Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.3/rdft/scalar/r2cf/hc2cfdft2_8.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
9:c0fb53affa76 | 10:37bf6b4a2645 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-11 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Sun Nov 25 07:40:50 EST 2012 */ | |
23 | |
24 #include "codelet-rdft.h" | |
25 | |
26 #ifdef HAVE_FMA | |
27 | |
28 /* Generated by: ../../../genfft/gen_hc2cdft.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 8 -dit -name hc2cfdft2_8 -include hc2cf.h */ | |
29 | |
30 /* | |
31 * This function contains 90 FP additions, 66 FP multiplications, | |
32 * (or, 60 additions, 36 multiplications, 30 fused multiply/add), | |
33 * 68 stack variables, 2 constants, and 32 memory accesses | |
34 */ | |
35 #include "hc2cf.h" | |
36 | |
37 static void hc2cfdft2_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) | |
38 { | |
39 DK(KP707106781, +0.707106781186547524400844362104849039284835938); | |
40 DK(KP500000000, +0.500000000000000000000000000000000000000000000); | |
41 { | |
42 INT m; | |
43 for (m = mb, W = W + ((mb - 1) * 6); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 6, MAKE_VOLATILE_STRIDE(32, rs)) { | |
44 E T1G, T1F, T1C, T1D, T1N, T1B, T1R, T1L; | |
45 { | |
46 E T1, T2, Th, Tj, T4, T3, Ti, Tp, T5; | |
47 T1 = W[0]; | |
48 T2 = W[2]; | |
49 Th = W[4]; | |
50 Tj = W[5]; | |
51 T4 = W[1]; | |
52 T3 = T1 * T2; | |
53 Ti = T1 * Th; | |
54 Tp = T1 * Tj; | |
55 T5 = W[3]; | |
56 { | |
57 E Tk, Tq, TI, T1a, T1u, TY, TF, TS, T1s, T1c, Tr, T1n, Tg, T16, Tn; | |
58 E T13, T1f, Ts, To, T1o; | |
59 { | |
60 E T6, Tw, Tc, TB, TQ, TM, TC, TR, Tz, TD, TA; | |
61 { | |
62 E TX, TV, TT, TU; | |
63 { | |
64 E TG, Tb, TH, TP, TL; | |
65 TG = Ip[0]; | |
66 Tk = FMA(T4, Tj, Ti); | |
67 Tq = FNMS(T4, Th, Tp); | |
68 T6 = FMA(T4, T5, T3); | |
69 Tw = FNMS(T4, T5, T3); | |
70 Tb = T1 * T5; | |
71 TH = Im[0]; | |
72 TT = Rm[0]; | |
73 TP = T6 * Tj; | |
74 TL = T6 * Th; | |
75 Tc = FNMS(T4, T2, Tb); | |
76 TB = FMA(T4, T2, Tb); | |
77 TX = TG + TH; | |
78 TI = TG - TH; | |
79 TU = Rp[0]; | |
80 TQ = FNMS(Tc, Th, TP); | |
81 TM = FMA(Tc, Tj, TL); | |
82 } | |
83 T1a = TU + TT; | |
84 TV = TT - TU; | |
85 { | |
86 E Tx, Ty, T1t, TW; | |
87 Tx = Ip[WS(rs, 2)]; | |
88 Ty = Im[WS(rs, 2)]; | |
89 T1t = T4 * TV; | |
90 TW = T1 * TV; | |
91 TC = Rp[WS(rs, 2)]; | |
92 TR = Tx + Ty; | |
