, T23, T1O); | |
356 T2S = FNMS(KP414213562, T2J, T2K); | |
357 T2L = FMA(KP414213562, T2K, T2J); | |
358 T2C = FMA(KP414213562, T2q, T2x); | |
359 T2y = FNMS(KP414213562, T2x, T2q); | |
360 T3J = FMA(KP707106781, T3I, T3H); | |
361 T3L = FNMS(KP707106781, T3I, T3H); | |
362 T2T = T2R - T2S; | |
363 T3K = T2S + T2R; | |
364 T3G = T2y - T2j; | |
365 T2z = T2j + T2y; | |
366 T3M = T2O - T2L; | |
367 T2P = T2L + T2O; | |
368 ci[WS(rs, 14)] = FMA(KP923879532, T3K, T3J); | |
369 cr[WS(rs, 9)] = FMS(KP923879532, T3K, T3J); | |
370 ci[0] = FMA(KP923879532, T2z, T24); | |
371 cr[WS(rs, 7)] = FNMS(KP923879532, T2z, T24); | |
372 cr[WS(rs, 13)] = FMS(KP923879532, T3M, T3L); | |
373 ci[WS(rs, 10)] = FMA(KP923879532, T3M, T3L); | |
374 T2D = T2B + T2C; | |
375 T3E = T2C - T2B; | |
376 } | |
377 T2Q = FNMS(KP707106781, T2H, T2E); | |
378 T2I = FMA(KP707106781, T2H, T2E); | |
379 T3F = FNMS(KP707106781, T3C, T3B); | |
380 T3D = FMA(KP707106781, T3C, T3B); | |
381 cr[WS(rs, 3)] = FMA(KP923879532, T2D, T2A); | |
382 ci[WS(rs, 4)] = FNMS(KP923879532, T2D, T2A); | |
383 cr[WS(rs, 1)] = FMA(KP923879532, T2P, T2I); | |
384 ci[WS(rs, 6)] = FNMS(KP923879532, T2P, T2I); | |
385 ci[WS(rs, 8)] = FMA(KP923879532, T3E, T3D); | |
386 cr[WS(rs, 15)] = FMS(KP923879532, T3E, T3D); | |
387 ci[WS(rs, 12)] = FMA(KP923879532, T3G, T3F); | |
388 cr[WS(rs, 11)] = FMS(KP923879532, T3G, T3F); | |
389 } | |
390 } | |
391 } | |
392 } | |
393 } | |
394 ci[WS(rs, 2)] = FMA(KP923879532, T2T, T2Q); | |
395 cr[WS(rs, 5)] = FNMS(KP923879532, T2T, T2Q); | |
396 } | |
397 } | |
398 } | |
399 | |
400 static const tw_instr twinstr[] = { | |
401 {TW_FULL, 1, 16}, | |
402 {TW_NEXT, 1, 0} | |
403 }; | |
404 | |
405 static const hc2hc_desc desc = { 16, "hf_16", twinstr, &GENUS, {104, 30, 70, 0} }; | |
406 | |
407 void X(codelet_hf_16) (planner *p) { | |
408 X(khc2hc_register) (p, hf_16, &desc); | |
409 } | |
410 #else /* HAVE_FMA */ | |
411 | |
412 /* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -n 16 -dit -name hf_16 -include hf.h */ | |
413 | |
414 /* | |
415 * This function contains 174 FP additions, 84 FP multiplications, | |
416 * (or, 136 additions, 46 multiplications, 38 fused multiply/add), | |
417 * 52 stack variables, 3 constants, and 64 memory accesses | |
418 */ | |
419 #include "hf.h" | |
420 | |
421 static void hf_16(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) | |
422 { | |
