comparison src/fftw-3.3.3/rdft/scalar/r2cf/hc2cfdft2_32.c @ 10:37bf6b4a2645

Add FFTW3
author Chris Cannam
date Wed, 20 Mar 2013 15:35:50 +0000
parents
children
comparison
equal deleted inserted replaced
9:c0fb53affa76 10:37bf6b4a2645
1 /*
2 * Copyright (c) 2003, 2007-11 Matteo Frigo
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 */
20
21 /* This file was automatically generated --- DO NOT EDIT */
22 /* Generated on Sun Nov 25 07:40:52 EST 2012 */
23
24 #include "codelet-rdft.h"
25
26 #ifdef HAVE_FMA
27
28 /* Generated by: ../../../genfft/gen_hc2cdft.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 32 -dit -name hc2cfdft2_32 -include hc2cf.h */
29
30 /*
31 * This function contains 552 FP additions, 414 FP multiplications,
32 * (or, 300 additions, 162 multiplications, 252 fused multiply/add),
33 * 196 stack variables, 8 constants, and 128 memory accesses
34 */
35 #include "hc2cf.h"
36
37 static void hc2cfdft2_32(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
38 {
39 DK(KP980785280, +0.980785280403230449126182236134239036973933731);
40 DK(KP831469612, +0.831469612302545237078788377617905756738560812);
41 DK(KP668178637, +0.668178637919298919997757686523080761552472251);
42 DK(KP198912367, +0.198912367379658006911597622644676228597850501);
43 DK(KP923879532, +0.923879532511286756128183189396788286822416626);
44 DK(KP414213562, +0.414213562373095048801688724209698078569671875);
45 DK(KP707106781, +0.707106781186547524400844362104849039284835938);
46 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
47 {
48 INT m;
49 for (m = mb, W = W + ((mb - 1) * 8); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 8, MAKE_VOLATILE_STRIDE(128, rs)) {
50 E Tax, TaA;
51 {
52 E T1, Th, T2, T5, Ti, Ty, T1t, T3, Tb, Tj, TY, TK, Tl, T4, Tk;
53 T1 = W[0];
54 Th = W[4];
55 T2 = W[2];
56 T5 = W[3];
57 Ti = W[6];
58 Ty = T1 * Th;
59 T1t = T2 * Th;
60 T3 = T1 * T2;
61 Tb = T1 * T5;
62 Tj = Th * Ti;
63 TY = T2 * Ti;
64 TK = T1 * Ti;
65 Tl = W[7];
66 T4 = W[1];
67 Tk = W[5];
68 {
69 E T3j, T7Z, T5b, T93, T6B, T8V, T4d, T8J, T8r, T6e, T8l, T1T, T8C, T54, T8i;
70 E T5O, T94, T31, T8K, T6w, T8U, T3Y, T80, T5g, T8B, T69, T8h, T1s, T8q, T4T;
71 E T8k, T5J, Tx, T8a, T5y, T8d, T4s, T5Y, T8v, T8E, T2k, T82, T6l, T3z, T83;
72 E T5m, T8X, T8O, T2F, T86, T6q, T3M, T85, T5r, T8Y, T8R, TW, T8e, T8x, T4B;
73 E T5D, T8b, T63, T8w;
74 {
75 E TL, T2l, T1c, Tc, T1a, T6, Tm, T2v, Tz, T2q, TR, Ts, T2A, TF, T1H;
76 E T1g, T1d, T1F, T34, T3F, T3B, T32, T3w, T3s, T4p, T4l, T2f, T29, T4K, T4S;
77 E T5G, T5I;
78 {
79 E TZ, T2R, T2H, T15, T2W, T2M, T4I, T4E, T3V, T3S, T4Q, T4M, T1n, T1h, T4X;
80 E T53, T5L, T5N, T5d, T5f;
81 {
82 E T1u, T1A, T51, T4Y, T28, T25, T44, T40, T1O, T1I, T3b, T35, T4b, T3i, T45;
83 E T38, T39, T58, T49, T3e, T41;
84 {
85 E T3g, T3h, T36, T37, TQ;
86 T3g = Ip[0];
87 TZ = FNMS(T5, Tl, TY);
88 T2R = FMA(T5, Tl, TY);
89 TQ = T1 * Tl;
90 {
91 E T14, Tr, T1z, TE;
92 T14 = T2 * Tl;
93 Tr = Th * Tl;
94 TL = FMA(T4, Tl, TK);
95 T2l = FNMS(T4, Tl, TK);
96 T1c = FMA(T4, T2, Tb);
97 Tc = FNMS(T4, T2, Tb);
98 T1a = FNMS(T4, T5, T3);
99 T6 = FMA(T4, T5, T3);
100 Tm = FMA(Tk, Tl, Tj);
101 T2v = FNMS(T5, Tk, T1t);
102 T1u = FMA(T5, Tk, T1t);
103 Tz = FNMS(T4, Tk, Ty);
104 T2H = FMA(T4, Tk, Ty);
105 T1z = T2 * Tk;
106 TE = T1 * Tk;
107 T2q = FMA(T4, Ti, TQ);
108 TR = FNMS(T4, Ti, TQ);
109 T15 = FMA(T5, Ti, T14);
110 T2W = FNMS(T5, Ti, T14);
111 Ts = FNMS(Tk, Ti, Tr);
112 {
113 E T1f, T4H, T4D, T1b;
114 T1f = T1a * Tk;
115 T4H = T1a * Tl;
116 T4D = T1a * Ti;
117 T1b = T1a * Th;
118 {
119 E T27, T3E, T3A, T24;
120 T27 = T6 * Tk;
121 T3E = T6 * Tl;
122 T3A = T6 * Ti;
123 T24 = T6 * Th;
124 {
125 E T3v, T3r, T4P, T4L;
126 T3v = T1u * Tl;
127 T3r = T1u * Ti;
128 T4P = T2v * Tl;
129 T4L = T2v * Ti;
130 {
131 E T4o, T4k, T43, T3Z;
132 T4o = T2H * Tl;
133 T4k = T2H * Ti;
134 T43 = Tz * Tl;
135 T3Z = Tz * Ti;
136 T1A = FNMS(T5, Th, T1z);
137 T2A = FMA(T5, Th, T1z);
138 T2M = FNMS(T4, Th, TE);
139 TF = FMA(T4, Th, TE);
140 T1H = FNMS(T1c, Th, T1f);
141 T1g = FMA(T1c, Th, T1f);
142 T51 = FNMS(T1c, Ti, T4H);
143 T4I = FMA(T1c, Ti, T4H);
144 T4Y = FMA(T1c, Tl, T4D);
145 T4E = FNMS(T1c, Tl, T4D);
146 T1d = FNMS(T1c, Tk, T1b);
147 T1F = FMA(T1c, Tk, T1b);
148 T34 = FMA(Tc, Th, T27);
149 T28 = FNMS(Tc, Th, T27);
150 T3V = FNMS(Tc, Ti, T3E);
151 T3F = FMA(Tc, Ti, T3E);
152 T3S = FMA(Tc, Tl, T3A);
153 T3B = FNMS(Tc, Tl, T3A);
154 T25 = FMA(Tc, Tk, T24);
155 T32 = FNMS(Tc, Tk, T24);
156 T3w = FNMS(T1A, Ti, T3v);
157 T3s = FMA(T1A, Tl, T3r);
158 T4Q = FNMS(T2A, Ti, T4P);
159 T4M = FMA(T2A, Tl, T4L);
160 T4p = FNMS(T2M, Ti, T4o);
161 T4l = FMA(T2M, Tl, T4k);
162 T44 = FNMS(TF, Ti, T43);
163 T40 = FMA(TF, Tl, T3Z);
164 {
165 E T1m, T1e, T1N, T1G;
166 T1m = T1d * Tl;
167 T1e = T1d * Ti;
168 T1N = T1F * Tl;
169 T1G = T1F * Ti;
170 {
171 E T2e, T26, T3a, T33;
172 T2e = T25 * Tl;
173 T26 = T25 * Ti;
174 T3a = T32 * Tl;
175 T33 = T32 * Ti;
176 T1n = FNMS(T1g, Ti, T1m);
177 T1h = FMA(T1g, Tl, T1e);
178 T1O = FNMS(T1H, Ti, T1N);
179 T1I = FMA(T1H, Tl, T1G);
180 T2f = FNMS(T28, Ti, T2e);
181 T29 = FMA(T28, Tl, T26);
182 T3b = FNMS(T34, Ti, T3a);
183 T35 = FMA(T34, Tl, T33);
184 T3h = Im[0];
185 }
186 }
187 }
188 }
189 }
190 }
191 }
192 T36 = Ip[WS(rs, 8)];
193 T37 = Im[WS(rs, 8)];
194 {
195 E T47, T48, T3c, T3d;
196 T47 = Rm[0];
197 T4b = T3g + T3h;
198 T3i = T3g - T3h;
199 T45 = T36 + T37;
200 T38 = T36 - T37;
201 T48 = Rp[0];
202 T3c = Rp[WS(rs, 8)];
203 T3d = Rm[WS(rs, 8)];
204 T39 = T35 * T38;
205 T58 = T48 + T47;
206 T49 = T47 - T48;
207 T3e = T3c + T3d;
208 T41 = T3d - T3c;
209 }
210 }
211 {
212 E T4W, T1x, T1y, T6a, T4U, T1D, T1P, T4V, T5K, T52, T1L, T1Q;
213 {
214 E T1B, T1C, T1J, T1K;
215 {
216 E T1v, T6A, T4c, T5a, T6y, T46, T1w, T6z, T4a;
217 T1v = Ip[WS(rs, 3)];
218 T6z = T4 * T49;
219 T4a = T1 * T49;
220 {
221 E T3f, T59, T6x, T42;
222 T3f = FNMS(T3b, T3e, T39);
223 T59 = T35 * T3e;
224 T6x = T44 * T41;
225 T42 = T40 * T41;
226 T6A = FMA(T1, T4b, T6z);
227 T4c = FNMS(T4, T4b, T4a);
228 T3j = T3f + T3i;
229 T7Z = T3i - T3f;
230 T5a = FMA(T3b, T38, T59);
231 T6y = FMA(T40, T45, T6x);
232 T46 = FNMS(T44, T45, T42);
233 T1w = Im[WS(rs, 3)];
234 }
235 T5b = T58 + T5a;
236 T93 = T58 - T5a;
237 T6B = T6y + T6A;
238 T8V = T6A - T6y;
239 T4d = T46 + T4c;
240 T8J = T4c - T46;
241 T4W = T1v + T1w;
242 T1x = T1v - T1w;
243 }
244 T1B = Rp[WS(rs, 3)];
245 T1C = Rm[WS(rs, 3)];
246 T1y = T1u * T1x;
247 T6a = T25 * T4W;
248 T1J = Ip[WS(rs, 11)];
249 T4U = T1B - T1C;
