Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.3/rdft/scalar/r2cf/hc2cfdft2_32.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
9:c0fb53affa76 | 10:37bf6b4a2645 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-11 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Sun Nov 25 07:40:52 EST 2012 */ | |
23 | |
24 #include "codelet-rdft.h" | |
25 | |
26 #ifdef HAVE_FMA | |
27 | |
28 /* Generated by: ../../../genfft/gen_hc2cdft.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 32 -dit -name hc2cfdft2_32 -include hc2cf.h */ | |
29 | |
30 /* | |
31 * This function contains 552 FP additions, 414 FP multiplications, | |
32 * (or, 300 additions, 162 multiplications, 252 fused multiply/add), | |
33 * 196 stack variables, 8 constants, and 128 memory accesses | |
34 */ | |
35 #include "hc2cf.h" | |
36 | |
37 static void hc2cfdft2_32(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) | |
38 { | |
39 DK(KP980785280, +0.980785280403230449126182236134239036973933731); | |
40 DK(KP831469612, +0.831469612302545237078788377617905756738560812); | |
41 DK(KP668178637, +0.668178637919298919997757686523080761552472251); | |
42 DK(KP198912367, +0.198912367379658006911597622644676228597850501); | |
43 DK(KP923879532, +0.923879532511286756128183189396788286822416626); | |
44 DK(KP414213562, +0.414213562373095048801688724209698078569671875); | |
45 DK(KP707106781, +0.707106781186547524400844362104849039284835938); | |
46 DK(KP500000000, +0.500000000000000000000000000000000000000000000); | |
47 { | |
48 INT m; | |
49 for (m = mb, W = W + ((mb - 1) * 8); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 8, MAKE_VOLATILE_STRIDE(128, rs)) { | |
50 E Tax, TaA; | |
51 { | |
52 E T1, Th, T2, T5, Ti, Ty, T1t, T3, Tb, Tj, TY, TK, Tl, T4, Tk; | |
53 T1 = W[0]; | |
54 Th = W[4]; | |
55 T2 = W[2]; | |
56 T5 = W[3]; | |
57 Ti = W[6]; | |
58 Ty = T1 * Th; | |
59 T1t = T2 * Th; | |
60 T3 = T1 * T2; | |
61 Tb = T1 * T5; | |
62 Tj = Th * Ti; | |
63 TY = T2 * Ti; | |
64 TK = T1 * Ti; | |
65 Tl = W[7]; | |
66 T4 = W[1]; | |
67 Tk = W[5]; | |
68 { | |
69 E T3j, T7Z, T5b, T93, T6B, T8V, T4d, T8J, T8r, T6e, T8l, T1T, T8C, T54, T8i; | |
70 E T5O, T94, T31, T8K, T6w, T8U, T3Y, T80, T5g, T8B, T69, T8h, T1s, T8q, T4T; | |
71 E T8k, T5J, Tx, T8a, T5y, T8d, T4s, T5Y, T8v, T8E, T2k, T82, T6l, T3z, T83; | |
72 E T5m, T8X, T8O, T2F, T86, T6q, T3M, T85, T5r, T8Y, T8R, TW, T8e, T8x, T4B; | |