423 DK(KP382683432, +0.382683432365089771728459984030398866761344562); | |
424 DK(KP923879532, +0.923879532511286756128183189396788286822416626); | |
425 DK(KP707106781, +0.707106781186547524400844362104849039284835938); | |
426 { | |
427 INT m; | |
428 for (m = mb, W = W + ((mb - 1) * 30); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 30, MAKE_VOLATILE_STRIDE(32, rs)) { | |
429 E T7, T38, T1t, T2U, Ti, T37, T1w, T2R, Tu, T2t, T1C, T2c, TF, T2s, T1H; | |
430 E T2d, T1f, T1q, T2B, T2C, T2D, T2E, T1Z, T2k, T24, T2j, TS, T13, T2w, T2x; | |
431 E T2y, T2z, T1O, T2h, T1T, T2g; | |
432 { | |
433 E T1, T2T, T6, T2S; | |
434 T1 = cr[0]; | |
435 T2T = ci[0]; | |
436 { | |
437 E T3, T5, T2, T4; | |
438 T3 = cr[WS(rs, 8)]; | |
439 T5 = ci[WS(rs, 8)]; | |
440 T2 = W[14]; | |
441 T4 = W[15]; | |
442 T6 = FMA(T2, T3, T4 * T5); | |
443 T2S = FNMS(T4, T3, T2 * T5); | |
444 } | |
445 T7 = T1 + T6; | |
446 T38 = T2T - T2S; | |
447 T1t = T1 - T6; | |
448 T2U = T2S + T2T; | |
449 } | |
450 { | |
451 E Tc, T1u, Th, T1v; | |
452 { | |
453 E T9, Tb, T8, Ta; | |
454 T9 = cr[WS(rs, 4)]; | |
455 Tb = ci[WS(rs, 4)]; | |
456 T8 = W[6]; | |
457 Ta = W[7]; | |
458 Tc = FMA(T8, T9, Ta * Tb); | |
459 T1u = FNMS(Ta, T9, T8 * Tb); | |
460 } | |
461 { | |
462 E Te, Tg, Td, Tf; | |
463 Te = cr[WS(rs, 12)]; | |
464 Tg = ci[WS(rs, 12)]; | |
465 Td = W[22]; | |
466 Tf = W[23]; | |
467 Th = FMA(Td, Te, Tf * Tg); | |
468 T1v = FNMS(Tf, Te, Td * Tg); | |
469 } | |
470 Ti = Tc + Th; | |
471 T37 = Tc - Th; | |
472 T1w = T1u - T1v; | |
473 T2R = T1u + T1v; | |
474 } | |
475 { | |
476 E To, T1z, Tt, T1A, T1y, T1B; | |
477 { | |
478 E Tl, Tn, Tk, Tm; | |
479 Tl = cr[WS(rs, 2)]; | |
480 Tn = ci[WS(rs, 2)]; | |
481 Tk = W[2]; | |
482 Tm = W[3]; | |
483 To = FMA(Tk, Tl, Tm * Tn); | |
484 T1z = FNMS(Tm, Tl, Tk * Tn); | |
485 } | |
486 { | |
487 E Tq, Ts, Tp, Tr; | |
488 Tq = cr[WS(rs, 10)]; | |
489 Ts = ci[WS(rs, 10)]; | |
490 Tp = W[18]; | |
491 Tr = W[19]; | |
492 Tt = FMA(Tp, Tq, Tr * Ts); | |
493 T1A = FNMS(Tr, Tq, Tp * Ts); | |
494 } | |
495 Tu = To + Tt; | |
496 T2t = T1z + T1A; | |
497 T1y = To - Tt; | |
498 T1B = T1z - T1A; | |
499 T1C = T1y - T1B; | |
500 T2c = T1y + T1B; | |
501 } | |
502 { | |
503 E Tz, T1E, TE, T1F, T1D, T1G; | |
504 { | |
505 E Tw, Ty, Tv, Tx; | |
506 Tw = cr[WS(rs, 14)]; | |
507 Ty = ci[WS(rs, 14)]; | |
508 Tv = W[26]; | |
509 Tx = W[27]; | |
510 Tz = FMA(Tv, Tw, Tx * Ty); | |
511 T1E = FNMS(Tx, Tw, Tv * Ty); | |
