Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.3/rdft/scalar/r2cf/hc2cfdft_12.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
9:c0fb53affa76 | 10:37bf6b4a2645 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-11 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Sun Nov 25 07:40:45 EST 2012 */ | |
23 | |
24 #include "codelet-rdft.h" | |
25 | |
26 #ifdef HAVE_FMA | |
27 | |
28 /* Generated by: ../../../genfft/gen_hc2cdft.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 12 -dit -name hc2cfdft_12 -include hc2cf.h */ | |
29 | |
30 /* | |
31 * This function contains 142 FP additions, 92 FP multiplications, | |
32 * (or, 96 additions, 46 multiplications, 46 fused multiply/add), | |
33 * 71 stack variables, 2 constants, and 48 memory accesses | |
34 */ | |
35 #include "hc2cf.h" | |
36 | |
37 static void hc2cfdft_12(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) | |
38 { | |
39 DK(KP866025403, +0.866025403784438646763723170752936183471402627); | |
40 DK(KP500000000, +0.500000000000000000000000000000000000000000000); | |
41 { | |
42 INT m; | |
43 for (m = mb, W = W + ((mb - 1) * 22); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 22, MAKE_VOLATILE_STRIDE(48, rs)) { | |
44 E T2z, T2M; | |
45 { | |
46 E To, T1E, T2H, T1m, T1W, Tl, T1J, T2i, T2K, T1B, T2I, T2e, T19, T2E, T2C; | |
47 E T27, T1M, Tz, T2B, T1f, T1O, TJ, TT, T1Q; | |
48 { | |
49 E T2b, T1s, T1A, T2d; | |
50 { | |
51 E T1u, T1z, T1v, T2c, T1i, Te, T1l, Tj, Tf, T1H, T4, T1o, T1, T1r, T9; | |
52 E T1n, T5; | |
53 { | |
54 E T1x, T1y, T1t, Tm, Tn; | |
55 Tm = Ip[0]; | |
56 Tn = Im[0]; | |
57 T1x = Rp[0]; | |
58 T1y = Rm[0]; | |
59 T1t = W[0]; | |
60 T1u = Tm + Tn; | |
61 To = Tm - Tn; | |
62 { | |
63 E Th, Ti, Tb, Tc, Td; | |
64 Tc = Ip[WS(rs, 4)]; | |
65 T1z = T1x - T1y; | |
66 T1E = T1x + T1y; | |
67 Td = Im[WS(rs, 4)]; | |
68 T1v = T1t * T1u; | |
69 Th = Rp[WS(rs, 4)]; | |
70 T2c = T1t * T1z; | |
71 T1i = Tc + Td; | |
72 Te = Tc - Td; | |
73 Ti = Rm[WS(rs, 4)]; | |
74 Tb = W[14]; | |
75 { | |
76 E T7, T8, T2, T3; | |
77 T2 = Ip[WS(rs, 2)]; | |
78 T1l = Th - Ti; | |
79 Tj = Th + Ti; | |
80 Tf = Tb * Te; | |
81 T3 = Im[WS(rs, 2)]; | |
82 T7 = Rp[WS(rs, 2)]; | |
83 T1H = Tb * Tj; | |
84 T8 = Rm[WS(rs, 2)]; | |
85 T4 = T2 - T3; | |
86 T1o = T2 + T3; | |
87 T1 = W[6]; | |
88 T1r = T7 - T8; | |
89 T9 = T7 + T8; | |
90 T1n = W[8]; | |
91 T5 = T1 * T4; | |
92 } | |
93 } | |
94 } | |
95 { | |
96 E T1F, T2a, T1p, T1h, T1k; | |
97 T1F = T1 * T9; | |
98 T2a = T1n * T1r; | |
99 T1p = T1n * T1o; | |
100 T1h = W[16]; | |