250 T1D = T1B + T1C;
251 T1K = Im[WS(rs, 11)];
252 T1P = Rp[WS(rs, 11)];
253 T4V = T25 * T4U;
254 T5K = T1u * T1D;
255 T52 = T1J + T1K;
256 T1L = T1J - T1K;
257 T1Q = Rm[WS(rs, 11)];
258 }
259 {
260 E T1E, T6c, T1M, T4Z, T1R, T6b;
261 T1E = FNMS(T1A, T1D, T1y);
262 T6c = T4Y * T52;
263 T1M = T1I * T1L;
264 T4Z = T1P - T1Q;
265 T1R = T1P + T1Q;
266 T6b = FNMS(T28, T4U, T6a);
267 {
268 E T5M, T6d, T50, T1S;
269 T4X = FMA(T28, T4W, T4V);
270 T6d = FNMS(T51, T4Z, T6c);
271 T50 = T4Y * T4Z;
272 T1S = FNMS(T1O, T1R, T1M);
273 T5M = T1I * T1R;
274 T8r = T6d - T6b;
275 T6e = T6b + T6d;
276 T8l = T1E - T1S;
277 T1T = T1E + T1S;
278 T53 = FMA(T51, T52, T50);
279 T5L = FMA(T1A, T1x, T5K);
280 T5N = FMA(T1O, T1L, T5M);
281 }
282 }
283 }
284 }
285 {
286 E T3Q, T2K, T2P, T2L, T6s, T3P, T5c, T3W, T2U, T2X, T2Y, T2V;
287 {
288 E T2I, T2J, T2N, T2O, T2S, T3O, T2T;
289 T2I = Ip[WS(rs, 4)];
290 T8C = T53 - T4X;
291 T54 = T4X + T53;
292 T8i = T5L - T5N;
293 T5O = T5L + T5N;
294 T2J = Im[WS(rs, 4)];
295 T2N = Rp[WS(rs, 4)];
296 T2O = Rm[WS(rs, 4)];
297 T2S = Ip[WS(rs, 12)];
298 T3Q = T2I + T2J;
299 T2K = T2I - T2J;
300 T3O = T2O - T2N;
301 T2P = T2N + T2O;
302 T2T = Im[WS(rs, 12)];
303 T2L = T2H * T2K;
304 T6s = Tk * T3O;
305 T3P = Th * T3O;
306 T5c = T2H * T2P;
307 T3W = T2S + T2T;
308 T2U = T2S - T2T;
309 T2X = Rp[WS(rs, 12)];
310 T2Y = Rm[WS(rs, 12)];
311 T2V = T2R * T2U;
312 }
313 {
314 E T2Q, T6t, T3T, T2Z, T3R, T6u, T3U;
315 T2Q = FNMS(T2M, T2P, T2L);
316 T6t = FMA(Th, T3Q, T6s);
317 T3T = T2Y - T2X;
318 T2Z = T2X + T2Y;
319 T3R = FNMS(Tk, T3Q, T3P);
320 T5d = FMA(T2M, T2K, T5c);
321 T6u = T3V * T3T;
322 T3U = T3S * T3T;
323 {
324 E T30, T5e, T6v, T3X;
325 T30 = FNMS(T2W, T2Z, T2V);
326 T5e = T2R * T2Z;
327 T6v = FMA(T3S, T3W, T6u);
328 T3X = FNMS(T3V, T3W, T3U);
329 T94 = T2Q - T30;
330 T31 = T2Q + T30;
331 T8K = T6t - T6v;
332 T6w = T6t + T6v;
333 T8U = T3R - T3X;
334 T3Y = T3R + T3X;
335 T5f = FMA(T2W, T2U, T5e);
336 }
337 }
338 }
339 {
340 E T4J, T12, T65, T13, T4F, T18, T1o, T4G, T5F, T4R, T1k, T1p;
341 {
342 E T16, T17, T10, T11, T1i, T1j;
343 T10 = Ip[WS(rs, 15)];
344 T11 = Im[WS(rs, 15)];
345 T16 = Rp[WS(rs, 15)];
346 T80 = T5d - T5f;
347 T5g = T5d + T5f;
348 T4J = T10 + T11;
349 T12 = T10 - T11;
350 T17 = Rm[WS(rs, 15)];
351 T1i = Ip[WS(rs, 7)];
352 T65 = T4E * T4J;
353 T13 = TZ * T12;
354 T4F = T16 - T17;
355 T18 = T16 + T17;
356 T1j = Im[WS(rs, 7)];
357 T1o = Rp[WS(rs, 7)];
358 T4G = T4E * T4F;
359 T5F = TZ * T18;
360 T4R = T1i + T1j;
361 T1k = T1i - T1j;
362 T1p = Rm[WS(rs, 7)];
363 }
364 {
365 E T19, T67, T1l, T4N, T1q, T66;
366 T19 = FNMS(T15, T18, T13);
367 T67 = T4M * T4R;
368 T1l = T1h * T1k;
369 T4N = T1o - T1p;
370 T1q = T1o + T1p;
371 T66 = FNMS(T4I, T4F, T65);
372 {
373 E T5H, T68, T4O, T1r;
374 T4K = FMA(T4I, T4J, T4G);
375 T68 = FNMS(T4Q, T4N, T67);
376 T4O = T4M * T4N;
377 T1r = FNMS(T1n, T1q, T1l);
378 T5H = T1h * T1q;
379 T8B = T66 - T68;
380 T69 = T66 + T68;
381 T8h = T19 - T1r;
382 T1s = T19 + T1r;
383 T4S = FMA(T4Q, T4R, T4O);
384 T5G = FMA(T15, T12, T5F);
385 T5I = FMA(T1n, T1k, T5H);
386 }
387 }
388 }
389 }
390 {
391 E T2c, T3x, T2d, T23, T5j, T3q, T2i, T3t, T6i, T8t, T5V, T5X;
392 {
393 E Tn, T4i, T9, T4g, Tf, T5U, Ta, T4h, T5u, To, Tt, Tu;
394 {
395 E T7, T8, Td, Te;
396 T7 = Ip[WS(rs, 1)];
397 T8q = T4S - T4K;
398 T4T = T4K + T4S;
399 T8k = T5G - T5I;
400 T5J = T5G + T5I;
401 T8 = Im[WS(rs, 1)];
402 Td = Rp[WS(rs, 1)];
403 Te = Rm[WS(rs, 1)];
404 Tn = Ip[WS(rs, 9)];
405 T4i = T7 + T8;
406 T9 = T7 - T8;
407 T4g = Td - Te;
408 Tf = Td + Te;
409 T5U = T2 * T4i;
410 Ta = T6 * T9;
411 T4h = T2 * T4g;
412 T5u = T6 * Tf;
413 To = Im[WS(rs, 9)];
414 Tt = Rp[WS(rs, 9)];
415 Tu = Rm[WS(rs, 9)];
416 }
417 {
418 E Tg, T4q, Tp, T4m, Tv, T5W, Tq, T4n, T5w;
419 Tg = FNMS(Tc, Tf, Ta);
420 T4q = Tn + To;
421 Tp = Tn - To;
422 T4m = Tt - Tu;
423 Tv = Tt + Tu;
424 T5W = T4l * T4q;
425 Tq = Tm * Tp;
426 T4n = T4l * T4m;
427 T5w = Tm * Tv;
428 {
429 E T5v, Tw, T4j, T5x, T4r;
430 T5v = FMA(Tc, T9, T5u);
431 Tw = FNMS(Ts, Tv, Tq);
432 T4j = FMA(T5, T4i, T4h);
433 T5x = FMA(Ts, Tp, T5w);
434 T4r = FMA(T4p, T4q, T4n);
435 Tx = Tg + Tw;
436 T8a = Tg - Tw;
437 T5y = T5v + T5x;
438 T8d = T5v - T5x;
439 T4s = T4j + T4r;
440 T8t = T4r - T4j;
441 T5V = FNMS(T5, T4g, T5U);
442 T5X = FNMS(T4p, T4m, T5W);
443 }
444 }
445 }
446 {
447 E T3p, T1Y, T1Z, T22, T2g, T6h, T3o, T5i, T2h;
448 {
449 E T20, T21, T1W, T1X, T8u, T2a, T2b, T3n;
450 T1W = Ip[WS(rs, 2)];
451 T1X = Im[WS(rs, 2)];
452 T8u = T5V - T5X;
453 T5Y = T5V + T5X;
454 T20 = Rp[WS(rs, 2)];
455 T3p = T1W + T1X;
456 T1Y = T1W - T1X;
457 T8v = T8t - T8u;
458 T8E = T8u + T8t;
459 T21 = Rm[WS(rs, 2)];
460 T1Z = T1a * T1Y;
461 T2a = Ip[WS(rs, 10)];
462 T2b = Im[WS(rs, 10)];
463 T3n = T21 - T20;
464 T22 = T20 + T21;
465 T2g = Rp[WS(rs, 10)];
466 T2c = T2a - T2b;
467 T3x = T2a + T2b;
468 T6h = T1H * T3n;
469 T3o = T1F * T3n;
470 T5i = T1a * T22;
471 T2d = T29 * T2c;
472 T2h = Rm[WS(rs, 10)];
473 }
474 T23 = FNMS(T1c, T22, T1Z);
475 T5j = FMA(T1c, T1Y, T5i);
476 T3q = FNMS(T1H, T3p, T3o);
477 T2i = T2g + T2h;
478 T3t = T2h - T2g;
479 T6i = FMA(T1F, T3p, T6h);
480 }
481 {
482 E T2y, T3K, T2z, T2u, T5o, T3H, T2D, T3I, T6n;
483 {
484 E T3G, T2o, T2p, T2t, T6m, T3D, T5n, T2B, T2C;
485 {
486 E T2r, T2s, T2m, T2n, T3C, T2w, T2x;
487 {
488 E T8N, T8M, T6j, T3u, T2j;
489 T2m = Ip[WS(rs, 14)];
490 T6j = T3w * T3t;
491 T3u = T3s * T3t;
492 T2j = FNMS(T2f, T2i, T2d);
493 {
494 E T5k, T6k, T3y, T5l;
495 T5k = T29 * T2i;
496 T6k = FMA(T3s, T3x, T6j);
497 T3y = FNMS(T3w, T3x, T3u);
498 T2k = T23 + T2j;
499 T82 = T23 - T2j;
500 T5l = FMA(T2f, T2c, T5k);
501 T6l = T6i + T6k;
502 T8N = T6i - T6k;
503 T3z = T3q + T3y;
504 T8M = T3q - T3y;
505 T83 = T5j - T5l;
506 T5m = T5j + T5l;
507 T2n = Im[WS(rs, 14)];
508 }
509 T8X = T8M + T8N;
510 T8O = T8M - T8N;
511 }
512 T2r = Rp[WS(rs, 14)];
513 T3G = T2m + T2n;
514 T2o = T2m - T2n;
515 T2s = Rm[WS(rs, 14)];
516 T2w = Ip[WS(rs, 6)];
517 T2x = Im[WS(rs, 6)];
518 T2p = T2l * T2o;
519 T3C = T2s - T2r;
520 T2t = T2r + T2s;
521 T2y = T2w - T2x;
522 T3K = T2w + T2x;
523 T6m = T3F * T3C;
524 T3D = T3B * T3C;
525 T5n = T2l * T2t;
526 T2z = T2v * T2y;
527 T2B = Rp[WS(rs, 6)];
528 T2C = Rm[WS(rs, 6)];
529 }
530 T2u = FNMS(T2q, T2t, T2p);
531 T5o = FMA(T2q, T2o, T5n);
532 T3H = FNMS(T3F, T3G, T3D);
533 T2D = T2B + T2C;
534 T3I = T2C - T2B;
535 T6n = FMA(T3B, T3G, T6m);
536 }
537 {
538 E T4v, TC, T5Z, TD, T4t, TI, TS, T4u, T5z, T4z, TO, TT;
539 {
540 E TG, TH, TA, TB, TM, TN;