512 } | |
513 { | |
514 E TB, TD, TA, TC; | |
515 TB = cr[WS(rs, 6)]; | |
516 TD = ci[WS(rs, 6)]; | |
517 TA = W[10]; | |
518 TC = W[11]; | |
519 TE = FMA(TA, TB, TC * TD); | |
520 T1F = FNMS(TC, TB, TA * TD); | |
521 } | |
522 TF = Tz + TE; | |
523 T2s = T1E + T1F; | |
524 T1D = Tz - TE; | |
525 T1G = T1E - T1F; | |
526 T1H = T1D + T1G; | |
527 T2d = T1D - T1G; | |
528 } | |
529 { | |
530 E T19, T1V, T1p, T22, T1e, T1W, T1k, T21; | |
531 { | |
532 E T16, T18, T15, T17; | |
533 T16 = cr[WS(rs, 15)]; | |
534 T18 = ci[WS(rs, 15)]; | |
535 T15 = W[28]; | |
536 T17 = W[29]; | |
537 T19 = FMA(T15, T16, T17 * T18); | |
538 T1V = FNMS(T17, T16, T15 * T18); | |
539 } | |
540 { | |
541 E T1m, T1o, T1l, T1n; | |
542 T1m = cr[WS(rs, 11)]; | |
543 T1o = ci[WS(rs, 11)]; | |
544 T1l = W[20]; | |
545 T1n = W[21]; | |
546 T1p = FMA(T1l, T1m, T1n * T1o); | |
547 T22 = FNMS(T1n, T1m, T1l * T1o); | |
548 } | |
549 { | |
550 E T1b, T1d, T1a, T1c; | |
551 T1b = cr[WS(rs, 7)]; | |
552 T1d = ci[WS(rs, 7)]; | |
553 T1a = W[12]; | |
554 T1c = W[13]; | |
555 T1e = FMA(T1a, T1b, T1c * T1d); | |
556 T1W = FNMS(T1c, T1b, T1a * T1d); | |
557 } | |
558 { | |
559 E T1h, T1j, T1g, T1i; | |
560 T1h = cr[WS(rs, 3)]; | |
561 T1j = ci[WS(rs, 3)]; | |
562 T1g = W[4]; | |
563 T1i = W[5]; | |
564 T1k = FMA(T1g, T1h, T1i * T1j); | |
565 T21 = FNMS(T1i, T1h, T1g * T1j); | |
566 } | |
567 T1f = T19 + T1e; | |
568 T1q = T1k + T1p; | |
569 T2B = T1f - T1q; | |
570 T2C = T1V + T1W; | |
571 T2D = T21 + T22; | |
572 T2E = T2C - T2D; | |
573 { | |
574 E T1X, T1Y, T20, T23; | |
575 T1X = T1V - T1W; | |
576 T1Y = T1k - T1p; | |
577 T1Z = T1X + T1Y; | |
578 T2k = T1X - T1Y; | |
579 T20 = T19 - T1e; | |
580 T23 = T21 - T22; | |
581 T24 = T20 - T23; | |
582 T2j = T20 + T23; | |
583 } | |
584 } | |
585 { | |
586 E TM, T1P, T12, T1M, TR, T1Q, TX, T1L; | |
587 { | |
588 E TJ, TL, TI, TK; | |
589 TJ = cr[WS(rs, 1)]; | |
590 TL = ci[WS(rs, 1)]; | |
591 TI = W[0]; | |
592 TK = W[1]; | |
593 TM = FMA(TI, TJ, TK * TL); | |
594 T1P = FNMS(TK, TJ, TI * TL); | |
595 } | |
596 { | |
597 E TZ, T11, TY, T10; | |
598 TZ = cr[WS(rs, 13)]; | |
599 T11 = ci[WS(rs, 13)]; | |
600 TY = W[24]; | |
601 T10 = W[25]; | |
602 T12 = FMA(TY, TZ, T10 * T11); | |
603 T1M = FNMS(T10, TZ, TY * T11); | |
604 } | |
605 { | |
606 E TO, TQ, TN, TP; | |
607 TO = cr[WS(rs, 9)]; | |
608 TQ = ci[WS(rs, 9)]; | |
609 TN = W[16]; | |
610 TP = W[17]; | |