101 T1k = W[17]; | |
102 { | |
103 E T1G, Ta, Tk, T1I, T1q, T1w; | |
104 { | |
105 E T6, Tg, T2G, T1j; | |
106 T6 = W[7]; | |
107 Tg = W[15]; | |
108 T2G = T1h * T1l; | |
109 T1j = T1h * T1i; | |
110 T1G = FMA(T6, T4, T1F); | |
111 Ta = FNMS(T6, T9, T5); | |
112 T2H = FMA(T1k, T1i, T2G); | |
113 T1m = FNMS(T1k, T1l, T1j); | |
114 Tk = FNMS(Tg, Tj, Tf); | |
115 T1I = FMA(Tg, Te, T1H); | |
116 } | |
117 T1q = W[9]; | |
118 T1w = W[1]; | |
119 T1W = Ta - Tk; | |
120 Tl = Ta + Tk; | |
121 T1J = T1G + T1I; | |
122 T2i = T1I - T1G; | |
123 T2b = FMA(T1q, T1o, T2a); | |
124 T1s = FNMS(T1q, T1r, T1p); | |
125 T1A = FNMS(T1w, T1z, T1v); | |
126 T2d = FMA(T1w, T1u, T2c); | |
127 } | |
128 } | |
129 } | |
130 { | |
131 E T11, Tt, T10, TX, Ty, TZ, T23, T1b, TN, TS, T1e, T1P, TO, T17, TD; | |
132 E T16, T13, T14, TI, TA; | |
133 { | |
134 E Tw, Tx, Tr, Ts, TK; | |
135 Tr = Ip[WS(rs, 3)]; | |
136 Ts = Im[WS(rs, 3)]; | |
137 T2K = T1s - T1A; | |
138 T1B = T1s + T1A; | |
139 T2I = T2b + T2d; | |
140 T2e = T2b - T2d; | |
141 Tw = Rp[WS(rs, 3)]; | |
142 T11 = Tr + Ts; | |
143 Tt = Tr - Ts; | |
144 Tx = Rm[WS(rs, 3)]; | |
145 T10 = W[12]; | |
146 TX = W[13]; | |
147 { | |
148 E TL, TY, TM, TQ, TR; | |
149 TL = Ip[WS(rs, 1)]; | |
150 Ty = Tw + Tx; | |
151 TY = Tx - Tw; | |
152 TM = Im[WS(rs, 1)]; | |
153 TQ = Rp[WS(rs, 1)]; | |
154 TR = Rm[WS(rs, 1)]; | |
155 TZ = TX * TY; | |
156 T23 = T10 * TY; | |
157 T1b = TL + TM; | |
158 TN = TL - TM; | |
159 TS = TQ + TR; | |
160 T1e = TQ - TR; | |
161 } | |
162 TK = W[2]; | |
163 { | |
164 E TG, TH, TB, TC; | |
165 TB = Ip[WS(rs, 5)]; | |
166 TC = Im[WS(rs, 5)]; | |
167 TG = Rp[WS(rs, 5)]; | |
168 T1P = TK * TS; | |
169 TO = TK * TN; | |
170 T17 = TB + TC; | |
171 TD = TB - TC; | |
172 TH = Rm[WS(rs, 5)]; | |
173 T16 = W[20]; | |
174 T13 = W[21]; | |
175 T14 = TH - TG; | |
176 TI = TG + TH; | |
177 TA = W[18]; | |
178 } | |
179 } | |
180 { | |
181 E T12, T1N, TE, T18, T24, T26, T25, T15; | |
182 T12 = FMA(T10, T11, TZ); | |
183 T15 = T13 * T14; | |
184 T25 = T16 * T14; | |
185 T1N = TA * TI; | |
186 TE = TA * TD; | |
187 T18 = FMA(T16, T17, T15); | |
188 T24 = FNMS(TX, T11, T23); | |
189 T26 = FNMS(T13, T17, T25); | |
190 { | |
191 E Tv, T1L, Tu, Tq; | |
192 Tq = W[10]; | |
193 T19 = T12 + T18; | |
194 T2E = T18 - T12; | |
195 Tv = W[11]; | |
196 T2C = T24 + T26; | |
197 T27 = T24 - T26; | |
198 T1L = Tq * Ty; | |
199 Tu = Tq * Tt; | |
200 { | |
201 E T1d, T2A, T1c, T1a, TF, TP; | |
202 T1a = W[4]; | |
203 T1d = W[5]; | |
204 T1M = FMA(Tv, Tt, T1L); | |
205 Tz = FNMS(Tv, Ty, Tu); | |