541 {
542 E T8Q, T8P, T6o, T3J, T2E;
543 TA = Ip[WS(rs, 5)];
544 T6o = T1g * T3I;
545 T3J = T1d * T3I;
546 T2E = FNMS(T2A, T2D, T2z);
547 {
548 E T5p, T6p, T3L, T5q;
549 T5p = T2v * T2D;
550 T6p = FMA(T1d, T3K, T6o);
551 T3L = FNMS(T1g, T3K, T3J);
552 T2F = T2u + T2E;
553 T86 = T2u - T2E;
554 T5q = FMA(T2A, T2y, T5p);
555 T6q = T6n + T6p;
556 T8Q = T6n - T6p;
557 T3M = T3H + T3L;
558 T8P = T3H - T3L;
559 T85 = T5o - T5q;
560 T5r = T5o + T5q;
561 TB = Im[WS(rs, 5)];
562 }
563 T8Y = T8Q - T8P;
564 T8R = T8P + T8Q;
565 }
566 TG = Rp[WS(rs, 5)];
567 T4v = TA + TB;
568 TC = TA - TB;
569 TH = Rm[WS(rs, 5)];
570 TM = Ip[WS(rs, 13)];
571 T5Z = T32 * T4v;
572 TD = Tz * TC;
573 T4t = TG - TH;
574 TI = TG + TH;
575 TN = Im[WS(rs, 13)];
576 TS = Rp[WS(rs, 13)];
577 T4u = T32 * T4t;
578 T5z = Tz * TI;
579 T4z = TM + TN;
580 TO = TM - TN;
581 TT = Rm[WS(rs, 13)];
582 }
583 {
584 E TJ, T61, TP, T4x, TU;
585 TJ = FNMS(TF, TI, TD);
586 T61 = Ti * T4z;
587 TP = TL * TO;
588 T4x = TS - TT;
589 TU = TS + TT;
590 {
591 E T5A, T60, T5C, T62;
592 T5A = FMA(TF, TC, T5z);
593 {
594 E T4w, T4y, TV, T5B, T4A;
595 T4w = FMA(T34, T4v, T4u);
596 T4y = Ti * T4x;
597 TV = FNMS(TR, TU, TP);
598 T5B = TL * TU;
599 T60 = FNMS(T34, T4t, T5Z);
600 T4A = FMA(Tl, T4z, T4y);
601 TW = TJ + TV;
602 T8e = TJ - TV;
603 T5C = FMA(TR, TO, T5B);
604 T8x = T4w - T4A;
605 T4B = T4w + T4A;
606 T62 = FNMS(Tl, T4x, T61);
607 }
608 T5D = T5A + T5C;
609 T8b = T5A - T5C;
610 T63 = T60 + T62;
611 T8w = T62 - T60;
612 }
613 }
614 }
615 }
616 }
617 }
618 {
619 E T74, T78, T8F, T8y, T7s, T72, T75, T77, T7r, T71, T7f, T7d, T7c, T7g, T7m;
620 E T7k, T7j, T7n, T6V, T6Y, T7T, T7W;
621 {
622 E T6S, T1V, T6I, T3l, T6H, T5Q, T6R, T5t, T56, T6g, T6N, T4f, T6M, T6W, T6D;
623 E T6O;
624 {
625 E T2G, T3k, T5E, T5P, TX, T1U, T5h, T5s;
626 T74 = Tx - TW;
627 TX = Tx + TW;
628 T1U = T1s + T1T;
629 T78 = T1s - T1T;
630 T8F = T8w - T8x;
631 T8y = T8w + T8x;
632 T7s = T2k - T2F;
633 T2G = T2k + T2F;
634 T6S = TX - T1U;
635 T1V = TX + T1U;
636 T3k = T31 + T3j;
637 T72 = T3j - T31;
638 T75 = T5y - T5D;
639 T5E = T5y + T5D;
640 T5P = T5J + T5O;
641 T77 = T5J - T5O;
642 T7r = T5b - T5g;
643 T5h = T5b + T5g;
644 T6I = T3k - T2G;
645 T3l = T2G + T3k;
646 T6H = T5P - T5E;
647 T5Q = T5E + T5P;
648 T5s = T5m + T5r;
649 T71 = T5r - T5m;
650 {
651 E T64, T6L, T6f, T4C, T55;
652 T7f = T4B - T4s;
653 T4C = T4s + T4B;
654 T55 = T4T + T54;
655 T7d = T54 - T4T;
656 T7c = T63 - T5Y;
657 T64 = T5Y + T63;
658 T6R = T5h - T5s;
659 T5t = T5h + T5s;
660 T6L = T4C - T55;
661 T56 = T4C + T55;
662 T7g = T69 - T6e;
663 T6f = T69 + T6e;
664 {
665 E T6r, T6C, T3N, T4e, T6K;
666 T7m = T3z - T3M;
667 T3N = T3z + T3M;
668 T4e = T3Y + T4d;
669 T7k = T4d - T3Y;
670 T6K = T6f - T64;
671 T6g = T64 + T6f;
672 T7j = T6q - T6l;
673 T6r = T6l + T6q;
674 T6N = T4e - T3N;
675 T4f = T3N + T4e;
676 T7n = T6B - T6w;
677 T6C = T6w + T6B;
678 T6M = T6K + T6L;
679 T6W = T6K - T6L;
680 T6D = T6r + T6C;
681 T6O = T6C - T6r;
682 }
683 }
684 }
685 {
686 E T5T, T6X, T6P, T6E;
687 {
688 E T5S, T5R, T6F, T6G, T3m, T57;
689 T5T = T3l - T1V;
690 T3m = T1V + T3l;
691 T57 = T4f - T56;
692 T5S = T56 + T4f;
693 T6X = T6N + T6O;
694 T6P = T6N - T6O;
695 T5R = T5t - T5Q;
696 T6F = T5t + T5Q;
697 Im[WS(rs, 15)] = KP500000000 * (T57 - T3m);
698 Ip[0] = KP500000000 * (T3m + T57);
699 T6G = T6g + T6D;
700 T6E = T6g - T6D;
701 Rp[0] = KP500000000 * (T6F + T6G);
702 Rm[WS(rs, 15)] = KP500000000 * (T6F - T6G);
703 Rp[WS(rs, 8)] = KP500000000 * (T5R + T5S);
704 Rm[WS(rs, 7)] = KP500000000 * (T5R - T5S);
705 }
706 {
707 E T6U, T6T, T6Z, T70, T6J, T6Q;
708 T6V = T6I - T6H;
709 T6J = T6H + T6I;
710 T6Q = T6M + T6P;
711 T6U = T6P - T6M;
712 T6T = T6R - T6S;
713 T6Z = T6R + T6S;
714 Im[WS(rs, 7)] = KP500000000 * (T6E - T5T);
715 Ip[WS(rs, 8)] = KP500000000 * (T5T + T6E);
716 Im[WS(rs, 11)] = -(KP500000000 * (FNMS(KP707106781, T6Q, T6J)));
717 Ip[WS(rs, 4)] = KP500000000 * (FMA(KP707106781, T6Q, T6J));
718 T70 = T6W + T6X;
719 T6Y = T6W - T6X;
720 Rp[WS(rs, 4)] = KP500000000 * (FMA(KP707106781, T70, T6Z));
721 Rm[WS(rs, 11)] = KP500000000 * (FNMS(KP707106781, T70, T6Z));
722 Rp[WS(rs, 12)] = KP500000000 * (FMA(KP707106781, T6U, T6T));
723 Rm[WS(rs, 3)] = KP500000000 * (FNMS(KP707106781, T6U, T6T));
724 }
725 }
726 }
727 {
728 E T7F, T73, T7P, T7t, T7G, T7w, T7Q, T7a, T7L, T7l, T7K, T7U, T7A, T7i, T7u;
729 E T76;
730 Im[WS(rs, 3)] = -(KP500000000 * (FNMS(KP707106781, T6Y, T6V)));
731 Ip[WS(rs, 12)] = KP500000000 * (FMA(KP707106781, T6Y, T6V));
732 T7F = T72 - T71;
733 T73 = T71 + T72;
734 T7P = T7r - T7s;
735 T7t = T7r + T7s;
736 T7u = T75 + T74;
737 T76 = T74 - T75;
738 {
739 E T7I, T7e, T7v, T79, T7J, T7h;
740 T7v = T77 - T78;
741 T79 = T77 + T78;
742 T7I = T7c - T7d;
743 T7e = T7c + T7d;
744 T7G = T7v - T7u;
745 T7w = T7u + T7v;
746 T7Q = T76 - T79;
747 T7a = T76 + T79;
748 T7J = T7g - T7f;
749 T7h = T7f + T7g;
750 T7L = T7k - T7j;
751 T7l = T7j + T7k;
752 T7K = FMA(KP414213562, T7J, T7I);
753 T7U = FNMS(KP414213562, T7I, T7J);
754 T7A = FNMS(KP414213562, T7e, T7h);
755 T7i = FMA(KP414213562, T7h, T7e);
756 }
757 {
758 E T7z, T7b, T7D, T7x, T7M, T7o;
759 T7z = FNMS(KP707106781, T7a, T73);
760 T7b = FMA(KP707106781, T7a, T73);
761 T7D = FMA(KP707106781, T7w, T7t);
762 T7x = FNMS(KP707106781, T7w, T7t);
763 T7M = T7n - T7m;
764 T7o = T7m + T7n;
765 {
766 E T7S, T7R, T7X, T7Y;
767 {
768 E T7H, T7V, T7B, T7p, T7O, T7N;
769 T7T = FMA(KP707106781, T7G, T7F);
770 T7H = FNMS(KP707106781, T7G, T7F);
771 T7N = FMA(KP414213562, T7M, T7L);
772 T7V = FNMS(KP414213562, T7L, T7M);
773 T7B = FMA(KP414213562, T7l, T7o);
774 T7p = FNMS(KP414213562, T7o, T7l);
775 T7O = T7K - T7N;
776 T7S = T7K + T7N;
777 T7R = FMA(KP707106781, T7Q, T7P);
778 T7X = FNMS(KP707106781, T7Q, T7P);
779 {
780 E T7C, T7E, T7y, T7q;
781 T7C = T7A - T7B;
782 T7E = T7A + T7B;
783 T7y = T7p - T7i;
784 T7q = T7i + T7p;
785 Im[WS(rs, 1)] = -(KP500000000 * (FNMS(KP923879532, T7O, T7H)));
786 Ip[WS(rs, 14)] = KP500000000 * (FMA(KP923879532, T7O, T7H));
787 Im[WS(rs, 5)] = -(KP500000000 * (FNMS(KP923879532, T7C, T7z)));
788 Ip[WS(rs, 10)] = KP500000000 * (FMA(KP923879532, T7C, T7z));
789 Rp[WS(rs, 2)] = KP500000000 * (FMA(KP923879532, T7E, T7D));
790 Rm[WS(rs, 13)] = KP500000000 * (FNMS(KP923879532, T7E, T7D));
791 Rp[WS(rs, 10)] = KP500000000 * (FMA(KP923879532, T7y, T7x));
792 Rm[WS(rs, 5)] = KP500000000 * (FNMS(KP923879532, T7y, T7x));
793 Im[WS(rs, 13)] = -(KP500000000 * (FNMS(KP923879532, T7q, T7b)));