93 Tz = Tx - Ty; | |
94 T1u = FMA(T1, TX, T1t); | |
95 TY = FNMS(T4, TX, TW); | |
96 TD = Rm[WS(rs, 2)]; | |
97 } | |
98 TA = Tw * Tz; | |
99 } | |
100 { | |
101 E Td, T9, T12, Te, Ta, T1m; | |
102 { | |
103 E T7, T8, TN, TE, TO, T1r, T1b; | |
104 T7 = Ip[WS(rs, 1)]; | |
105 T8 = Im[WS(rs, 1)]; | |
106 TN = TD - TC; | |
107 TE = TC + TD; | |
108 Td = Rp[WS(rs, 1)]; | |
109 T9 = T7 - T8; | |
110 T12 = T7 + T8; | |
111 TO = TM * TN; | |
112 T1r = TQ * TN; | |
113 T1b = Tw * TE; | |
114 TF = FNMS(TB, TE, TA); | |
115 TS = FNMS(TQ, TR, TO); | |
116 T1s = FMA(TM, TR, T1r); | |
117 T1c = FMA(TB, Tz, T1b); | |
118 Te = Rm[WS(rs, 1)]; | |
119 } | |
120 Ta = T6 * T9; | |
121 T1m = T2 * T12; | |
122 { | |
123 E Tl, T10, Tf, Tm, T11, T1e; | |
124 Tl = Ip[WS(rs, 3)]; | |
125 T10 = Td - Te; | |
126 Tf = Td + Te; | |
127 Tm = Im[WS(rs, 3)]; | |
128 Tr = Rp[WS(rs, 3)]; | |
129 T11 = T2 * T10; | |
130 T1n = FNMS(T5, T10, T1m); | |
131 T1e = T6 * Tf; | |
132 Tg = FNMS(Tc, Tf, Ta); | |
133 T16 = Tl + Tm; | |
134 Tn = Tl - Tm; | |
135 T13 = FMA(T5, T12, T11); | |
136 T1f = FMA(Tc, T9, T1e); | |
137 Ts = Rm[WS(rs, 3)]; | |
138 } | |
139 To = Tk * Tn; | |
140 T1o = Th * T16; | |
141 } | |
142 } | |
143 { | |
144 E T1z, T1K, T1y, T1k, T1J, T1A, T1x, T1j; | |
145 { | |
146 E T1w, TK, T1l, T19, T1d, T1i; | |
147 { | |
148 E TJ, T14, Tt, T1v, T1h; | |
149 T1z = TI - TF; | |
150 TJ = TF + TI; | |
151 T14 = Tr - Ts; | |
152 Tt = Tr + Ts; | |
153 T1v = T1s + T1u; | |
154 T1G = T1u - T1s; | |
155 { | |
156 E TZ, T1q, Tv, T18, T15; | |
157 T1F = TY - TS; | |
158 TZ = TS + TY; | |
159 T15 = Th * T14; | |
160 { | |
161 E T1p, T1g, Tu, T17; | |
162 T1p = FNMS(Tj, T14, T1o); | |
163 T1g = Tk * Tt; | |
164 Tu = FNMS(Tq, Tt, To); | |
165 T17 = FMA(Tj, T16, T15); | |
166 T1C = T1p - T1n; | |
167 T1q = T1n + T1p; | |
168 T1h = FMA(Tq, Tn, T1g); | |
169 T1K = Tg - Tu; | |
170 Tv = Tg + Tu; | |
171 T18 = T13 + T17; | |
172 T1D = T13 - T17; | |
173 } | |
174 T1w = T1q - T1v; | |
175 T1y = T1q + T1v; | |
176 TK = Tv + TJ; | |
177 T1l = TJ - Tv; | |
178 T1k = T18 + TZ; | |
179 T19 = TZ - T18; | |
180 } | |
181 T1J = T1a - T1c; | |
182 T1d = T1a + T1c; | |
183 T1i = T1f + T1h; | |
184 T1A = T1f - T1h; | |
185 } | |
186 Ip[0] = KP500000000 * (TK + T19); | |
187 Im[WS(rs, 3)] = KP500000000 * (T19 - TK); | |
188 Im[WS(rs, 1)] = KP500000000 * (T1w - T1l); | |
189 T1x = T1d + T1i; | |