206 T2A = T1a * T1e; | |
207 T1c = T1a * T1b; | |
208 TF = W[19]; | |
209 TP = W[3]; | |
210 T2B = FMA(T1d, T1b, T2A); | |
211 T1f = FNMS(T1d, T1e, T1c); | |
212 T1O = FMA(TF, TD, T1N); | |
213 TJ = FNMS(TF, TI, TE); | |
214 TT = FNMS(TP, TS, TO); | |
215 T1Q = FMA(TP, TN, T1P); | |
216 } | |
217 } | |
218 } | |
219 } | |
220 } | |
221 { | |
222 E T2h, T2D, T1Z, T2l, T2J, T22, T2k, T29, T30, T1U, T1V, T1Y, T2Z, T1T; | |
223 { | |
224 E T2Y, TW, T2V, T1D, T1K, T1S; | |
225 { | |
226 E Tp, T2W, TU, T1R, T2X, T1g, TV, T1C; | |
227 T2h = FNMS(KP500000000, Tl, To); | |
228 Tp = Tl + To; | |
229 T2W = T2C - T2B; | |
230 T2D = FMA(KP500000000, T2C, T2B); | |
231 T1Z = TJ - TT; | |
232 TU = TJ + TT; | |
233 T1R = T1O + T1Q; | |
234 T2l = T1Q - T1O; | |
235 T2J = FNMS(KP500000000, T2I, T2H); | |
236 T2X = T2H + T2I; | |
237 T1g = T19 + T1f; | |
238 T22 = FNMS(KP500000000, T19, T1f); | |
239 T2k = FNMS(KP500000000, TU, Tz); | |
240 TV = Tz + TU; | |
241 T1C = T1m + T1B; | |
242 T29 = FNMS(KP500000000, T1B, T1m); | |
243 T2Y = T2W - T2X; | |
244 T30 = T2W + T2X; | |
245 TW = Tp - TV; | |
246 T2V = TV + Tp; | |
247 T1U = T1g + T1C; | |
248 T1D = T1g - T1C; | |
249 T1V = FNMS(KP500000000, T1J, T1E); | |
250 T1K = T1E + T1J; | |
251 T1S = T1M + T1R; | |
252 T1Y = FNMS(KP500000000, T1R, T1M); | |
253 } | |
254 Ip[WS(rs, 3)] = KP500000000 * (TW + T1D); | |
255 Im[WS(rs, 2)] = KP500000000 * (T1D - TW); | |
256 Im[WS(rs, 5)] = KP500000000 * (T2Y - T2V); | |
257 T2Z = T1K - T1S; | |
258 T1T = T1K + T1S; | |
259 Ip[0] = KP500000000 * (T2V + T2Y); | |
260 } | |
261 { | |
262 E T2v, T1X, T2Q, T2F, T2R, T2L, T2w, T20, T2t, T28, T2p, T2j; | |
263 Rm[WS(rs, 2)] = KP500000000 * (T2Z + T30); | |
264 Rp[WS(rs, 3)] = KP500000000 * (T2Z - T30); | |
265 Rp[0] = KP500000000 * (T1T + T1U); | |
266 Rm[WS(rs, 5)] = KP500000000 * (T1T - T1U); | |
267 T2v = FMA(KP866025403, T1W, T1V); | |
268 T1X = FNMS(KP866025403, T1W, T1V); | |
269 T2Q = FMA(KP866025403, T2E, T2D); | |
270 T2F = FNMS(KP866025403, T2E, T2D); | |
271 T2R = FMA(KP866025403, T2K, T2J); | |
272 T2L = FNMS(KP866025403, T2K, T2J); | |
273 T2w = FMA(KP866025403, T1Z, T1Y); | |
274 T20 = FNMS(KP866025403, T1Z, T1Y); | |
275 T2t = FMA(KP866025403, T27, T22); | |
276 T28 = FNMS(KP866025403, T27, T22); | |
277 T2p = FMA(KP866025403, T2i, T2h); | |
278 T2j = FNMS(KP866025403, T2i, T2h); | |
279 { | |
280 E T2T, T2q, T2s, T2U; | |
281 { | |
282 E T21, T2f, T2S, T2n, T2P, T2m, T2o, T2g; | |
283 T2T = T1X - T20; | |
284 T21 = T1X + T20; | |
285 T2q = FMA(KP866025403, T2l, T2k); | |