611 TR = FMA(TN, TO, TP * TQ); | |
612 T1Q = FNMS(TP, TO, TN * TQ); | |
613 } | |
614 { | |
615 E TU, TW, TT, TV; | |
616 TU = cr[WS(rs, 5)]; | |
617 TW = ci[WS(rs, 5)]; | |
618 TT = W[8]; | |
619 TV = W[9]; | |
620 TX = FMA(TT, TU, TV * TW); | |
621 T1L = FNMS(TV, TU, TT * TW); | |
622 } | |
623 TS = TM + TR; | |
624 T13 = TX + T12; | |
625 T2w = TS - T13; | |
626 T2x = T1P + T1Q; | |
627 T2y = T1L + T1M; | |
628 T2z = T2x - T2y; | |
629 { | |
630 E T1K, T1N, T1R, T1S; | |
631 T1K = TM - TR; | |
632 T1N = T1L - T1M; | |
633 T1O = T1K - T1N; | |
634 T2h = T1K + T1N; | |
635 T1R = T1P - T1Q; | |
636 T1S = TX - T12; | |
637 T1T = T1R + T1S; | |
638 T2g = T1R - T1S; | |
639 } | |
640 } | |
641 { | |
642 E T1J, T27, T3a, T3c, T26, T3b, T2a, T35; | |
643 { | |
644 E T1x, T1I, T36, T39; | |
645 T1x = T1t - T1w; | |
646 T1I = KP707106781 * (T1C + T1H); | |
647 T1J = T1x + T1I; | |
648 T27 = T1x - T1I; | |
649 T36 = KP707106781 * (T2c - T2d); | |
650 T39 = T37 + T38; | |
651 T3a = T36 + T39; | |
652 T3c = T39 - T36; | |
653 } | |
654 { | |
655 E T1U, T25, T28, T29; | |
656 T1U = FNMS(KP382683432, T1T, KP923879532 * T1O); | |
657 T25 = FMA(KP382683432, T1Z, KP923879532 * T24); | |
658 T26 = T1U + T25; | |
659 T3b = T25 - T1U; | |
660 T28 = FMA(KP923879532, T1T, KP382683432 * T1O); | |
661 T29 = FNMS(KP923879532, T1Z, KP382683432 * T24); | |
662 T2a = T28 + T29; | |
663 T35 = T29 - T28; | |
664 } | |
665 cr[WS(rs, 7)] = T1J - T26; | |
666 cr[WS(rs, 11)] = T3b - T3c; | |
667 ci[WS(rs, 12)] = T3b + T3c; | |
668 ci[0] = T1J + T26; | |
669 ci[WS(rs, 4)] = T27 - T2a; | |
670 cr[WS(rs, 15)] = T35 - T3a; | |
671 ci[WS(rs, 8)] = T35 + T3a; | |
672 cr[WS(rs, 3)] = T27 + T2a; | |
673 } | |
674 { | |
675 E TH, T2L, T2W, T2Y, T1s, T2X, T2O, T2P; | |
676 { | |
677 E Tj, TG, T2Q, T2V; | |
678 Tj = T7 + Ti; | |
679 TG = Tu + TF; | |
680 TH = Tj + TG; | |
681 T2L = Tj - TG; | |
682 T2Q = T2t + T2s; | |
683 T2V = T2R + T2U; | |
684 T2W = T2Q + T2V; | |
685 T2Y = T2V - T2Q; | |
686 } | |
687 { | |
688 E T14, T1r, T2M, T2N; | |
689 T14 = TS + T13; | |
690 T1r = T1f + T1q; | |
691 T1s = T14 + T1r; | |
692 T2X = T1r - T14; | |
693 T2M = T2C + T2D; | |
694 T2N = T2x + T2y; | |
695 T2O = T2M - T2N; | |
696 T2P = T2N + T2M; | |
697 } | |
698 ci[WS(rs, 7)] = TH - T1s; | |
699 cr[WS(rs, 12)] = T2X - T2Y; | |
700 ci[WS(rs, 11)] = T2X + T2Y; | |
701 cr[0] = TH + T1s; | |
702 cr[WS(rs, 4)] = T2L - T2O; | |