794 Ip[WS(rs, 2)] = KP500000000 * (FMA(KP923879532, T7q, T7b));
795 T7Y = T7U + T7V;
796 T7W = T7U - T7V;
797 }
798 }
799 Rm[WS(rs, 1)] = KP500000000 * (FMA(KP923879532, T7Y, T7X));
800 Rp[WS(rs, 14)] = KP500000000 * (FNMS(KP923879532, T7Y, T7X));
801 Rp[WS(rs, 6)] = KP500000000 * (FMA(KP923879532, T7S, T7R));
802 Rm[WS(rs, 9)] = KP500000000 * (FNMS(KP923879532, T7S, T7R));
803 }
804 }
805 }
806 {
807 E Ta7, Tat, T9l, T89, T9H, Taj, T9v, T99, T9m, T9c, T9w, T8o, Tao, Tay, Tae;
808 E Ta3, T9q, T9A, T9g, T8I, T8Z, T8W, Tak, Taa, Tau, T9O, T9r, T8T, Tar, Taz;
809 E Taf, T9W;
810 {
811 E T9M, T9L, T9J, T9I, T8s, T8G, T8D, Ta0, Tam, T9Z, Ta1, T8z, Ta9, T9K;
812 {
813 E T9F, T81, Ta5, T95, T96, T97, Ta6, T88, T84, T87;
814 T9F = T80 + T7Z;
815 T81 = T7Z - T80;
816 Ta5 = T93 - T94;
817 T95 = T93 + T94;
818 T96 = T83 + T82;
819 T84 = T82 - T83;
820 Im[WS(rs, 9)] = -(KP500000000 * (FNMS(KP923879532, T7W, T7T)));
821 Ip[WS(rs, 6)] = KP500000000 * (FMA(KP923879532, T7W, T7T));
822 T87 = T85 + T86;
823 T97 = T85 - T86;
824 Ta6 = T84 - T87;
825 T88 = T84 + T87;
826 {
827 E T8j, T9a, T8g, T8m;
828 {
829 E T8c, T9G, T98, T8f;
830 T9M = T8a + T8b;
831 T8c = T8a - T8b;
832 Ta7 = FMA(KP707106781, Ta6, Ta5);
833 Tat = FNMS(KP707106781, Ta6, Ta5);
834 T9l = FNMS(KP707106781, T88, T81);
835 T89 = FMA(KP707106781, T88, T81);
836 T9G = T97 - T96;
837 T98 = T96 + T97;
838 T8f = T8d + T8e;
839 T9L = T8d - T8e;
840 T9J = T8h + T8i;
841 T8j = T8h - T8i;
842 T9H = FMA(KP707106781, T9G, T9F);
843 Taj = FNMS(KP707106781, T9G, T9F);
844 T9v = FNMS(KP707106781, T98, T95);
845 T99 = FMA(KP707106781, T98, T95);
846 T9a = FMA(KP414213562, T8c, T8f);
847 T8g = FNMS(KP414213562, T8f, T8c);
848 T8m = T8k + T8l;
849 T9I = T8k - T8l;
850 }
851 {
852 E T9X, T9Y, T9b, T8n;
853 T8s = T8q + T8r;
854 T9X = T8r - T8q;
855 T9Y = T8F - T8E;
856 T8G = T8E + T8F;
857 T8D = T8B + T8C;
858 Ta0 = T8B - T8C;
859 T9b = FNMS(KP414213562, T8j, T8m);
860 T8n = FMA(KP414213562, T8m, T8j);
861 Tam = FMA(KP707106781, T9Y, T9X);
862 T9Z = FNMS(KP707106781, T9Y, T9X);
863 T9m = T9b - T9a;
864 T9c = T9a + T9b;
865 T9w = T8g - T8n;
866 T8o = T8g + T8n;
867 Ta1 = T8y - T8v;
868 T8z = T8v + T8y;
869 }
870 }
871 }
872 {
873 E T9o, T8A, Tan, Ta2, T9p, T8H;
874 Tan = FMA(KP707106781, Ta1, Ta0);
875 Ta2 = FNMS(KP707106781, Ta1, Ta0);
876 T9o = FNMS(KP707106781, T8z, T8s);
877 T8A = FMA(KP707106781, T8z, T8s);
878 Tao = FMA(KP198912367, Tan, Tam);
879 Tay = FNMS(KP198912367, Tam, Tan);
880 Tae = FMA(KP668178637, T9Z, Ta2);
881 Ta3 = FNMS(KP668178637, Ta2, T9Z);
882 T9p = FNMS(KP707106781, T8G, T8D);
883 T8H = FMA(KP707106781, T8G, T8D);
884 Ta9 = FNMS(KP414213562, T9I, T9J);
885 T9K = FMA(KP414213562, T9J, T9I);
886 T9q = FNMS(KP668178637, T9p, T9o);
887 T9A = FMA(KP668178637, T9o, T9p);
888 T9g = FNMS(KP198912367, T8A, T8H);
889 T8I = FMA(KP198912367, T8H, T8A);
890 }
891 {
892 E T8L, T9T, Tap, T9S, T9U, T8S, Taq, T9V;
893 {
894 E T9Q, T9R, Ta8, T9N;
895 T8L = T8J - T8K;
896 T9Q = T8K + T8J;
897 T9R = T8X - T8Y;
898 T8Z = T8X + T8Y;
899 T8W = T8U + T8V;
900 T9T = T8V - T8U;
901 Ta8 = FMA(KP414213562, T9L, T9M);
902 T9N = FNMS(KP414213562, T9M, T9L);
903 Tap = FMA(KP707106781, T9R, T9Q);
904 T9S = FNMS(KP707106781, T9R, T9Q);
905 Tak = Ta8 + Ta9;
906 Taa = Ta8 - Ta9;
907 Tau = T9N + T9K;
908 T9O = T9K - T9N;
909 T9U = T8R - T8O;
910 T8S = T8O + T8R;
911 }
912 Taq = FMA(KP707106781, T9U, T9T);
913 T9V = FNMS(KP707106781, T9U, T9T);
914 T9r = FNMS(KP707106781, T8S, T8L);
915 T8T = FMA(KP707106781, T8S, T8L);
916 Tar = FMA(KP198912367, Taq, Tap);
917 Taz = FNMS(KP198912367, Tap, Taq);
918 Taf = FMA(KP668178637, T9S, T9V);
919 T9W = FNMS(KP668178637, T9V, T9S);
920 }
921 }
922 {
923 E T9z, T9C, Tad, Tag;
924 {
925 E T9f, T8p, T9j, T9d, T9s, T90;
926 T9f = FNMS(KP923879532, T8o, T89);
927 T8p = FMA(KP923879532, T8o, T89);
928 T9j = FMA(KP923879532, T9c, T99);
929 T9d = FNMS(KP923879532, T9c, T99);
930 T9s = FNMS(KP707106781, T8Z, T8W);
931 T90 = FMA(KP707106781, T8Z, T8W);
932 {
933 E T9y, T9x, T9D, T9E;
934 {
935 E T9n, T9B, T9h, T91, T9u, T9t;
936 T9z = FMA(KP923879532, T9m, T9l);
937 T9n = FNMS(KP923879532, T9m, T9l);
938 T9t = FMA(KP668178637, T9s, T9r);
939 T9B = FNMS(KP668178637, T9r, T9s);
940 T9h = FMA(KP198912367, T8T, T90);
941 T91 = FNMS(KP198912367, T90, T8T);
942 T9u = T9q + T9t;
943 T9y = T9t - T9q;
944 T9x = FMA(KP923879532, T9w, T9v);
945 T9D = FNMS(KP923879532, T9w, T9v);
946 {
947 E T9i, T9k, T9e, T92;
948 T9i = T9g - T9h;
949 T9k = T9g + T9h;
950 T9e = T91 - T8I;
951 T92 = T8I + T91;
952 Im[WS(rs, 2)] = -(KP500000000 * (FMA(KP831469612, T9u, T9n)));
953 Ip[WS(rs, 13)] = KP500000000 * (FNMS(KP831469612, T9u, T9n));
954 Im[WS(rs, 6)] = -(KP500000000 * (FNMS(KP980785280, T9i, T9f)));
955 Ip[WS(rs, 9)] = KP500000000 * (FMA(KP980785280, T9i, T9f));
956 Rp[WS(rs, 1)] = KP500000000 * (FMA(KP980785280, T9k, T9j));
957 Rm[WS(rs, 14)] = KP500000000 * (FNMS(KP980785280, T9k, T9j));
958 Rp[WS(rs, 9)] = KP500000000 * (FMA(KP980785280, T9e, T9d));
959 Rm[WS(rs, 6)] = KP500000000 * (FNMS(KP980785280, T9e, T9d));
960 Im[WS(rs, 14)] = -(KP500000000 * (FNMS(KP980785280, T92, T8p)));
961 Ip[WS(rs, 1)] = KP500000000 * (FMA(KP980785280, T92, T8p));
962 T9E = T9A + T9B;
963 T9C = T9A - T9B;
964 }
965 }
966 Rm[WS(rs, 2)] = KP500000000 * (FMA(KP831469612, T9E, T9D));
967 Rp[WS(rs, 13)] = KP500000000 * (FNMS(KP831469612, T9E, T9D));
968 Rp[WS(rs, 5)] = KP500000000 * (FMA(KP831469612, T9y, T9x));
969 Rm[WS(rs, 10)] = KP500000000 * (FNMS(KP831469612, T9y, T9x));
970 }
971 }
972 {
973 E Tac, Tab, Tah, Tai, T9P, Ta4;
974 Tad = FNMS(KP923879532, T9O, T9H);
975 T9P = FMA(KP923879532, T9O, T9H);
976 Ta4 = T9W - Ta3;
977 Tac = Ta3 + T9W;
978 Tab = FNMS(KP923879532, Taa, Ta7);
979 Tah = FMA(KP923879532, Taa, Ta7);
980 Im[WS(rs, 10)] = -(KP500000000 * (FNMS(KP831469612, T9C, T9z)));
981 Ip[WS(rs, 5)] = KP500000000 * (FMA(KP831469612, T9C, T9z));
982 Im[WS(rs, 12)] = -(KP500000000 * (FNMS(KP831469612, Ta4, T9P)));
983 Ip[WS(rs, 3)] = KP500000000 * (FMA(KP831469612, Ta4, T9P));
984 Tai = Tae + Taf;
985 Tag = Tae - Taf;
986 Rp[WS(rs, 3)] = KP500000000 * (FMA(KP831469612, Tai, Tah));
987 Rm[WS(rs, 12)] = KP500000000 * (FNMS(KP831469612, Tai, Tah));
988 Rp[WS(rs, 11)] = KP500000000 * (FMA(KP831469612, Tac, Tab));
989 Rm[WS(rs, 4)] = KP500000000 * (FNMS(KP831469612, Tac, Tab));
990 }
991 {
992 E Taw, Tav, TaB, TaC, Tal, Tas;
993 Tax = FNMS(KP923879532, Tak, Taj);
994 Tal = FMA(KP923879532, Tak, Taj);
995 Tas = Tao - Tar;