286 T2m = FNMS(KP866025403, T2l, T2k); | |
287 T2s = FMA(KP866025403, T2e, T29); | |
288 T2f = FNMS(KP866025403, T2e, T29); | |
289 T2S = T2Q + T2R; | |
290 T2U = T2R - T2Q; | |
291 T2n = T2j - T2m; | |
292 T2P = T2m + T2j; | |
293 T2o = T2f - T28; | |
294 T2g = T28 + T2f; | |
295 Im[WS(rs, 3)] = KP500000000 * (T2S - T2P); | |
296 Ip[WS(rs, 2)] = KP500000000 * (T2P + T2S); | |
297 Rm[WS(rs, 3)] = KP500000000 * (T21 + T2g); | |
298 Rp[WS(rs, 2)] = KP500000000 * (T21 - T2g); | |
299 Ip[WS(rs, 5)] = KP500000000 * (T2n + T2o); | |
300 Im[0] = KP500000000 * (T2o - T2n); | |
301 } | |
302 { | |
303 E T2y, T2x, T2N, T2O, T2r, T2u; | |
304 T2z = T2q + T2p; | |
305 T2r = T2p - T2q; | |
306 T2u = T2s - T2t; | |
307 T2y = T2t + T2s; | |
308 T2x = T2v + T2w; | |
309 T2N = T2v - T2w; | |
310 Rp[WS(rs, 5)] = KP500000000 * (T2T + T2U); | |
311 Rm[0] = KP500000000 * (T2T - T2U); | |
312 Im[WS(rs, 4)] = KP500000000 * (T2u - T2r); | |
313 Ip[WS(rs, 1)] = KP500000000 * (T2r + T2u); | |
314 T2O = T2L - T2F; | |
315 T2M = T2F + T2L; | |
316 Rp[WS(rs, 1)] = KP500000000 * (T2N + T2O); | |
317 Rm[WS(rs, 4)] = KP500000000 * (T2N - T2O); | |
318 Rp[WS(rs, 4)] = KP500000000 * (T2x + T2y); | |
319 Rm[WS(rs, 1)] = KP500000000 * (T2x - T2y); | |
320 } | |
321 } | |
322 } | |
323 } | |
324 } | |
325 Im[WS(rs, 1)] = -(KP500000000 * (T2z + T2M)); | |
326 Ip[WS(rs, 4)] = KP500000000 * (T2z - T2M); | |
327 } | |
328 } | |
329 } | |
330 | |
331 static const tw_instr twinstr[] = { | |
332 {TW_FULL, 1, 12}, | |
333 {TW_NEXT, 1, 0} | |
334 }; | |
335 | |
336 static const hc2c_desc desc = { 12, "hc2cfdft_12", twinstr, &GENUS, {96, 46, 46, 0} }; | |
337 | |
338 void X(codelet_hc2cfdft_12) (planner *p) { | |
339 X(khc2c_register) (p, hc2cfdft_12, &desc, HC2C_VIA_DFT); | |
340 } | |
341 #else /* HAVE_FMA */ | |
342 | |
343 /* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -n 12 -dit -name hc2cfdft_12 -include hc2cf.h */ | |
344 | |
345 /* | |
346 * This function contains 142 FP additions, 76 FP multiplications, | |
347 * (or, 112 additions, 46 multiplications, 30 fused multiply/add), | |
348 * 52 stack variables, 3 constants, and 48 memory accesses | |
349 */ | |
350 #include "hc2cf.h" | |
351 | |
352 static void hc2cfdft_12(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) | |
353 { | |
354 DK(KP250000000, +0.250000000000000000000000000000000000000000000); | |
355 DK(KP500000000, +0.500000000000000000000000000000000000000000000); | |
356 DK(KP433012701, +0.433012701892219323381861585376468091735701313); | |
357 { | |
358 INT m; | |