703 cr[WS(rs, 8)] = T2P - T2W; | |
704 ci[WS(rs, 15)] = T2P + T2W; | |
705 ci[WS(rs, 3)] = T2L + T2O; | |
706 } | |
707 { | |
708 E T2f, T2n, T3g, T3i, T2m, T3h, T2q, T3d; | |
709 { | |
710 E T2b, T2e, T3e, T3f; | |
711 T2b = T1t + T1w; | |
712 T2e = KP707106781 * (T2c + T2d); | |
713 T2f = T2b + T2e; | |
714 T2n = T2b - T2e; | |
715 T3e = KP707106781 * (T1H - T1C); | |
716 T3f = T38 - T37; | |
717 T3g = T3e + T3f; | |
718 T3i = T3f - T3e; | |
719 } | |
720 { | |
721 E T2i, T2l, T2o, T2p; | |
722 T2i = FMA(KP382683432, T2g, KP923879532 * T2h); | |
723 T2l = FNMS(KP382683432, T2k, KP923879532 * T2j); | |
724 T2m = T2i + T2l; | |
725 T3h = T2l - T2i; | |
726 T2o = FNMS(KP923879532, T2g, KP382683432 * T2h); | |
727 T2p = FMA(KP923879532, T2k, KP382683432 * T2j); | |
728 T2q = T2o + T2p; | |
729 T3d = T2p - T2o; | |
730 } | |
731 ci[WS(rs, 6)] = T2f - T2m; | |
732 cr[WS(rs, 13)] = T3h - T3i; | |
733 ci[WS(rs, 10)] = T3h + T3i; | |
734 cr[WS(rs, 1)] = T2f + T2m; | |
735 cr[WS(rs, 5)] = T2n - T2q; | |
736 cr[WS(rs, 9)] = T3d - T3g; | |
737 ci[WS(rs, 14)] = T3d + T3g; | |
738 ci[WS(rs, 2)] = T2n + T2q; | |
739 } | |
740 { | |
741 E T2v, T2H, T32, T34, T2G, T2Z, T2K, T33; | |
742 { | |
743 E T2r, T2u, T30, T31; | |
744 T2r = T7 - Ti; | |
745 T2u = T2s - T2t; | |
746 T2v = T2r - T2u; | |
747 T2H = T2r + T2u; | |
748 T30 = Tu - TF; | |
749 T31 = T2U - T2R; | |
750 T32 = T30 + T31; | |
751 T34 = T31 - T30; | |
752 } | |
753 { | |
754 E T2A, T2F, T2I, T2J; | |
755 T2A = T2w + T2z; | |
756 T2F = T2B - T2E; | |
757 T2G = KP707106781 * (T2A + T2F); | |
758 T2Z = KP707106781 * (T2F - T2A); | |
759 T2I = T2w - T2z; | |
760 T2J = T2B + T2E; | |
761 T2K = KP707106781 * (T2I + T2J); | |
762 T33 = KP707106781 * (T2J - T2I); | |
763 } | |
764 ci[WS(rs, 5)] = T2v - T2G; | |
765 cr[WS(rs, 10)] = T33 - T34; | |
766 ci[WS(rs, 13)] = T33 + T34; | |
767 cr[WS(rs, 2)] = T2v + T2G; | |
768 cr[WS(rs, 6)] = T2H - T2K; | |
769 cr[WS(rs, 14)] = T2Z - T32; | |
770 ci[WS(rs, 9)] = T2Z + T32; | |
771 ci[WS(rs, 1)] = T2H + T2K; | |
772 } | |
773 } | |
774 } | |
775 } | |
776 | |
777 static const tw_instr twinstr[] = { | |
778 {TW_FULL, 1, 16}, | |
779 {TW_NEXT, 1, 0} | |
780 }; | |
781 | |
782 static const hc2hc_desc desc = { 16, "hf_16", twinstr, &GENUS, {136, 46, 38, 0} }; | |
783 | |
784 void X(codelet_hf_16) (planner *p) { | |
785 X(khc2hc_register) (p, hf_16, &desc); | |
786 } | |
787 #endif /* HAVE_FMA */ |