190 T1j = T1d - T1i; | |
191 Ip[WS(rs, 2)] = KP500000000 * (T1l + T1w); | |
192 } | |
193 Rm[WS(rs, 3)] = KP500000000 * (T1x - T1y); | |
194 Rp[0] = KP500000000 * (T1x + T1y); | |
195 Rp[WS(rs, 2)] = KP500000000 * (T1j + T1k); | |
196 Rm[WS(rs, 1)] = KP500000000 * (T1j - T1k); | |
197 T1N = T1A + T1z; | |
198 T1B = T1z - T1A; | |
199 T1R = T1J + T1K; | |
200 T1L = T1J - T1K; | |
201 } | |
202 } | |
203 } | |
204 { | |
205 E T1E, T1O, T1H, T1P; | |
206 T1E = T1C + T1D; | |
207 T1O = T1C - T1D; | |
208 T1H = T1F - T1G; | |
209 T1P = T1F + T1G; | |
210 { | |
211 E T1S, T1Q, T1I, T1M; | |
212 T1S = T1O + T1P; | |
213 T1Q = T1O - T1P; | |
214 T1I = T1E + T1H; | |
215 T1M = T1H - T1E; | |
216 Im[0] = -(KP500000000 * (FNMS(KP707106781, T1Q, T1N))); | |
217 Ip[WS(rs, 3)] = KP500000000 * (FMA(KP707106781, T1Q, T1N)); | |
218 Rp[WS(rs, 1)] = KP500000000 * (FMA(KP707106781, T1S, T1R)); | |
219 Rm[WS(rs, 2)] = KP500000000 * (FNMS(KP707106781, T1S, T1R)); | |
220 Rp[WS(rs, 3)] = KP500000000 * (FMA(KP707106781, T1M, T1L)); | |
221 Rm[0] = KP500000000 * (FNMS(KP707106781, T1M, T1L)); | |
222 Im[WS(rs, 2)] = -(KP500000000 * (FNMS(KP707106781, T1I, T1B))); | |
223 Ip[WS(rs, 1)] = KP500000000 * (FMA(KP707106781, T1I, T1B)); | |
224 } | |
225 } | |
226 } | |
227 } | |
228 } | |
229 | |
230 static const tw_instr twinstr[] = { | |
231 {TW_CEXP, 1, 1}, | |
232 {TW_CEXP, 1, 3}, | |
233 {TW_CEXP, 1, 7}, | |
234 {TW_NEXT, 1, 0} | |
235 }; | |
236 | |
237 static const hc2c_desc desc = { 8, "hc2cfdft2_8", twinstr, &GENUS, {60, 36, 30, 0} }; | |
238 | |
239 void X(codelet_hc2cfdft2_8) (planner *p) { | |
240 X(khc2c_register) (p, hc2cfdft2_8, &desc, HC2C_VIA_DFT); | |
241 } | |
242 #else /* HAVE_FMA */ | |
243 | |
244 /* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 8 -dit -name hc2cfdft2_8 -include hc2cf.h */ | |
245 | |
246 /* | |
247 * This function contains 90 FP additions, 56 FP multiplications, | |
248 * (or, 72 additions, 38 multiplications, 18 fused multiply/add), | |
249 * 51 stack variables, 2 constants, and 32 memory accesses | |
250 */ | |
251 #include "hc2cf.h" | |
252 | |
253 static void hc2cfdft2_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) | |
254 { | |
255 DK(KP353553390, +0.353553390593273762200422181052424519642417969); | |
256 DK(KP500000000, +0.500000000000000000000000000000000000000000000); | |
257 { | |
258 INT m; | |