73 E T5D, T8b, T63, T8w; | |
74 { | |
75 E TL, T2l, T1c, Tc, T1a, T6, Tm, T2v, Tz, T2q, TR, Ts, T2A, TF, T1H; | |
76 E T1g, T1d, T1F, T34, T3F, T3B, T32, T3w, T3s, T4p, T4l, T2f, T29, T4K, T4S; | |
77 E T5G, T5I; | |
78 { | |
79 E TZ, T2R, T2H, T15, T2W, T2M, T4I, T4E, T3V, T3S, T4Q, T4M, T1n, T1h, T4X; | |
80 E T53, T5L, T5N, T5d, T5f; | |
81 { | |
82 E T1u, T1A, T51, T4Y, T28, T25, T44, T40, T1O, T1I, T3b, T35, T4b, T3i, T45; | |
83 E T38, T39, T58, T49, T3e, T41; | |
84 { | |
85 E T3g, T3h, T36, T37, TQ; | |
86 T3g = Ip[0]; | |
87 TZ = FNMS(T5, Tl, TY); | |
88 T2R = FMA(T5, Tl, TY); | |
89 TQ = T1 * Tl; | |
90 { | |
91 E T14, Tr, T1z, TE; | |
92 T14 = T2 * Tl; | |
93 Tr = Th * Tl; | |
94 TL = FMA(T4, Tl, TK); | |
95 T2l = FNMS(T4, Tl, TK); | |
96 T1c = FMA(T4, T2, Tb); | |
97 Tc = FNMS(T4, T2, Tb); | |
98 T1a = FNMS(T4, T5, T3); | |
99 T6 = FMA(T4, T5, T3); | |
100 Tm = FMA(Tk, Tl, Tj); | |
101 T2v = FNMS(T5, Tk, T1t); | |
102 T1u = FMA(T5, Tk, T1t); | |
103 Tz = FNMS(T4, Tk, Ty); | |
104 T2H = FMA(T4, Tk, Ty); | |
105 T1z = T2 * Tk; | |
106 TE = T1 * Tk; | |
107 T2q = FMA(T4, Ti, TQ); | |
108 TR = FNMS(T4, Ti, TQ); | |
109 T15 = FMA(T5, Ti, T14); | |
110 T2W = FNMS(T5, Ti, T14); | |
111 Ts = FNMS(Tk, Ti, Tr); | |
112 { | |
113 E T1f, T4H, T4D, T1b; | |
114 T1f = T1a * Tk; | |
115 T4H = T1a * Tl; | |
116 T4D = T1a * Ti; | |
117 T1b = T1a * Th; | |
118 { | |
119 E T27, T3E, T3A, T24; | |
120 T27 = T6 * Tk; | |
121 T3E = T6 * Tl; | |
122 T3A = T6 * Ti; | |
123 T24 = T6 * Th; | |
124 { | |
125 E T3v, T3r, T4P, T4L; | |
126 T3v = T1u * Tl; | |
127 T3r = T1u * Ti; | |
128 T4P = T2v * Tl; | |
129 T4L = T2v * Ti; | |
130 { | |
131 E T4o, T4k, T43, T3Z; | |
132 T4o = T2H * Tl; | |
133 T4k = T2H * Ti; | |
134 T43 = Tz * Tl; | |
135 T3Z = Tz * Ti; | |
136 T1A = FNMS(T5, Th, T1z); | |
137 T2A = FMA(T5, Th, T1z); | |
138 T2M = FNMS(T4, Th, TE); | |
139 TF = FMA(T4, Th, TE); | |
140 T1H = FNMS(T1c, Th, T1f); | |
141 T1g = FMA(T1c, Th, T1f); | |
142 T51 = FNMS(T1c, Ti, T4H); | |
143 T4I = FMA(T1c, Ti, T4H); | |
144 T4Y = FMA(T1c, Tl, T4D); | |
145 T4E = FNMS(T1c, Tl, T4D); | |
146 T1d = FNMS(T1c, Tk, T1b); | |
147 T1F = FMA(T1c, Tk, T1b); | |
148 T34 = FMA(Tc, Th, T27); | |
149 T28 = FNMS(Tc, Th, T27); | |
150 T3V = FNMS(Tc, Ti, T3E); | |
151 T3F = FMA(Tc, Ti, T3E); | |
152 T3S = FMA(Tc, Tl, T3A); | |