996 Taw = Tao + Tar;
997 Tav = FNMS(KP923879532, Tau, Tat);
998 TaB = FMA(KP923879532, Tau, Tat);
999 Im[WS(rs, 4)] = -(KP500000000 * (FNMS(KP831469612, Tag, Tad)));
1000 Ip[WS(rs, 11)] = KP500000000 * (FMA(KP831469612, Tag, Tad));
1001 Im[0] = -(KP500000000 * (FNMS(KP980785280, Tas, Tal)));
1002 Ip[WS(rs, 15)] = KP500000000 * (FMA(KP980785280, Tas, Tal));
1003 TaC = Tay + Taz;
1004 TaA = Tay - Taz;
1005 Rm[0] = KP500000000 * (FMA(KP980785280, TaC, TaB));
1006 Rp[WS(rs, 15)] = KP500000000 * (FNMS(KP980785280, TaC, TaB));
1007 Rp[WS(rs, 7)] = KP500000000 * (FMA(KP980785280, Taw, Tav));
1008 Rm[WS(rs, 8)] = KP500000000 * (FNMS(KP980785280, Taw, Tav));
1009 }
1010 }
1011 }
1012 }
1013 }
1014 }
1015 Im[WS(rs, 8)] = -(KP500000000 * (FNMS(KP980785280, TaA, Tax)));
1016 Ip[WS(rs, 7)] = KP500000000 * (FMA(KP980785280, TaA, Tax));
1017 }
1018 }
1019 }
1020
1021 static const tw_instr twinstr[] = {
1022 {TW_CEXP, 1, 1},
1023 {TW_CEXP, 1, 3},
1024 {TW_CEXP, 1, 9},
1025 {TW_CEXP, 1, 27},
1026 {TW_NEXT, 1, 0}
1027 };
1028
1029 static const hc2c_desc desc = { 32, "hc2cfdft2_32", twinstr, &GENUS, {300, 162, 252, 0} };
1030
1031 void X(codelet_hc2cfdft2_32) (planner *p) {
1032 X(khc2c_register) (p, hc2cfdft2_32, &desc, HC2C_VIA_DFT);
1033 }
1034 #else /* HAVE_FMA */
1035
1036 /* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 32 -dit -name hc2cfdft2_32 -include hc2cf.h */
1037
1038 /*
1039 * This function contains 552 FP additions, 300 FP multiplications,
1040 * (or, 440 additions, 188 multiplications, 112 fused multiply/add),
1041 * 166 stack variables, 9 constants, and 128 memory accesses
1042 */
1043 #include "hc2cf.h"
1044
1045 static void hc2cfdft2_32(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
1046 {
1047 DK(KP277785116, +0.277785116509801112371415406974266437187468595);
1048 DK(KP415734806, +0.415734806151272618539394188808952878369280406);
1049 DK(KP097545161, +0.097545161008064133924142434238511120463845809);
1050 DK(KP490392640, +0.490392640201615224563091118067119518486966865);
1051 DK(KP707106781, +0.707106781186547524400844362104849039284835938);
1052 DK(KP191341716, +0.191341716182544885864229992015199433380672281);
1053 DK(KP461939766, +0.461939766255643378064091594698394143411208313);
1054 DK(KP353553390, +0.353553390593273762200422181052424519642417969);
1055 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
1056 {
1057 INT m;
1058 for (m = mb, W = W + ((mb - 1) * 8); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 8, MAKE_VOLATILE_STRIDE(128, rs)) {
1059 E T1, T4, T2, T5, T7, T1b, T1d, Td, Ti, Tk, Tj, Tl, TL, TR, T2h;
1060 E T2O, T16, T2l, T10, T2K, Tm, Tq, T3s, T3K, T3w, T3M, T4e, T4u, T4i, T4w;
1061 E Ty, TE, T3h, T3j, T2q, T2u, T4l, T4n, T1v, T1B, T3E, T3G, T2B, T2F, T3Y;
1062 E T40, T1f, T1G, T1i, T1H, T1j, T1M, T1n, T1I, T23, T2U, T26, T2V, T27, T30;
1063 E T2b, T2W;
1064 {
1065 E Tw, T1A, TD, T1t, Tx, T1z, TC, T1u, TJ, T15, TQ, TY, TK, T14, TP;
1066 E TZ;
1067 {
1068 E T3, Tc, T6, Tb;
1069 T1 = W[0];
1070 T4 = W[1];
1071 T2 = W[2];
1072 T5 = W[3];
1073 T3 = T1 * T2;
1074 Tc = T4 * T2;
1075 T6 = T4 * T5;
1076 Tb = T1 * T5;
1077 T7 = T3 + T6;
1078 T1b = T3 - T6;
1079 T1d = Tb + Tc;
1080 Td = Tb - Tc;
1081 Ti = W[4];
1082 Tw = T1 * Ti;
1083 T1A = T5 * Ti;
1084 TD = T4 * Ti;
1085 T1t = T2 * Ti;
1086 Tk = W[5];
1087 Tx = T4 * Tk;
1088 T1z = T2 * Tk;
1089 TC = T1 * Tk;
1090 T1u = T5 * Tk;
1091 Tj = W[6];
1092 TJ = T1 * Tj;
1093 T15 = T5 * Tj;
1094 TQ = T4 * Tj;
1095 TY = T2 * Tj;
1096 Tl = W[7];
1097 TK = T4 * Tl;
1098 T14 = T2 * Tl;
1099 TP = T1 * Tl;
1100 TZ = T5 * Tl;
1101 }
1102 TL = TJ + TK;
1103 TR = TP - TQ;
1104 T2h = TJ - TK;
1105 T2O = T14 - T15;
1106 T16 = T14 + T15;
1107 T2l = TP + TQ;
1108 T10 = TY - TZ;
1109 T2K = TY + TZ;
1110 Tm = FMA(Ti, Tj, Tk * Tl);
1111 Tq = FNMS(Tk, Tj, Ti * Tl);
1112 {
1113 E T3q, T3r, T3u, T3v;
1114 T3q = T7 * Tj;
1115 T3r = Td * Tl;
1116 T3s = T3q + T3r;
1117 T3K = T3q - T3r;
1118 T3u = T7 * Tl;
1119 T3v = Td * Tj;
1120 T3w = T3u - T3v;
1121 T3M = T3u + T3v;
1122 }
1123 {
1124 E T4c, T4d, T4g, T4h;
1125 T4c = T1b * Tj;
1126 T4d = T1d * Tl;
1127 T4e = T4c - T4d;
1128 T4u = T4c + T4d;
1129 T4g = T1b * Tl;
1130 T4h = T1d * Tj;
1131 T4i = T4g + T4h;
1132 T4w = T4g - T4h;
1133 Ty = Tw - Tx;
1134 TE = TC + TD;
1135 T3h = FMA(Ty, Tj, TE * Tl);
1136 T3j = FNMS(TE, Tj, Ty * Tl);
1137 }
1138 T2q = T1t - T1u;
1139 T2u = T1z + T1A;
1140 T4l = FMA(T2q, Tj, T2u * Tl);
1141 T4n = FNMS(T2u, Tj, T2q * Tl);
1142 T1v = T1t + T1u;
1143 T1B = T1z - T1A;
1144 T3E = FMA(T1v, Tj, T1B * Tl);
1145 T3G = FNMS(T1B, Tj, T1v * Tl);
1146 T2B = Tw + Tx;
1147 T2F = TC - TD;
1148 T3Y = FMA(T2B, Tj, T2F * Tl);
1149 T40 = FNMS(T2F, Tj, T2B * Tl);
1150 {
1151 E T1c, T1e, T1g, T1h;
1152 T1c = T1b * Ti;
1153 T1e = T1d * Tk;
1154 T1f = T1c - T1e;
1155 T1G = T1c + T1e;
1156 T1g = T1b * Tk;
1157 T1h = T1d * Ti;
1158 T1i = T1g + T1h;
1159 T1H = T1g - T1h;
1160 }
1161 T1j = FMA(T1f, Tj, T1i * Tl);
1162 T1M = FNMS(T1H, Tj, T1G * Tl);
1163 T1n = FNMS(T1i, Tj, T1f * Tl);
1164 T1I = FMA(T1G, Tj, T1H * Tl);
1165 {
1166 E T21, T22, T24, T25;
1167 T21 = T7 * Ti;
1168 T22 = Td * Tk;
1169 T23 = T21 + T22;
1170 T2U = T21 - T22;
1171 T24 = T7 * Tk;
1172 T25 = Td * Ti;
1173 T26 = T24 - T25;
1174 T2V = T24 + T25;
1175 }
1176 T27 = FMA(T23, Tj, T26 * Tl);
1177 T30 = FNMS(T2V, Tj, T2U * Tl);
1178 T2b = FNMS(T26, Tj, T23 * Tl);
1179 T2W = FMA(T2U, Tj, T2V * Tl);
1180 }
1181 {
1182 E T38, T7l, T7S, T8Y, T7Z, T91, T3A, T6k, T4F, T83, T5C, T6n, T2T, T84, T4I;
1183 E T7m, T2g, T4M, T4P, T2z, T3T, T6m, T7O, T7V, T7j, T87, T5v, T6j, T7L, T7U;
1184 E T7g, T86, Tv, TW, T61, T4U, T4X, T62, T4b, T6c, T7v, T7C, T5g, T6f, T74;
1185 E T8G, T7s, T7B, T71, T8F, T1s, T1R, T65, T51, T54, T64, T4A, T6g, T7G, T8U;
1186 E T5n, T6d, T7b, T8J, T7z, T8R, T78, T8I;
1187 {
1188 E T2E, T2I, T3p, T5w, T37, T4D, T3g, T5A, T2N, T2R, T3y, T5x, T2Z, T33, T3l;
1189 E T5z;
1190 {
1191 E T2C, T2D, T3o, T2G, T2H, T3n;
1192 T2C = Ip[WS(rs, 4)];
1193 T2D = Im[WS(rs, 4)];
1194 T3o = T2C + T2D;
1195 T2G = Rp[WS(rs, 4)];
1196 T2H = Rm[WS(rs, 4)];
1197 T3n = T2G - T2H;
1198 T2E = T2C - T2D;
1199 T2I = T2G + T2H;
1200 T3p = FMA(Ti, T3n, Tk * T3o);
1201 T5w = FNMS(Tk, T3n, Ti * T3o);
1202 }
1203 {
1204 E T35, T36, T3f, T3c, T3d, T3e;
1205 T35 = Ip[0];
1206 T36 = Im[0];
1207 T3f = T35 + T36;
1208 T3c = Rm[0];
1209 T3d = Rp[0];
1210 T3e = T3c - T3d;
1211 T37 = T35 - T36;
1212 T4D = T3d + T3c;
1213 T3g = FNMS(T4, T3f, T1 * T3e);
1214 T5A = FMA(T4, T3e, T1 * T3f);