259 for (m = mb, W = W + ((mb - 1) * 6); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 6, MAKE_VOLATILE_STRIDE(32, rs)) { | |
260 E T1, T4, T2, T5, Tu, Ty, T7, Td, Ti, Tj, Tk, TP, To, TN; | |
261 { | |
262 E T3, Tc, T6, Tb; | |
263 T1 = W[0]; | |
264 T4 = W[1]; | |
265 T2 = W[2]; | |
266 T5 = W[3]; | |
267 T3 = T1 * T2; | |
268 Tc = T4 * T2; | |
269 T6 = T4 * T5; | |
270 Tb = T1 * T5; | |
271 Tu = T3 - T6; | |
272 Ty = Tb + Tc; | |
273 T7 = T3 + T6; | |
274 Td = Tb - Tc; | |
275 Ti = W[4]; | |
276 Tj = W[5]; | |
277 Tk = FMA(T1, Ti, T4 * Tj); | |
278 TP = FNMS(Td, Ti, T7 * Tj); | |
279 To = FNMS(T4, Ti, T1 * Tj); | |
280 TN = FMA(T7, Ti, Td * Tj); | |
281 } | |
282 { | |
283 E TF, T11, TC, T12, T1d, T1e, T1q, TM, TR, T1p, Th, Ts, T15, T14, T1a; | |
284 E T1b, T1m, TV, TY, T1n; | |
285 { | |
286 E TD, TE, TL, TI, TJ, TK, Tx, TQ, TB, TO; | |
287 TD = Ip[0]; | |
288 TE = Im[0]; | |
289 TL = TD + TE; | |
290 TI = Rm[0]; | |
291 TJ = Rp[0]; | |
292 TK = TI - TJ; | |
293 { | |
294 E Tv, Tw, Tz, TA; | |
295 Tv = Ip[WS(rs, 2)]; | |
296 Tw = Im[WS(rs, 2)]; | |
297 Tx = Tv - Tw; | |
298 TQ = Tv + Tw; | |
299 Tz = Rp[WS(rs, 2)]; | |
300 TA = Rm[WS(rs, 2)]; | |
301 TB = Tz + TA; | |
302 TO = Tz - TA; | |
303 } | |
304 TF = TD - TE; | |
305 T11 = TJ + TI; | |
306 TC = FNMS(Ty, TB, Tu * Tx); | |
307 T12 = FMA(Tu, TB, Ty * Tx); | |
308 T1d = FNMS(TP, TO, TN * TQ); | |
309 T1e = FMA(T4, TK, T1 * TL); | |
310 T1q = T1e - T1d; | |
311 TM = FNMS(T4, TL, T1 * TK); | |
312 TR = FMA(TN, TO, TP * TQ); | |
313 T1p = TR + TM; | |
314 } | |
315 { | |
316 E Ta, TU, Tg, TT, Tn, TX, Tr, TW; | |
317 { | |
318 E T8, T9, Te, Tf; | |
319 T8 = Ip[WS(rs, 1)]; | |
320 T9 = Im[WS(rs, 1)]; | |
321 Ta = T8 - T9; | |
322 TU = T8 + T9; | |
323 Te = Rp[WS(rs, 1)]; | |
324 Tf = Rm[WS(rs, 1)]; | |
325 Tg = Te + Tf; | |
326 TT = Te - Tf; | |
327 } | |
328 { | |
329 E Tl, Tm, Tp, Tq; | |
330 Tl = Ip[WS(rs, 3)]; | |
331 Tm = Im[WS(rs, 3)]; | |
332 Tn = Tl - Tm; | |
333 TX = Tl + Tm; | |
334 Tp = Rp[WS(rs, 3)]; | |
335 Tq = Rm[WS(rs, 3)]; | |
336 Tr = Tp + Tq; | |
337 TW = Tp - Tq; | |
338 } | |
339 Th = FNMS(Td, Tg, T7 * Ta); | |
340 Ts = FNMS(To, Tr, Tk * Tn); | |
341 T15 = FMA(Tk, Tr, To * Tn); | |
342 T14 = FMA(T7, Tg, Td * Ta); | |
343 T1a = FNMS(T5, TT, T2 * TU); | |
344 T1b = FNMS(Tj, TW, Ti * TX); | |
345 T1m = T1b - T1a; | |
346 TV = FMA(T2, TT, T5 * TU); | |
347 TY = FMA(Ti, TW, Tj * TX); | |