153 T3B = FNMS(Tc, Tl, T3A); | |
154 T25 = FMA(Tc, Tk, T24); | |
155 T32 = FNMS(Tc, Tk, T24); | |
156 T3w = FNMS(T1A, Ti, T3v); | |
157 T3s = FMA(T1A, Tl, T3r); | |
158 T4Q = FNMS(T2A, Ti, T4P); | |
159 T4M = FMA(T2A, Tl, T4L); | |
160 T4p = FNMS(T2M, Ti, T4o); | |
161 T4l = FMA(T2M, Tl, T4k); | |
162 T44 = FNMS(TF, Ti, T43); | |
163 T40 = FMA(TF, Tl, T3Z); | |
164 { | |
165 E T1m, T1e, T1N, T1G; | |
166 T1m = T1d * Tl; | |
167 T1e = T1d * Ti; | |
168 T1N = T1F * Tl; | |
169 T1G = T1F * Ti; | |
170 { | |
171 E T2e, T26, T3a, T33; | |
172 T2e = T25 * Tl; | |
173 T26 = T25 * Ti; | |
174 T3a = T32 * Tl; | |
175 T33 = T32 * Ti; | |
176 T1n = FNMS(T1g, Ti, T1m); | |
177 T1h = FMA(T1g, Tl, T1e); | |
178 T1O = FNMS(T1H, Ti, T1N); | |
179 T1I = FMA(T1H, Tl, T1G); | |
180 T2f = FNMS(T28, Ti, T2e); | |
181 T29 = FMA(T28, Tl, T26); | |
182 T3b = FNMS(T34, Ti, T3a); | |
183 T35 = FMA(T34, Tl, T33); | |
184 T3h = Im[0]; | |
185 } | |
186 } | |
187 } | |
188 } | |
189 } | |
190 } | |
191 } | |
192 T36 = Ip[WS(rs, 8)]; | |
193 T37 = Im[WS(rs, 8)]; | |
194 { | |
195 E T47, T48, T3c, T3d; | |
196 T47 = Rm[0]; | |
197 T4b = T3g + T3h; | |
198 T3i = T3g - T3h; | |
199 T45 = T36 + T37; | |
200 T38 = T36 - T37; | |
201 T48 = Rp[0]; | |
202 T3c = Rp[WS(rs, 8)]; | |
203 T3d = Rm[WS(rs, 8)]; | |
204 T39 = T35 * T38; | |
205 T58 = T48 + T47; | |
206 T49 = T47 - T48; | |
207 T3e = T3c + T3d; | |
208 T41 = T3d - T3c; | |
209 } | |
210 } | |
211 { | |
212 E T4W, T1x, T1y, T6a, T4U, T1D, T1P, T4V, T5K, T52, T1L, T1Q; | |
213 { | |
214 E T1B, T1C, T1J, T1K; | |
215 { | |
216 E T1v, T6A, T4c, T5a, T6y, T46, T1w, T6z, T4a; | |
217 T1v = Ip[WS(rs, 3)]; | |
218 T6z = T4 * T49; | |
219 T4a = T1 * T49; | |
220 { | |
221 E T3f, T59, T6x, T42; | |
222 T3f = FNMS(T3b, T3e, T39); | |
223 T59 = T35 * T3e; | |
224 T6x = T44 * T41; | |
225 T42 = T40 * T41; | |
226 T6A = FMA(T1, T4b, T6z); | |
227 T4c = FNMS(T4, T4b, T4a); | |
228 T3j = T3f + T3i; | |
229 T7Z = T3i - T3f; | |
230 T5a = FMA(T3b, T38, T59); | |
231 T6y = FMA(T40, T45, T6x); | |
232 T46 = FNMS(T44, T45, T42); | |
233 T1w = Im[WS(rs, 3)]; | |
234 } | |
235 T5b = T58 + T5a; | |
236 T93 = T58 - T5a; | |
237 T6B = T6y + T6A; | |
238 T8V = T6A - T6y; | |
239 T4d = T46 + T4c; | |
240 T8J = T4c - T46; | |
241 T4W = T1v + T1w; | |
242 T1x = T1v - T1w; | |
243 } | |
244 T1B = Rp[WS(rs, 3)]; | |