1215 }
1216 {
1217 E T2L, T2M, T3x, T2P, T2Q, T3t;
1218 T2L = Ip[WS(rs, 12)];
1219 T2M = Im[WS(rs, 12)];
1220 T3x = T2L + T2M;
1221 T2P = Rp[WS(rs, 12)];
1222 T2Q = Rm[WS(rs, 12)];
1223 T3t = T2P - T2Q;
1224 T2N = T2L - T2M;
1225 T2R = T2P + T2Q;
1226 T3y = FMA(T3s, T3t, T3w * T3x);
1227 T5x = FNMS(T3w, T3t, T3s * T3x);
1228 }
1229 {
1230 E T2X, T2Y, T3k, T31, T32, T3i;
1231 T2X = Ip[WS(rs, 8)];
1232 T2Y = Im[WS(rs, 8)];
1233 T3k = T2X + T2Y;
1234 T31 = Rp[WS(rs, 8)];
1235 T32 = Rm[WS(rs, 8)];
1236 T3i = T31 - T32;
1237 T2Z = T2X - T2Y;
1238 T33 = T31 + T32;
1239 T3l = FMA(T3h, T3i, T3j * T3k);
1240 T5z = FNMS(T3j, T3i, T3h * T3k);
1241 }
1242 {
1243 E T34, T7Q, T7R, T4E, T5y, T5B;
1244 T34 = FNMS(T30, T33, T2W * T2Z);
1245 T38 = T34 + T37;
1246 T7l = T37 - T34;
1247 T7Q = T3l + T3g;
1248 T7R = T5w - T5x;
1249 T7S = T7Q - T7R;
1250 T8Y = T7R + T7Q;
1251 {
1252 E T7X, T7Y, T3m, T3z;
1253 T7X = T3y - T3p;
1254 T7Y = T5A - T5z;
1255 T7Z = T7X + T7Y;
1256 T91 = T7Y - T7X;
1257 T3m = T3g - T3l;
1258 T3z = T3p + T3y;
1259 T3A = T3m - T3z;
1260 T6k = T3z + T3m;
1261 }
1262 T4E = FMA(T2W, T33, T30 * T2Z);
1263 T4F = T4D + T4E;
1264 T83 = T4D - T4E;
1265 T5y = T5w + T5x;
1266 T5B = T5z + T5A;
1267 T5C = T5y + T5B;
1268 T6n = T5B - T5y;
1269 {
1270 E T2J, T2S, T4G, T4H;
1271 T2J = FNMS(T2F, T2I, T2B * T2E);
1272 T2S = FNMS(T2O, T2R, T2K * T2N);
1273 T2T = T2J + T2S;
1274 T84 = T2J - T2S;
1275 T4G = FMA(T2B, T2I, T2F * T2E);
1276 T4H = FMA(T2K, T2R, T2O * T2N);
1277 T4I = T4G + T4H;
1278 T7m = T4G - T4H;
1279 }
1280 }
1281 }
1282 {
1283 E T20, T5p, T3D, T4K, T2y, T5t, T3R, T4O, T2f, T5q, T3I, T4L, T2p, T5s, T3O;
1284 E T4N;
1285 {
1286 E T1W, T3C, T1Z, T3B;
1287 {
1288 E T1U, T1V, T1X, T1Y;
1289 T1U = Ip[WS(rs, 2)];
1290 T1V = Im[WS(rs, 2)];
1291 T1W = T1U - T1V;
1292 T3C = T1U + T1V;
1293 T1X = Rp[WS(rs, 2)];
1294 T1Y = Rm[WS(rs, 2)];
1295 T1Z = T1X + T1Y;
1296 T3B = T1X - T1Y;
1297 }
1298 T20 = FNMS(T1d, T1Z, T1b * T1W);
1299 T5p = FNMS(T1H, T3B, T1G * T3C);
1300 T3D = FMA(T1G, T3B, T1H * T3C);
1301 T4K = FMA(T1b, T1Z, T1d * T1W);
1302 }
1303 {
1304 E T2t, T3Q, T2x, T3P;
1305 {
1306 E T2r, T2s, T2v, T2w;
1307 T2r = Ip[WS(rs, 6)];
1308 T2s = Im[WS(rs, 6)];
1309 T2t = T2r - T2s;
1310 T3Q = T2r + T2s;
1311 T2v = Rp[WS(rs, 6)];
1312 T2w = Rm[WS(rs, 6)];
1313 T2x = T2v + T2w;
1314 T3P = T2v - T2w;
1315 }
1316 T2y = FNMS(T2u, T2x, T2q * T2t);
1317 T5t = FNMS(T1i, T3P, T1f * T3Q);
1318 T3R = FMA(T1f, T3P, T1i * T3Q);
1319 T4O = FMA(T2q, T2x, T2u * T2t);
1320 }
1321 {
1322 E T2a, T3H, T2e, T3F;
1323 {
1324 E T28, T29, T2c, T2d;
1325 T28 = Ip[WS(rs, 10)];
1326 T29 = Im[WS(rs, 10)];
1327 T2a = T28 - T29;
1328 T3H = T28 + T29;
1329 T2c = Rp[WS(rs, 10)];
1330 T2d = Rm[WS(rs, 10)];
1331 T2e = T2c + T2d;
1332 T3F = T2c - T2d;
1333 }
1334 T2f = FNMS(T2b, T2e, T27 * T2a);
1335 T5q = FNMS(T3G, T3F, T3E * T3H);
1336 T3I = FMA(T3E, T3F, T3G * T3H);
1337 T4L = FMA(T27, T2e, T2b * T2a);
1338 }
1339 {
1340 E T2k, T3N, T2o, T3L;
1341 {
1342 E T2i, T2j, T2m, T2n;
1343 T2i = Ip[WS(rs, 14)];
1344 T2j = Im[WS(rs, 14)];
1345 T2k = T2i - T2j;
1346 T3N = T2i + T2j;
1347 T2m = Rp[WS(rs, 14)];
1348 T2n = Rm[WS(rs, 14)];
1349 T2o = T2m + T2n;
1350 T3L = T2m - T2n;
1351 }
1352 T2p = FNMS(T2l, T2o, T2h * T2k);
1353 T5s = FNMS(T3M, T3L, T3K * T3N);
1354 T3O = FMA(T3K, T3L, T3M * T3N);
1355 T4N = FMA(T2h, T2o, T2l * T2k);
1356 }
1357 {
1358 E T3J, T3S, T5r, T5u;
1359 T2g = T20 + T2f;
1360 T4M = T4K + T4L;
1361 T4P = T4N + T4O;
1362 T2z = T2p + T2y;
1363 T3J = T3D + T3I;
1364 T3S = T3O + T3R;
1365 T3T = T3J + T3S;
1366 T6m = T3S - T3J;
1367 {
1368 E T7M, T7N, T7h, T7i;
1369 T7M = T5s - T5t;
1370 T7N = T3R - T3O;
1371 T7O = T7M + T7N;
1372 T7V = T7M - T7N;
1373 T7h = T4N - T4O;
1374 T7i = T2p - T2y;
1375 T7j = T7h + T7i;
1376 T87 = T7h - T7i;
1377 }
1378 T5r = T5p + T5q;
1379 T5u = T5s + T5t;
1380 T5v = T5r + T5u;
1381 T6j = T5u - T5r;
1382 {
1383 E T7J, T7K, T7e, T7f;
1384 T7J = T3I - T3D;
1385 T7K = T5p - T5q;
1386 T7L = T7J - T7K;
1387 T7U = T7K + T7J;
1388 T7e = T20 - T2f;
1389 T7f = T4K - T4L;
1390 T7g = T7e - T7f;
1391 T86 = T7f + T7e;
1392 }
1393 }
1394 }
1395 {
1396 E Th, T5a, T3X, T4S, TV, T5e, T49, T4W, Tu, T5b, T42, T4T, TI, T5d, T46;
1397 E T4V;
1398 {
1399 E Ta, T3W, Tg, T3V;
1400 {
1401 E T8, T9, Te, Tf;
1402 T8 = Ip[WS(rs, 1)];
1403 T9 = Im[WS(rs, 1)];
1404 Ta = T8 - T9;
1405 T3W = T8 + T9;
1406 Te = Rp[WS(rs, 1)];
1407 Tf = Rm[WS(rs, 1)];
1408 Tg = Te + Tf;
1409 T3V = Te - Tf;
1410 }
1411 Th = FNMS(Td, Tg, T7 * Ta);
1412 T5a = FNMS(T5, T3V, T2 * T3W);
1413 T3X = FMA(T2, T3V, T5 * T3W);
1414 T4S = FMA(T7, Tg, Td * Ta);
1415 }
1416 {
1417 E TO, T48, TU, T47;
1418 {
1419 E TM, TN, TS, TT;
1420 TM = Ip[WS(rs, 13)];
1421 TN = Im[WS(rs, 13)];
1422 TO = TM - TN;
1423 T48 = TM + TN;
1424 TS = Rp[WS(rs, 13)];
1425 TT = Rm[WS(rs, 13)];
1426 TU = TS + TT;
1427 T47 = TS - TT;
1428 }
1429 TV = FNMS(TR, TU, TL * TO);
1430 T5e = FNMS(Tl, T47, Tj * T48);
1431 T49 = FMA(Tj, T47, Tl * T48);
1432 T4W = FMA(TL, TU, TR * TO);
1433 }
1434 {
1435 E Tp, T41, Tt, T3Z;
1436 {
1437 E Tn, To, Tr, Ts;
1438 Tn = Ip[WS(rs, 9)];
1439 To = Im[WS(rs, 9)];
1440 Tp = Tn - To;
1441 T41 = Tn + To;
1442 Tr = Rp[WS(rs, 9)];
1443 Ts = Rm[WS(rs, 9)];
1444 Tt = Tr + Ts;
1445 T3Z = Tr - Ts;
1446 }
1447 Tu = FNMS(Tq, Tt, Tm * Tp);
1448 T5b = FNMS(T40, T3Z, T3Y * T41);
1449 T42 = FMA(T3Y, T3Z, T40 * T41);
1450 T4T = FMA(Tm, Tt, Tq * Tp);
1451 }
1452 {
1453 E TB, T45, TH, T44;
1454 {
1455 E Tz, TA, TF, TG;
1456 Tz = Ip[WS(rs, 5)];
1457 TA = Im[WS(rs, 5)];
1458 TB = Tz - TA;
1459 T45 = Tz + TA;
1460 TF = Rp[WS(rs, 5)];
1461 TG = Rm[WS(rs, 5)];
1462 TH = TF + TG;
1463 T44 = TF - TG;
1464 }
1465 TI = FNMS(TE, TH, Ty * TB);
1466 T5d = FNMS(T2V, T44, T2U * T45);
1467 T46 = FMA(T2U, T44, T2V * T45);
1468 T4V = FMA(Ty, TH, TE * TB);
1469 }
1470 Tv = Th + Tu;
1471 TW = TI + TV;
1472 T61 = Tv - TW;
1473 T4U = T4S + T4T;
1474 T4X = T4V + T4W;
1475 T62 = T4U - T4X;
1476 {
1477 E T43, T4a, T7t, T7u;
1478 T43 = T3X + T42;
1479 T4a = T46 + T49;
1480 T4b = T43 + T4a;
1481 T6c = T4a - T43;
1482 T7t = T5e - T5d;
1483 T7u = T46 - T49;
1484 T7v = T7t + T7u;
1485 T7C = T7t - T7u;
1486 }
1487 {
1488 E T5c, T5f, T72, T73;
1489 T5c = T5a + T5b;
1490 T5f = T5d + T5e;
1491 T5g = T5c + T5f;
1492 T6f = T5f - T5c;
1493 T72 = T4S - T4T;
1494 T73 = TI - TV;
1495 T74 = T72 + T73;
1496 T8G = T72 - T73;
1497 }
1498 {
1499 E T7q, T7r, T6Z, T70;
1500 T7q = T42 - T3X;
1501 T7r = T5a - T5b;
1502 T7s = T7q - T7r;
1503 T7B = T7r + T7q;