359 for (m = mb, W = W + ((mb - 1) * 22); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 22, MAKE_VOLATILE_STRIDE(48, rs)) { | |
360 E Tm, T1t, T1d, T2j, Tj, T1Y, T1w, T1G, T1q, T2q, T1U, T2k, Tw, T1y, T17; | |
361 E T2g, TP, T21, T1B, T1J, T12, T2u, T1P, T2h; | |
362 { | |
363 E Tk, Tl, T1k, T1m, T1n, T1o, T4, T1f, T8, T1h, Th, T1c, Td, T1a, T19; | |
364 E T1b; | |
365 { | |
366 E T2, T3, T6, T7; | |
367 Tk = Ip[0]; | |
368 Tl = Im[0]; | |
369 T1k = Tk + Tl; | |
370 T1m = Rp[0]; | |
371 T1n = Rm[0]; | |
372 T1o = T1m - T1n; | |
373 T2 = Ip[WS(rs, 2)]; | |
374 T3 = Im[WS(rs, 2)]; | |
375 T4 = T2 - T3; | |
376 T1f = T2 + T3; | |
377 T6 = Rp[WS(rs, 2)]; | |
378 T7 = Rm[WS(rs, 2)]; | |
379 T8 = T6 + T7; | |
380 T1h = T6 - T7; | |
381 { | |
382 E Tf, Tg, Tb, Tc; | |
383 Tf = Rp[WS(rs, 4)]; | |
384 Tg = Rm[WS(rs, 4)]; | |
385 Th = Tf + Tg; | |
386 T1c = Tf - Tg; | |
387 Tb = Ip[WS(rs, 4)]; | |
388 Tc = Im[WS(rs, 4)]; | |
389 Td = Tb - Tc; | |
390 T1a = Tb + Tc; | |
391 } | |
392 } | |
393 Tm = Tk - Tl; | |
394 T1t = T1m + T1n; | |
395 T19 = W[16]; | |
396 T1b = W[17]; | |
397 T1d = FNMS(T1b, T1c, T19 * T1a); | |
398 T2j = FMA(T19, T1c, T1b * T1a); | |
399 { | |
400 E T9, T1u, Ti, T1v; | |
401 { | |
402 E T1, T5, Ta, Te; | |
403 T1 = W[6]; | |
404 T5 = W[7]; | |
405 T9 = FNMS(T5, T8, T1 * T4); | |
406 T1u = FMA(T1, T8, T5 * T4); | |
407 Ta = W[14]; | |
408 Te = W[15]; | |
409 Ti = FNMS(Te, Th, Ta * Td); | |
410 T1v = FMA(Ta, Th, Te * Td); | |
411 } | |
412 Tj = T9 + Ti; | |
413 T1Y = KP433012701 * (T1v - T1u); | |
414 T1w = T1u + T1v; | |
415 T1G = KP433012701 * (T9 - Ti); | |
416 } | |
417 { | |
418 E T1i, T1S, T1p, T1T; | |
419 { | |
420 E T1e, T1g, T1j, T1l; | |
421 T1e = W[8]; | |
422 T1g = W[9]; | |
423 T1i = FNMS(T1g, T1h, T1e * T1f); | |
424 T1S = FMA(T1e, T1h, T1g * T1f); | |
425 T1j = W[0]; | |
426 T1l = W[1]; | |
427 T1p = FNMS(T1l, T1o, T1j * T1k); | |
428 T1T = FMA(T1j, T1o, T1l * T1k); | |
429 } | |
430 T1q = T1i + T1p; | |
431 T2q = KP433012701 * (T1i - T1p); | |
432 T1U = KP433012701 * (T1S - T1T); | |
433 T2k = T1S + T1T; | |
434 } | |
435 } | |
436 { | |
437 E Tr, TT, Tv, TV, TA, TY, TE, T10, TN, T14, TJ, T16; | |
438 { | |
439 E Tp, Tq, TC, TD; | |
440 Tp = Ip[WS(rs, 3)]; | |
441 Tq = Im[WS(rs, 3)]; | |
442 Tr = Tp - Tq; | |
443 TT = Tp + Tq; | |
444 { | |
445 E Tt, Tu, Ty, Tz; | |
446 Tt = Rp[WS(rs, 3)]; | |
447 Tu = Rm[WS(rs, 3)]; | |
448 Tv = Tt + Tu; | |
449 TV = Tt - Tu; | |
450 Ty = Ip[WS(rs, 5)]; | |
451 Tz = Im[WS(rs, 5)]; | |
452 TA = Ty - Tz; | |
453 TY = Ty + Tz; | |
454 } | |
455 TC = Rp[WS(rs, 5)]; | |