245 T1C = Rm[WS(rs, 3)]; | |
246 T1y = T1u * T1x; | |
247 T6a = T25 * T4W; | |
248 T1J = Ip[WS(rs, 11)]; | |
249 T4U = T1B - T1C; | |
250 T1D = T1B + T1C; | |
251 T1K = Im[WS(rs, 11)]; | |
252 T1P = Rp[WS(rs, 11)]; | |
253 T4V = T25 * T4U; | |
254 T5K = T1u * T1D; | |
255 T52 = T1J + T1K; | |
256 T1L = T1J - T1K; | |
257 T1Q = Rm[WS(rs, 11)]; | |
258 } | |
259 { | |
260 E T1E, T6c, T1M, T4Z, T1R, T6b; | |
261 T1E = FNMS(T1A, T1D, T1y); | |
262 T6c = T4Y * T52; | |
263 T1M = T1I * T1L; | |
264 T4Z = T1P - T1Q; | |
265 T1R = T1P + T1Q; | |
266 T6b = FNMS(T28, T4U, T6a); | |
267 { | |
268 E T5M, T6d, T50, T1S; | |
269 T4X = FMA(T28, T4W, T4V); | |
270 T6d = FNMS(T51, T4Z, T6c); | |
271 T50 = T4Y * T4Z; | |
272 T1S = FNMS(T1O, T1R, T1M); | |
273 T5M = T1I * T1R; | |
274 T8r = T6d - T6b; | |
275 T6e = T6b + T6d; | |
276 T8l = T1E - T1S; | |
277 T1T = T1E + T1S; | |
278 T53 = FMA(T51, T52, T50); | |
279 T5L = FMA(T1A, T1x, T5K); | |
280 T5N = FMA(T1O, T1L, T5M); | |
281 } | |
282 } | |
283 } | |
284 } | |
285 { | |
286 E T3Q, T2K, T2P, T2L, T6s, T3P, T5c, T3W, T2U, T2X, T2Y, T2V; | |
287 { | |
288 E T2I, T2J, T2N, T2O, T2S, T3O, T2T; | |
289 T2I = Ip[WS(rs, 4)]; | |
290 T8C = T53 - T4X; | |
291 T54 = T4X + T53; | |
292 T8i = T5L - T5N; | |
293 T5O = T5L + T5N; | |
294 T2J = Im[WS(rs, 4)]; | |
295 T2N = Rp[WS(rs, 4)]; | |
296 T2O = Rm[WS(rs, 4)]; | |
297 T2S = Ip[WS(rs, 12)]; | |
298 T3Q = T2I + T2J; | |
299 T2K = T2I - T2J; | |
300 T3O = T2O - T2N; | |
301 T2P = T2N + T2O; | |
302 T2T = Im[WS(rs, 12)]; | |
303 T2L = T2H * T2K; | |
304 T6s = Tk * T3O; | |
305 T3P = Th * T3O; | |
306 T5c = T2H * T2P; | |
307 T3W = T2S + T2T; | |
308 T2U = T2S - T2T; | |
309 T2X = Rp[WS(rs, 12)]; | |
310 T2Y = Rm[WS(rs, 12)]; | |
311 T2V = T2R * T2U; | |
312 } | |
313 { | |
314 E T2Q, T6t, T3T, T2Z, T3R, T6u, T3U; | |
315 T2Q = FNMS(T2M, T2P, T2L); | |
316 T6t = FMA(Th, T3Q, T6s); | |
317 T3T = T2Y - T2X; | |
318 T2Z = T2X + T2Y; | |
319 T3R = FNMS(Tk, T3Q, T3P); | |
320 T5d = FMA(T2M, T2K, T5c); | |
321 T6u = T3V * T3T; | |
322 T3U = T3S * T3T; | |
323 { | |
324 E T30, T5e, T6v, T3X; | |
325 T30 = FNMS(T2W, T2Z, T2V); | |
326 T5e = T2R * T2Z; | |
327 T6v = FMA(T3S, T3W, T6u); | |
328 T3X = FNMS(T3V, T3W, T3U); | |
329 T94 = T2Q - T30; | |
330 T31 = T2Q + T30; | |
331 T8K = T6t - T6v; | |
332 T6w = T6t + T6v; | |
333 T8U = T3R - T3X; | |
334 T3Y = T3R + T3X; | |