1504 T6Z = Th - Tu;
1505 T70 = T4V - T4W;
1506 T71 = T6Z - T70;
1507 T8F = T6Z + T70;
1508 }
1509 }
1510 {
1511 E T1a, T5h, T4k, T4Z, T1Q, T5l, T4y, T53, T1r, T5i, T4p, T50, T1F, T5k, T4t;
1512 E T52;
1513 {
1514 E T13, T4j, T19, T4f;
1515 {
1516 E T11, T12, T17, T18;
1517 T11 = Ip[WS(rs, 15)];
1518 T12 = Im[WS(rs, 15)];
1519 T13 = T11 - T12;
1520 T4j = T11 + T12;
1521 T17 = Rp[WS(rs, 15)];
1522 T18 = Rm[WS(rs, 15)];
1523 T19 = T17 + T18;
1524 T4f = T17 - T18;
1525 }
1526 T1a = FNMS(T16, T19, T10 * T13);
1527 T5h = FNMS(T4i, T4f, T4e * T4j);
1528 T4k = FMA(T4e, T4f, T4i * T4j);
1529 T4Z = FMA(T10, T19, T16 * T13);
1530 }
1531 {
1532 E T1L, T4x, T1P, T4v;
1533 {
1534 E T1J, T1K, T1N, T1O;
1535 T1J = Ip[WS(rs, 11)];
1536 T1K = Im[WS(rs, 11)];
1537 T1L = T1J - T1K;
1538 T4x = T1J + T1K;
1539 T1N = Rp[WS(rs, 11)];
1540 T1O = Rm[WS(rs, 11)];
1541 T1P = T1N + T1O;
1542 T4v = T1N - T1O;
1543 }
1544 T1Q = FNMS(T1M, T1P, T1I * T1L);
1545 T5l = FNMS(T4w, T4v, T4u * T4x);
1546 T4y = FMA(T4u, T4v, T4w * T4x);
1547 T53 = FMA(T1I, T1P, T1M * T1L);
1548 }
1549 {
1550 E T1m, T4o, T1q, T4m;
1551 {
1552 E T1k, T1l, T1o, T1p;
1553 T1k = Ip[WS(rs, 7)];
1554 T1l = Im[WS(rs, 7)];
1555 T1m = T1k - T1l;
1556 T4o = T1k + T1l;
1557 T1o = Rp[WS(rs, 7)];
1558 T1p = Rm[WS(rs, 7)];
1559 T1q = T1o + T1p;
1560 T4m = T1o - T1p;
1561 }
1562 T1r = FNMS(T1n, T1q, T1j * T1m);
1563 T5i = FNMS(T4n, T4m, T4l * T4o);
1564 T4p = FMA(T4l, T4m, T4n * T4o);
1565 T50 = FMA(T1j, T1q, T1n * T1m);
1566 }
1567 {
1568 E T1y, T4s, T1E, T4r;
1569 {
1570 E T1w, T1x, T1C, T1D;
1571 T1w = Ip[WS(rs, 3)];
1572 T1x = Im[WS(rs, 3)];
1573 T1y = T1w - T1x;
1574 T4s = T1w + T1x;
1575 T1C = Rp[WS(rs, 3)];
1576 T1D = Rm[WS(rs, 3)];
1577 T1E = T1C + T1D;
1578 T4r = T1C - T1D;
1579 }
1580 T1F = FNMS(T1B, T1E, T1v * T1y);
1581 T5k = FNMS(T26, T4r, T23 * T4s);
1582 T4t = FMA(T23, T4r, T26 * T4s);
1583 T52 = FMA(T1v, T1E, T1B * T1y);
1584 }
1585 T1s = T1a + T1r;
1586 T1R = T1F + T1Q;
1587 T65 = T1s - T1R;
1588 T51 = T4Z + T50;
1589 T54 = T52 + T53;
1590 T64 = T51 - T54;
1591 {
1592 E T4q, T4z, T7E, T7F;
1593 T4q = T4k + T4p;
1594 T4z = T4t + T4y;
1595 T4A = T4q + T4z;
1596 T6g = T4z - T4q;
1597 T7E = T5h - T5i;
1598 T7F = T4y - T4t;
1599 T7G = T7E + T7F;
1600 T8U = T7E - T7F;
1601 }
1602 {
1603 E T5j, T5m, T79, T7a;
1604 T5j = T5h + T5i;
1605 T5m = T5k + T5l;
1606 T5n = T5j + T5m;
1607 T6d = T5j - T5m;
1608 T79 = T4Z - T50;
1609 T7a = T1F - T1Q;
1610 T7b = T79 + T7a;
1611 T8J = T79 - T7a;
1612 }
1613 {
1614 E T7x, T7y, T76, T77;
1615 T7x = T4p - T4k;
1616 T7y = T5k - T5l;
1617 T7z = T7x - T7y;
1618 T8R = T7x + T7y;
1619 T76 = T1a - T1r;
1620 T77 = T52 - T53;
1621 T78 = T76 - T77;
1622 T8I = T76 + T77;
1623 }
1624 }
1625 {
1626 E T1T, T5S, T5M, T5W, T5P, T5X, T3a, T5I, T4C, T58, T56, T5H, T5E, T5G, T4R;
1627 E T5R;
1628 {
1629 E TX, T1S, T5K, T5L;
1630 TX = Tv + TW;
1631 T1S = T1s + T1R;
1632 T1T = TX + T1S;
1633 T5S = TX - T1S;
1634 T5K = T5n - T5g;
1635 T5L = T4b - T4A;
1636 T5M = T5K + T5L;
1637 T5W = T5K - T5L;
1638 }
1639 {
1640 E T5N, T5O, T2A, T39;
1641 T5N = T3T + T3A;
1642 T5O = T5C - T5v;
1643 T5P = T5N - T5O;
1644 T5X = T5N + T5O;
1645 T2A = T2g + T2z;
1646 T39 = T2T + T38;
1647 T3a = T2A + T39;
1648 T5I = T39 - T2A;
1649 }
1650 {
1651 E T3U, T4B, T4Y, T55;
1652 T3U = T3A - T3T;
1653 T4B = T4b + T4A;
1654 T4C = T3U - T4B;
1655 T58 = T4B + T3U;
1656 T4Y = T4U + T4X;
1657 T55 = T51 + T54;
1658 T56 = T4Y + T55;
1659 T5H = T55 - T4Y;
1660 }
1661 {
1662 E T5o, T5D, T4J, T4Q;
1663 T5o = T5g + T5n;
1664 T5D = T5v + T5C;
1665 T5E = T5o - T5D;
1666 T5G = T5o + T5D;
1667 T4J = T4F + T4I;
1668 T4Q = T4M + T4P;
1669 T4R = T4J + T4Q;
1670 T5R = T4J - T4Q;
1671 }
1672 {
1673 E T3b, T5F, T57, T59;
1674 T3b = T1T + T3a;
1675 Ip[0] = KP500000000 * (T3b + T4C);
1676 Im[WS(rs, 15)] = KP500000000 * (T4C - T3b);
1677 T5F = T4R + T56;
1678 Rm[WS(rs, 15)] = KP500000000 * (T5F - T5G);
1679 Rp[0] = KP500000000 * (T5F + T5G);
1680 T57 = T4R - T56;
1681 Rm[WS(rs, 7)] = KP500000000 * (T57 - T58);
1682 Rp[WS(rs, 8)] = KP500000000 * (T57 + T58);
1683 T59 = T3a - T1T;
1684 Ip[WS(rs, 8)] = KP500000000 * (T59 + T5E);
1685 Im[WS(rs, 7)] = KP500000000 * (T5E - T59);
1686 }
1687 {
1688 E T5J, T5Q, T5Z, T60;
1689 T5J = KP500000000 * (T5H + T5I);
1690 T5Q = KP353553390 * (T5M + T5P);
1691 Ip[WS(rs, 4)] = T5J + T5Q;
1692 Im[WS(rs, 11)] = T5Q - T5J;
1693 T5Z = KP500000000 * (T5R + T5S);
1694 T60 = KP353553390 * (T5W + T5X);
1695 Rm[WS(rs, 11)] = T5Z - T60;
1696 Rp[WS(rs, 4)] = T5Z + T60;
1697 }
1698 {
1699 E T5T, T5U, T5V, T5Y;
1700 T5T = KP500000000 * (T5R - T5S);
1701 T5U = KP353553390 * (T5P - T5M);
1702 Rm[WS(rs, 3)] = T5T - T5U;
1703 Rp[WS(rs, 12)] = T5T + T5U;
1704 T5V = KP500000000 * (T5I - T5H);
1705 T5Y = KP353553390 * (T5W - T5X);
1706 Ip[WS(rs, 12)] = T5V + T5Y;
1707 Im[WS(rs, 3)] = T5Y - T5V;
1708 }
1709 }
1710 {
1711 E T67, T6Q, T6K, T6U, T6N, T6V, T6a, T6G, T6i, T6A, T6t, T6P, T6w, T6F, T6p;
1712 E T6B;
1713 {
1714 E T63, T66, T6I, T6J;
1715 T63 = T61 - T62;
1716 T66 = T64 + T65;
1717 T67 = KP353553390 * (T63 + T66);
1718 T6Q = KP353553390 * (T63 - T66);
1719 T6I = T6d - T6c;
1720 T6J = T6g - T6f;
1721 T6K = FMA(KP461939766, T6I, KP191341716 * T6J);
1722 T6U = FNMS(KP461939766, T6J, KP191341716 * T6I);
1723 }
1724 {
1725 E T6L, T6M, T68, T69;
1726 T6L = T6k - T6j;
1727 T6M = T6n - T6m;
1728 T6N = FNMS(KP461939766, T6M, KP191341716 * T6L);
1729 T6V = FMA(KP461939766, T6L, KP191341716 * T6M);
1730 T68 = T4P - T4M;
1731 T69 = T38 - T2T;
1732 T6a = KP500000000 * (T68 + T69);
1733 T6G = KP500000000 * (T69 - T68);
1734 }
1735 {
1736 E T6e, T6h, T6r, T6s;
1737 T6e = T6c + T6d;
1738 T6h = T6f + T6g;
1739 T6i = FMA(KP191341716, T6e, KP461939766 * T6h);
1740 T6A = FNMS(KP191341716, T6h, KP461939766 * T6e);
1741 T6r = T4F - T4I;
1742 T6s = T2g - T2z;
1743 T6t = KP500000000 * (T6r + T6s);
1744 T6P = KP500000000 * (T6r - T6s);
1745 }
1746 {
1747 E T6u, T6v, T6l, T6o;
1748 T6u = T62 + T61;
1749 T6v = T64 - T65;
1750 T6w = KP353553390 * (T6u + T6v);
1751 T6F = KP353553390 * (T6v - T6u);
1752 T6l = T6j + T6k;
1753 T6o = T6m + T6n;
1754 T6p = FNMS(KP191341716, T6o, KP461939766 * T6l);
1755 T6B = FMA(KP191341716, T6l, KP461939766 * T6o);
1756 }
1757 {
1758 E T6b, T6q, T6D, T6E;
1759 T6b = T67 + T6a;
1760 T6q = T6i + T6p;
1761 Ip[WS(rs, 2)] = T6b + T6q;
1762 Im[WS(rs, 13)] = T6q - T6b;
1763 T6D = T6t + T6w;
1764 T6E = T6A + T6B;
1765 Rm[WS(rs, 13)] = T6D - T6E;
1766 Rp[WS(rs, 2)] = T6D + T6E;
1767 }
1768 {