456 TD = Rm[WS(rs, 5)]; | |
457 TE = TC + TD; | |
458 T10 = TC - TD; | |
459 { | |
460 E TL, TM, TH, TI; | |
461 TL = Rp[WS(rs, 1)]; | |
462 TM = Rm[WS(rs, 1)]; | |
463 TN = TL + TM; | |
464 T14 = TM - TL; | |
465 TH = Ip[WS(rs, 1)]; | |
466 TI = Im[WS(rs, 1)]; | |
467 TJ = TH - TI; | |
468 T16 = TH + TI; | |
469 } | |
470 } | |
471 { | |
472 E To, Ts, T13, T15; | |
473 To = W[10]; | |
474 Ts = W[11]; | |
475 Tw = FNMS(Ts, Tv, To * Tr); | |
476 T1y = FMA(To, Tv, Ts * Tr); | |
477 T13 = W[5]; | |
478 T15 = W[4]; | |
479 T17 = FMA(T13, T14, T15 * T16); | |
480 T2g = FNMS(T13, T16, T15 * T14); | |
481 } | |
482 { | |
483 E TF, T1z, TO, T1A; | |
484 { | |
485 E Tx, TB, TG, TK; | |
486 Tx = W[18]; | |
487 TB = W[19]; | |
488 TF = FNMS(TB, TE, Tx * TA); | |
489 T1z = FMA(Tx, TE, TB * TA); | |
490 TG = W[2]; | |
491 TK = W[3]; | |
492 TO = FNMS(TK, TN, TG * TJ); | |
493 T1A = FMA(TG, TN, TK * TJ); | |
494 } | |
495 TP = TF + TO; | |
496 T21 = KP433012701 * (T1A - T1z); | |
497 T1B = T1z + T1A; | |
498 T1J = KP433012701 * (TF - TO); | |
499 } | |
500 { | |
501 E TW, T1O, T11, T1N; | |
502 { | |
503 E TS, TU, TX, TZ; | |
504 TS = W[12]; | |
505 TU = W[13]; | |
506 TW = FNMS(TU, TV, TS * TT); | |
507 T1O = FMA(TS, TV, TU * TT); | |
508 TX = W[20]; | |
509 TZ = W[21]; | |
510 T11 = FNMS(TZ, T10, TX * TY); | |
511 T1N = FMA(TX, T10, TZ * TY); | |
512 } | |
513 T12 = TW + T11; | |
514 T2u = KP433012701 * (T11 - TW); | |
515 T1P = KP433012701 * (T1N - T1O); | |
516 T2h = T1O + T1N; | |
517 } | |
518 } | |
519 { | |
520 E TR, T2f, T2m, T2o, T1s, T1E, T1D, T2n; | |
521 { | |
522 E Tn, TQ, T2i, T2l; | |
523 Tn = Tj + Tm; | |
524 TQ = Tw + TP; | |
525 TR = Tn - TQ; | |
526 T2f = TQ + Tn; | |
527 T2i = T2g - T2h; | |
528 T2l = T2j + T2k; | |
529 T2m = T2i - T2l; | |
530 T2o = T2i + T2l; | |
531 } | |
532 { | |
533 E T18, T1r, T1x, T1C; | |
534 T18 = T12 + T17; | |
535 T1r = T1d + T1q; | |
536 T1s = T18 - T1r; | |
537 T1E = T18 + T1r; | |
538 T1x = T1t + T1w; | |
539 T1C = T1y + T1B; | |
540 T1D = T1x + T1C; | |
541 T2n = T1x - T1C; | |
542 } | |
543 Ip[WS(rs, 3)] = KP500000000 * (TR + T1s); | |
544 Rp[WS(rs, 3)] = KP500000000 * (T2n - T2o); | |
545 Im[WS(rs, 2)] = KP500000000 * (T1s - TR); | |
546 Rm[WS(rs, 2)] = KP500000000 * (T2n + T2o); | |
547 Rm[WS(rs, 5)] = KP500000000 * (T1D - T1E); | |
548 Im[WS(rs, 5)] = KP500000000 * (T2m - T2f); | |
549 Rp[0] = KP500000000 * (T1D + T1E); | |
550 Ip[0] = KP500000000 * (T2f + T2m); | |
551 } | |
552 { | |
553 E T1H, T2b, T2s, T2B, T2v, T2A, T1K, T2c, T1Q, T29, T1Z, T25, T22, T26, T1V; | |