335 T5f = FMA(T2W, T2U, T5e); | |
336 } | |
337 } | |
338 } | |
339 { | |
340 E T4J, T12, T65, T13, T4F, T18, T1o, T4G, T5F, T4R, T1k, T1p; | |
341 { | |
342 E T16, T17, T10, T11, T1i, T1j; | |
343 T10 = Ip[WS(rs, 15)]; | |
344 T11 = Im[WS(rs, 15)]; | |
345 T16 = Rp[WS(rs, 15)]; | |
346 T80 = T5d - T5f; | |
347 T5g = T5d + T5f; | |
348 T4J = T10 + T11; | |
349 T12 = T10 - T11; | |
350 T17 = Rm[WS(rs, 15)]; | |
351 T1i = Ip[WS(rs, 7)]; | |
352 T65 = T4E * T4J; | |
353 T13 = TZ * T12; | |
354 T4F = T16 - T17; | |
355 T18 = T16 + T17; | |
356 T1j = Im[WS(rs, 7)]; | |
357 T1o = Rp[WS(rs, 7)]; | |
358 T4G = T4E * T4F; | |
359 T5F = TZ * T18; | |
360 T4R = T1i + T1j; | |
361 T1k = T1i - T1j; | |
362 T1p = Rm[WS(rs, 7)]; | |
363 } | |
364 { | |
365 E T19, T67, T1l, T4N, T1q, T66; | |
366 T19 = FNMS(T15, T18, T13); | |
367 T67 = T4M * T4R; | |
368 T1l = T1h * T1k; | |
369 T4N = T1o - T1p; | |
370 T1q = T1o + T1p; | |
371 T66 = FNMS(T4I, T4F, T65); | |
372 { | |
373 E T5H, T68, T4O, T1r; | |
374 T4K = FMA(T4I, T4J, T4G); | |
375 T68 = FNMS(T4Q, T4N, T67); | |
376 T4O = T4M * T4N; | |
377 T1r = FNMS(T1n, T1q, T1l); | |
378 T5H = T1h * T1q; | |
379 T8B = T66 - T68; | |
380 T69 = T66 + T68; | |
381 T8h = T19 - T1r; | |
382 T1s = T19 + T1r; | |
383 T4S = FMA(T4Q, T4R, T4O); | |
384 T5G = FMA(T15, T12, T5F); | |
385 T5I = FMA(T1n, T1k, T5H); | |
386 } | |
387 } | |
388 } | |
389 } | |
390 { | |
391 E T2c, T3x, T2d, T23, T5j, T3q, T2i, T3t, T6i, T8t, T5V, T5X; | |
392 { | |
393 E Tn, T4i, T9, T4g, Tf, T5U, Ta, T4h, T5u, To, Tt, Tu; | |
394 { | |
395 E T7, T8, Td, Te; | |
396 T7 = Ip[WS(rs, 1)]; | |
397 T8q = T4S - T4K; | |
398 T4T = T4K + T4S; | |
399 T8k = T5G - T5I; | |
400 T5J = T5G + T5I; | |
401 T8 = Im[WS(rs, 1)]; | |
402 Td = Rp[WS(rs, 1)]; | |
403 Te = Rm[WS(rs, 1)]; | |
404 Tn = Ip[WS(rs, 9)]; | |
405 T4i = T7 + T8; | |
406 T9 = T7 - T8; | |
407 T4g = Td - Te; | |
408 Tf = Td + Te; | |
409 T5U = T2 * T4i; | |
410 Ta = T6 * T9; | |
411 T4h = T2 * T4g; | |
412 T5u = T6 * Tf; | |
413 To = Im[WS(rs, 9)]; | |
414 Tt = Rp[WS(rs, 9)]; | |
415 Tu = Rm[WS(rs, 9)]; | |
416 } | |
417 { | |
418 E Tg, T4q, Tp, T4m, Tv, T5W, Tq, T4n, T5w; | |
419 Tg = FNMS(Tc, Tf, Ta); | |
420 T4q = Tn + To; | |
421 Tp = Tn - To; | |
422 T4m = Tt - Tu; | |
423 Tv = Tt + Tu; | |
424 T5W = T4l * T4q; | |
425 Tq = Tm * Tp; | |
426 T4n = T4l * T4m; | |