348 T1n = TV - TY; | |
349 } | |
350 { | |
351 E T1l, T1x, T1A, T1C, T1s, T1w, T1v, T1B; | |
352 { | |
353 E T1j, T1k, T1y, T1z; | |
354 T1j = TF - TC; | |
355 T1k = T14 - T15; | |
356 T1l = KP500000000 * (T1j - T1k); | |
357 T1x = KP500000000 * (T1k + T1j); | |
358 T1y = T1m - T1n; | |
359 T1z = T1p + T1q; | |
360 T1A = KP353553390 * (T1y - T1z); | |
361 T1C = KP353553390 * (T1y + T1z); | |
362 } | |
363 { | |
364 E T1o, T1r, T1t, T1u; | |
365 T1o = T1m + T1n; | |
366 T1r = T1p - T1q; | |
367 T1s = KP353553390 * (T1o + T1r); | |
368 T1w = KP353553390 * (T1r - T1o); | |
369 T1t = T11 - T12; | |
370 T1u = Th - Ts; | |
371 T1v = KP500000000 * (T1t - T1u); | |
372 T1B = KP500000000 * (T1t + T1u); | |
373 } | |
374 Ip[WS(rs, 1)] = T1l + T1s; | |
375 Rp[WS(rs, 1)] = T1B + T1C; | |
376 Im[WS(rs, 2)] = T1s - T1l; | |
377 Rm[WS(rs, 2)] = T1B - T1C; | |
378 Rm[0] = T1v - T1w; | |
379 Im[0] = T1A - T1x; | |
380 Rp[WS(rs, 3)] = T1v + T1w; | |
381 Ip[WS(rs, 3)] = T1x + T1A; | |
382 } | |
383 { | |
384 E TH, T19, T1g, T1i, T10, T18, T17, T1h; | |
385 { | |
386 E Tt, TG, T1c, T1f; | |
387 Tt = Th + Ts; | |
388 TG = TC + TF; | |
389 TH = Tt + TG; | |
390 T19 = TG - Tt; | |
391 T1c = T1a + T1b; | |
392 T1f = T1d + T1e; | |
393 T1g = T1c - T1f; | |
394 T1i = T1c + T1f; | |
395 } | |
396 { | |
397 E TS, TZ, T13, T16; | |
398 TS = TM - TR; | |
399 TZ = TV + TY; | |
400 T10 = TS - TZ; | |
401 T18 = TZ + TS; | |
402 T13 = T11 + T12; | |
403 T16 = T14 + T15; | |
404 T17 = T13 - T16; | |
405 T1h = T13 + T16; | |
406 } | |
407 Ip[0] = KP500000000 * (TH + T10); | |
408 Rp[0] = KP500000000 * (T1h + T1i); | |
409 Im[WS(rs, 3)] = KP500000000 * (T10 - TH); | |
410 Rm[WS(rs, 3)] = KP500000000 * (T1h - T1i); | |
411 Rm[WS(rs, 1)] = KP500000000 * (T17 - T18); | |
412 Im[WS(rs, 1)] = KP500000000 * (T1g - T19); | |
413 Rp[WS(rs, 2)] = KP500000000 * (T17 + T18); | |
414 Ip[WS(rs, 2)] = KP500000000 * (T19 + T1g); | |
415 } | |
416 } | |
417 } | |
418 } | |
419 } | |
420 | |
421 static const tw_instr twinstr[] = { | |
422 {TW_CEXP, 1, 1}, | |
423 {TW_CEXP, 1, 3}, | |
424 {TW_CEXP, 1, 7}, | |
425 {TW_NEXT, 1, 0} | |
426 }; | |
427 | |
428 static const hc2c_desc desc = { 8, "hc2cfdft2_8", twinstr, &GENUS, {72, 38, 18, 0} }; | |
429 | |
430 void X(codelet_hc2cfdft2_8) (planner *p) { | |
431 X(khc2c_register) (p, hc2cfdft2_8, &desc, HC2C_VIA_DFT); | |
432 } | |
433 #endif /* HAVE_FMA */ |