554 E T28; | |
555 { | |
556 E T1F, T2r, T2t, T1I; | |
557 T1F = FNMS(KP250000000, T1w, KP500000000 * T1t); | |
558 T1H = T1F - T1G; | |
559 T2b = T1F + T1G; | |
560 T2r = FNMS(KP500000000, T2j, KP250000000 * T2k); | |
561 T2s = T2q - T2r; | |
562 T2B = T2q + T2r; | |
563 T2t = FMA(KP250000000, T2h, KP500000000 * T2g); | |
564 T2v = T2t - T2u; | |
565 T2A = T2u + T2t; | |
566 T1I = FNMS(KP250000000, T1B, KP500000000 * T1y); | |
567 T1K = T1I - T1J; | |
568 T2c = T1I + T1J; | |
569 } | |
570 { | |
571 E T1M, T1X, T20, T1R; | |
572 T1M = FNMS(KP250000000, T12, KP500000000 * T17); | |
573 T1Q = T1M - T1P; | |
574 T29 = T1P + T1M; | |
575 T1X = FNMS(KP250000000, Tj, KP500000000 * Tm); | |
576 T1Z = T1X - T1Y; | |
577 T25 = T1Y + T1X; | |
578 T20 = FNMS(KP250000000, TP, KP500000000 * Tw); | |
579 T22 = T20 - T21; | |
580 T26 = T21 + T20; | |
581 T1R = FNMS(KP250000000, T1q, KP500000000 * T1d); | |
582 T1V = T1R - T1U; | |
583 T28 = T1R + T1U; | |
584 } | |
585 { | |
586 E T1L, T1W, T2p, T2w; | |
587 T1L = T1H + T1K; | |
588 T1W = T1Q + T1V; | |
589 Rp[WS(rs, 2)] = T1L - T1W; | |
590 Rm[WS(rs, 3)] = T1L + T1W; | |
591 T2p = T22 + T1Z; | |
592 T2w = T2s - T2v; | |
593 Ip[WS(rs, 2)] = T2p + T2w; | |
594 Im[WS(rs, 3)] = T2w - T2p; | |
595 } | |
596 { | |
597 E T23, T24, T2x, T2y; | |
598 T23 = T1Z - T22; | |
599 T24 = T1V - T1Q; | |
600 Ip[WS(rs, 5)] = T23 + T24; | |
601 Im[0] = T24 - T23; | |
602 T2x = T1H - T1K; | |
603 T2y = T2v + T2s; | |
604 Rm[0] = T2x - T2y; | |
605 Rp[WS(rs, 5)] = T2x + T2y; | |
606 } | |
607 { | |
608 E T27, T2a, T2z, T2C; | |
609 T27 = T25 - T26; | |
610 T2a = T28 - T29; | |
611 Ip[WS(rs, 1)] = T27 + T2a; | |
612 Im[WS(rs, 4)] = T2a - T27; | |
613 T2z = T2b - T2c; | |
614 T2C = T2A - T2B; | |
615 Rm[WS(rs, 4)] = T2z - T2C; | |
616 Rp[WS(rs, 1)] = T2z + T2C; | |
617 } | |
618 { | |
619 E T2d, T2e, T2D, T2E; | |
620 T2d = T2b + T2c; | |
621 T2e = T29 + T28; | |
622 Rm[WS(rs, 1)] = T2d - T2e; | |
623 Rp[WS(rs, 4)] = T2d + T2e; | |
624 T2D = T26 + T25; | |
625 T2E = T2A + T2B; | |
626 Ip[WS(rs, 4)] = T2D + T2E; | |
627 Im[WS(rs, 1)] = T2E - T2D; | |
628 } | |
629 } | |
630 } | |
631 } | |
632 } | |
633 | |
634 static const tw_instr twinstr[] = { | |
635 {TW_FULL, 1, 12}, | |
636 {TW_NEXT, 1, 0} | |
637 }; | |
638 | |
639 static const hc2c_desc desc = { 12, "hc2cfdft_12", twinstr, &GENUS, {112, 46, 30, 0} }; | |
640 | |
641 void X(codelet_hc2cfdft_12) (planner *p) { | |
642 X(khc2c_register) (p, hc2cfdft_12, &desc, HC2C_VIA_DFT); | |
643 } | |
644 #endif /* HAVE_FMA */ |