427 T5w = Tm * Tv; | |
428 { | |
429 E T5v, Tw, T4j, T5x, T4r; | |
430 T5v = FMA(Tc, T9, T5u); | |
431 Tw = FNMS(Ts, Tv, Tq); | |
432 T4j = FMA(T5, T4i, T4h); | |
433 T5x = FMA(Ts, Tp, T5w); | |
434 T4r = FMA(T4p, T4q, T4n); | |
435 Tx = Tg + Tw; | |
436 T8a = Tg - Tw; | |
437 T5y = T5v + T5x; | |
438 T8d = T5v - T5x; | |
439 T4s = T4j + T4r; | |
440 T8t = T4r - T4j; | |
441 T5V = FNMS(T5, T4g, T5U); | |
442 T5X = FNMS(T4p, T4m, T5W); | |
443 } | |
444 } | |
445 } | |
446 { | |
447 E T3p, T1Y, T1Z, T22, T2g, T6h, T3o, T5i, T2h; | |
448 { | |
449 E T20, T21, T1W, T1X, T8u, T2a, T2b, T3n; | |
450 T1W = Ip[WS(rs, 2)]; | |
451 T1X = Im[WS(rs, 2)]; | |
452 T8u = T5V - T5X; | |
453 T5Y = T5V + T5X; | |
454 T20 = Rp[WS(rs, 2)]; | |
455 T3p = T1W + T1X; | |
456 T1Y = T1W - T1X; | |
457 T8v = T8t - T8u; | |
458 T8E = T8u + T8t; | |
459 T21 = Rm[WS(rs, 2)]; | |
460 T1Z = T1a * T1Y; | |
461 T2a = Ip[WS(rs, 10)]; | |
462 T2b = Im[WS(rs, 10)]; | |
463 T3n = T21 - T20; | |
464 T22 = T20 + T21; | |
465 T2g = Rp[WS(rs, 10)]; | |
466 T2c = T2a - T2b; | |
467 T3x = T2a + T2b; | |
468 T6h = T1H * T3n; | |
469 T3o = T1F * T3n; | |
470 T5i = T1a * T22; | |
471 T2d = T29 * T2c; | |
472 T2h = Rm[WS(rs, 10)]; | |
473 } | |
474 T23 = FNMS(T1c, T22, T1Z); | |
475 T5j = FMA(T1c, T1Y, T5i); | |
476 T3q = FNMS(T1H, T3p, T3o); | |
477 T2i = T2g + T2h; | |
478 T3t = T2h - T2g; | |
479 T6i = FMA(T1F, T3p, T6h); | |
480 } | |
481 { | |
482 E T2y, T3K, T2z, T2u, T5o, T3H, T2D, T3I, T6n; | |
483 { | |
484 E T3G, T2o, T2p, T2t, T6m, T3D, T5n, T2B, T2C; | |
485 { | |
486 E T2r, T2s, T2m, T2n, T3C, T2w, T2x; | |
487 { | |
488 E T8N, T8M, T6j, T3u, T2j; | |
489 T2m = Ip[WS(rs, 14)]; | |
490 T6j = T3w * T3t; | |
491 T3u = T3s * T3t; | |
492 T2j = FNMS(T2f, T2i, T2d); | |
493 { | |
494 E T5k, T6k, T3y, T5l; | |
495 T5k = T29 * T2i; | |
496 T6k = FMA(T3s, T3x, T6j); | |
497 T3y = FNMS(T3w, T3x, T3u); | |
498 T2k = T23 + T2j; | |
499 T82 = T23 - T2j; | |
500 T5l = FMA(T2f, T2c, T5k); | |
501 T6l = T6i + T6k; | |
502 T8N = T6i - T6k; | |
503 T3z = T3q + T3y; | |
504 T8M = T3q - T3y; | |
505 T83 = T5j - T5l; | |
506 T5m = T5j + T5l; | |
507 T2n = Im[WS(rs, 14)]; | |
508 } | |
509 T8X = T8M + T8N; | |
510 T8O = T8M - T8N; | |
511 } | |
512 T2r = Rp[WS(rs, 14)]; | |
513 T3G = T2m + T2n; | |
514 T2o = T2m - T2n; | |
515 T2s = Rm[WS(rs, 14)]; | |
516 T2w = Ip[WS(rs, 6)]; | |