1769 E T6x, T6y, T6z, T6C;
1770 T6x = T6t - T6w;
1771 T6y = T6p - T6i;
1772 Rm[WS(rs, 5)] = T6x - T6y;
1773 Rp[WS(rs, 10)] = T6x + T6y;
1774 T6z = T6a - T67;
1775 T6C = T6A - T6B;
1776 Ip[WS(rs, 10)] = T6z + T6C;
1777 Im[WS(rs, 5)] = T6C - T6z;
1778 }
1779 {
1780 E T6H, T6O, T6X, T6Y;
1781 T6H = T6F + T6G;
1782 T6O = T6K + T6N;
1783 Ip[WS(rs, 6)] = T6H + T6O;
1784 Im[WS(rs, 9)] = T6O - T6H;
1785 T6X = T6P + T6Q;
1786 T6Y = T6U + T6V;
1787 Rm[WS(rs, 9)] = T6X - T6Y;
1788 Rp[WS(rs, 6)] = T6X + T6Y;
1789 }
1790 {
1791 E T6R, T6S, T6T, T6W;
1792 T6R = T6P - T6Q;
1793 T6S = T6N - T6K;
1794 Rm[WS(rs, 1)] = T6R - T6S;
1795 Rp[WS(rs, 14)] = T6R + T6S;
1796 T6T = T6G - T6F;
1797 T6W = T6U - T6V;
1798 Ip[WS(rs, 14)] = T6T + T6W;
1799 Im[WS(rs, 1)] = T6W - T6T;
1800 }
1801 }
1802 {
1803 E T7d, T8w, T7o, T8m, T8c, T8l, T89, T8v, T81, T8B, T8h, T8t, T7I, T8A, T8g;
1804 E T8q;
1805 {
1806 E T75, T7c, T85, T88;
1807 T75 = FNMS(KP191341716, T74, KP461939766 * T71);
1808 T7c = FMA(KP461939766, T78, KP191341716 * T7b);
1809 T7d = T75 + T7c;
1810 T8w = T75 - T7c;
1811 {
1812 E T7k, T7n, T8a, T8b;
1813 T7k = KP353553390 * (T7g + T7j);
1814 T7n = KP500000000 * (T7l - T7m);
1815 T7o = T7k + T7n;
1816 T8m = T7n - T7k;
1817 T8a = FMA(KP191341716, T71, KP461939766 * T74);
1818 T8b = FNMS(KP191341716, T78, KP461939766 * T7b);
1819 T8c = T8a + T8b;
1820 T8l = T8b - T8a;
1821 }
1822 T85 = KP500000000 * (T83 + T84);
1823 T88 = KP353553390 * (T86 + T87);
1824 T89 = T85 + T88;
1825 T8v = T85 - T88;
1826 {
1827 E T7T, T8r, T80, T8s, T7P, T7W;
1828 T7P = KP707106781 * (T7L + T7O);
1829 T7T = T7P + T7S;
1830 T8r = T7S - T7P;
1831 T7W = KP707106781 * (T7U + T7V);
1832 T80 = T7W + T7Z;
1833 T8s = T7Z - T7W;
1834 T81 = FNMS(KP097545161, T80, KP490392640 * T7T);
1835 T8B = FMA(KP415734806, T8r, KP277785116 * T8s);
1836 T8h = FMA(KP097545161, T7T, KP490392640 * T80);
1837 T8t = FNMS(KP415734806, T8s, KP277785116 * T8r);
1838 }
1839 {
1840 E T7A, T8o, T7H, T8p, T7w, T7D;
1841 T7w = KP707106781 * (T7s + T7v);
1842 T7A = T7w + T7z;
1843 T8o = T7z - T7w;
1844 T7D = KP707106781 * (T7B + T7C);
1845 T7H = T7D + T7G;
1846 T8p = T7G - T7D;
1847 T7I = FMA(KP490392640, T7A, KP097545161 * T7H);
1848 T8A = FNMS(KP415734806, T8o, KP277785116 * T8p);
1849 T8g = FNMS(KP097545161, T7A, KP490392640 * T7H);
1850 T8q = FMA(KP277785116, T8o, KP415734806 * T8p);
1851 }
1852 }
1853 {
1854 E T7p, T82, T8j, T8k;
1855 T7p = T7d + T7o;
1856 T82 = T7I + T81;
1857 Ip[WS(rs, 1)] = T7p + T82;
1858 Im[WS(rs, 14)] = T82 - T7p;
1859 T8j = T89 + T8c;
1860 T8k = T8g + T8h;
1861 Rm[WS(rs, 14)] = T8j - T8k;
1862 Rp[WS(rs, 1)] = T8j + T8k;
1863 }
1864 {
1865 E T8d, T8e, T8f, T8i;
1866 T8d = T89 - T8c;
1867 T8e = T81 - T7I;
1868 Rm[WS(rs, 6)] = T8d - T8e;
1869 Rp[WS(rs, 9)] = T8d + T8e;
1870 T8f = T7o - T7d;
1871 T8i = T8g - T8h;
1872 Ip[WS(rs, 9)] = T8f + T8i;
1873 Im[WS(rs, 6)] = T8i - T8f;
1874 }
1875 {
1876 E T8n, T8u, T8D, T8E;
1877 T8n = T8l + T8m;
1878 T8u = T8q + T8t;
1879 Ip[WS(rs, 5)] = T8n + T8u;
1880 Im[WS(rs, 10)] = T8u - T8n;
1881 T8D = T8v + T8w;
1882 T8E = T8A + T8B;
1883 Rm[WS(rs, 10)] = T8D - T8E;
1884 Rp[WS(rs, 5)] = T8D + T8E;
1885 }
1886 {
1887 E T8x, T8y, T8z, T8C;
1888 T8x = T8v - T8w;
1889 T8y = T8t - T8q;
1890 Rm[WS(rs, 2)] = T8x - T8y;
1891 Rp[WS(rs, 13)] = T8x + T8y;
1892 T8z = T8m - T8l;
1893 T8C = T8A - T8B;
1894 Ip[WS(rs, 13)] = T8z + T8C;
1895 Im[WS(rs, 2)] = T8C - T8z;
1896 }
1897 }
1898 {
1899 E T8L, T9u, T8O, T9k, T9a, T9j, T97, T9t, T93, T9z, T9f, T9r, T8W, T9y, T9e;
1900 E T9o;
1901 {
1902 E T8H, T8K, T95, T96;
1903 T8H = FNMS(KP461939766, T8G, KP191341716 * T8F);
1904 T8K = FMA(KP191341716, T8I, KP461939766 * T8J);
1905 T8L = T8H + T8K;
1906 T9u = T8H - T8K;
1907 {
1908 E T8M, T8N, T98, T99;
1909 T8M = KP353553390 * (T87 - T86);
1910 T8N = KP500000000 * (T7m + T7l);
1911 T8O = T8M + T8N;
1912 T9k = T8N - T8M;
1913 T98 = FMA(KP461939766, T8F, KP191341716 * T8G);
1914 T99 = FNMS(KP461939766, T8I, KP191341716 * T8J);
1915 T9a = T98 + T99;
1916 T9j = T99 - T98;
1917 }
1918 T95 = KP500000000 * (T83 - T84);
1919 T96 = KP353553390 * (T7g - T7j);
1920 T97 = T95 + T96;
1921 T9t = T95 - T96;
1922 {
1923 E T8Z, T9p, T92, T9q, T8X, T90;
1924 T8X = KP707106781 * (T7V - T7U);
1925 T8Z = T8X + T8Y;
1926 T9p = T8Y - T8X;
1927 T90 = KP707106781 * (T7L - T7O);
1928 T92 = T90 + T91;
1929 T9q = T91 - T90;
1930 T93 = FNMS(KP277785116, T92, KP415734806 * T8Z);
1931 T9z = FMA(KP490392640, T9p, KP097545161 * T9q);
1932 T9f = FMA(KP277785116, T8Z, KP415734806 * T92);
1933 T9r = FNMS(KP490392640, T9q, KP097545161 * T9p);
1934 }
1935 {
1936 E T8S, T9m, T8V, T9n, T8Q, T8T;
1937 T8Q = KP707106781 * (T7C - T7B);
1938 T8S = T8Q + T8R;
1939 T9m = T8R - T8Q;
1940 T8T = KP707106781 * (T7s - T7v);
1941 T8V = T8T + T8U;
1942 T9n = T8U - T8T;
1943 T8W = FMA(KP415734806, T8S, KP277785116 * T8V);
1944 T9y = FNMS(KP490392640, T9m, KP097545161 * T9n);
1945 T9e = FNMS(KP277785116, T8S, KP415734806 * T8V);
1946 T9o = FMA(KP097545161, T9m, KP490392640 * T9n);
1947 }
1948 }
1949 {
1950 E T8P, T94, T9h, T9i;
1951 T8P = T8L + T8O;
1952 T94 = T8W + T93;
1953 Ip[WS(rs, 3)] = T8P + T94;
1954 Im[WS(rs, 12)] = T94 - T8P;
1955 T9h = T97 + T9a;
1956 T9i = T9e + T9f;
1957 Rm[WS(rs, 12)] = T9h - T9i;
1958 Rp[WS(rs, 3)] = T9h + T9i;
1959 }
1960 {
1961 E T9b, T9c, T9d, T9g;
1962 T9b = T97 - T9a;
1963 T9c = T93 - T8W;
1964 Rm[WS(rs, 4)] = T9b - T9c;
1965 Rp[WS(rs, 11)] = T9b + T9c;
1966 T9d = T8O - T8L;
1967 T9g = T9e - T9f;
1968 Ip[WS(rs, 11)] = T9d + T9g;
1969 Im[WS(rs, 4)] = T9g - T9d;
1970 }
1971 {
1972 E T9l, T9s, T9B, T9C;
1973 T9l = T9j + T9k;
1974 T9s = T9o + T9r;
1975 Ip[WS(rs, 7)] = T9l + T9s;
1976 Im[WS(rs, 8)] = T9s - T9l;
1977 T9B = T9t + T9u;
1978 T9C = T9y + T9z;
1979 Rm[WS(rs, 8)] = T9B - T9C;
1980 Rp[WS(rs, 7)] = T9B + T9C;
1981 }
1982 {
1983 E T9v, T9w, T9x, T9A;
1984 T9v = T9t - T9u;
1985 T9w = T9r - T9o;
1986 Rm[0] = T9v - T9w;
1987 Rp[WS(rs, 15)] = T9v + T9w;
1988 T9x = T9k - T9j;
1989 T9A = T9y - T9z;
1990 Ip[WS(rs, 15)] = T9x + T9A;
1991 Im[0] = T9A - T9x;
1992 }
1993 }
1994 }
1995 }
1996 }
1997 }
1998
1999 static const tw_instr twinstr[] = {
2000 {TW_CEXP, 1, 1},
2001 {TW_CEXP, 1, 3},
2002 {TW_CEXP, 1, 9},
2003 {TW_CEXP, 1, 27},
2004 {TW_NEXT, 1, 0}
2005 };
2006
2007 static const hc2c_desc desc = { 32, "hc2cfdft2_32", twinstr, &GENUS, {440, 188, 112, 0} };
2008
2009 void X(codelet_hc2cfdft2_32) (planner *p) {
2010 X(khc2c_register) (p, hc2cfdft2_32, &desc, HC2C_VIA_DFT);
2011 }
2012 #endif /* HAVE_FMA */