517 T2x = Im[WS(rs, 6)]; | |
518 T2p = T2l * T2o; | |
519 T3C = T2s - T2r; | |
520 T2t = T2r + T2s; | |
521 T2y = T2w - T2x; | |
522 T3K = T2w + T2x; | |
523 T6m = T3F * T3C; | |
524 T3D = T3B * T3C; | |
525 T5n = T2l * T2t; | |
526 T2z = T2v * T2y; | |
527 T2B = Rp[WS(rs, 6)]; | |
528 T2C = Rm[WS(rs, 6)]; | |
529 } | |
530 T2u = FNMS(T2q, T2t, T2p); | |
531 T5o = FMA(T2q, T2o, T5n); | |
532 T3H = FNMS(T3F, T3G, T3D); | |
533 T2D = T2B + T2C; | |
534 T3I = T2C - T2B; | |
535 T6n = FMA(T3B, T3G, T6m); | |
536 } | |
537 { | |
538 E T4v, TC, T5Z, TD, T4t, TI, TS, T4u, T5z, T4z, TO, TT; | |
539 { | |
540 E TG, TH, TA, TB, TM, TN; | |
541 { | |
542 E T8Q, T8P, T6o, T3J, T2E; | |
543 TA = Ip[WS(rs, 5)]; | |
544 T6o = T1g * T3I; | |
545 T3J = T1d * T3I; | |
546 T2E = FNMS(T2A, T2D, T2z); | |
547 { | |
548 E T5p, T6p, T3L, T5q; | |
549 T5p = T2v * T2D; | |
550 T6p = FMA(T1d, T3K, T6o); | |
551 T3L = FNMS(T1g, T3K, T3J); | |
552 T2F = T2u + T2E; | |
553 T86 = T2u - T2E; | |
554 T5q = FMA(T2A, T2y, T5p); | |
555 T6q = T6n + T6p; | |
556 T8Q = T6n - T6p; | |
557 T3M = T3H + T3L; | |
558 T8P = T3H - T3L; | |
559 T85 = T5o - T5q; | |
560 T5r = T5o + T5q; | |
561 TB = Im[WS(rs, 5)]; | |
562 } | |
563 T8Y = T8Q - T8P; | |
564 T8R = T8P + T8Q; | |
565 } | |
566 TG = Rp[WS(rs, 5)]; | |
567 T4v = TA + TB; | |
568 TC = TA - TB; | |
569 TH = Rm[WS(rs, 5)]; | |
570 TM = Ip[WS(rs, 13)]; | |
571 T5Z = T32 * T4v; | |
572 TD = Tz * TC; | |
573 T4t = TG - TH; | |
574 TI = TG + TH; | |
575 TN = Im[WS(rs, 13)]; | |
576 TS = Rp[WS(rs, 13)]; | |
577 T4u = T32 * T4t; | |
578 T5z = Tz * TI; | |
579 T4z = TM + TN; | |
580 TO = TM - TN; | |
581 TT = Rm[WS(rs, 13)]; | |
582 } | |
583 { | |
584 E TJ, T61, TP, T4x, TU; | |
585 TJ = FNMS(TF, TI, TD); | |
586 T61 = Ti * T4z; | |
587 TP = TL * TO; | |
588 T4x = TS - TT; | |
589 TU = TS + TT; | |
590 { | |
591 E T5A, T60, T5C, T62; | |
592 T5A = FMA(TF, TC, T5z); | |
593 { | |
594 E T4w, T4y, TV, T5B, T4A; | |
595 T4w = FMA(T34, T4v, T4u); | |
596 T4y = Ti * T4x; | |
597 TV = FNMS(TR, TU, TP); | |
598 T5B = TL * TU; | |
599 T60 = FNMS(T34, T4t, T5Z); | |
600 T4A = FMA(Tl, T4z, T4y); | |
601 TW = TJ + TV; | |
602 T8e = TJ - TV; | |
603 T5C = FMA(TR, TO, T5B); | |
604 T8x = T4w - T4A; | |
605 T4B = T4w + T4A; | |
606 T62 = FNMS(Tl, T4x, T61); | |
607 } | |
608 T5D = T5A + T5C; | |
609 T8b = T5A - T5C; | |
610 T63 = T60 + T62; | |
611 T8w = T62 - T60; | |
612 } | |
613 } | |
614 } | |
615 } | |
616 } | |
617 } | |
618 { | |
619 E T74, T78, T8F, T8y, T7s, T72, T75, T77, T7r, T71, T7f, T7d, T7c, T7g, T7m; | |
620 E T7k, T7j, T7n, T6V, T6Y, T7T, T7W; | |
621 { | |
622 E T6S, T1V, T6I, T3l, T6H, T5Q, T6R, T5t, T56, T6g, T6N, T4f, T6M, T6W, T6D; | |
623 E T6O; | |
624 { | |
625 E T2G, T3k, T5E, T5P, TX, T1U, T5h, T5s; | |
626 T74 = Tx - TW; | |
627 TX = Tx + TW; | |
628 T1U = T1s + T1T; | |
629 T78 = T1s - T1T; | |
630 T8F = T8w - T8x; | |
631 T8y = T8w + T8x; | |
632 T7s = T2k - T2F; | |
633 T2G = T2k + T2F; | |
634 T6S = TX - T1U; | |
635 T1V = TX + T1U; | |
636 T3k = T31 + T3j; | |
637 T72 = T3j - T31; | |
638 T75 = T5y - T5D; | |
639 T5E = T5y + T5D; | |
640 T5P = T5J + T5O; | |
641 T77 = T5J - T5O; | |
642 T7r = T5b - T5g; | |
643 T5h = T5b + T5g; | |
644 T6I = T3k - T2G; | |
645 T3l = T2G + T3k; | |
646 T6H = T5P - T5E; | |
647 T5Q = T5E + T5P; | |
648 T5s = T5m + T5r; | |
649 T71 = T5r - T5m; | |
650 { | |
651 E T64, T6L, T6f, T4C, T55; | |
652 T7f = T4B - T4s; | |
653 T4C = T4s + T4B; | |
654 T55 = T4T + T54; | |
655 T7d = T54 - T4T; | |
656 T7c = T63 - T5Y; | |
657 T64 = T5Y + T63; | |
658 T6R = T5h - T5s; | |
659 T5t = T5h + T5s; | |
660 T6L = T4C - T55; | |
661 T56 = T4C + T55; | |
662 T7g = T69 - T6e; | |
663 T6f = T69 + T6e; | |
664 { | |
665 E T6r, T6C, T3N, T4e, T6K; | |
666 T7m = T3z - T3M; | |
667 T3N = T3z + T3M; | |
668 T4e = T3Y + T4d; | |
669 T7k = T4d - T3Y; | |
670 T6K = T6f - T64; | |
671 T6g = T64 + T6f; | |
672 T7j = T6q - T6l; | |
673 T6r = T6l + T6q; | |
674 T6N = T4e - T3N; | |
675 T4f = T3N + T4e; | |
676 T7n = T6B - T6w; | |
677 T6C = T6w + T6B; | |
678 T6M = T6K + T6L; | |
679 T6W = T6K - T6L; | |
680 T6D = T6r + T6C; | |
681 T6O = T6C - T6r; | |
682 } | |
683 } | |
684 } | |
685 { | |
686 E T5T, T6X, T6P, T6E; | |
687 { | |
688 E T5S, T5R, T6F, T6G, T3m, T57; | |
689 T5T = T3l - T1V; | |
690 T3m = T1V + T3l; | |
691 T57 = T4f - T56; | |
692 T5S = T56 + T4f; | |
693 T6X = T6N + T6O; | |
694 T6P = T6N - T6O; | |
695 T5R = T5t - T5Q; | |
696 T6F = T5t + T5Q; | |
697 Im[WS(rs, 15)] = KP500000000 * (T57 - T3m); | |
698 Ip[0] = KP500000000 * (T3m + T57); | |
699 T6G = T6g + T6D; | |
700 T6E = T6g - T6D; | |
701 Rp[0] = KP500000000 * (T6F + T6G); | |
702 Rm[WS(rs, 15)] = KP500000000 * (T6F - T6G); | |
703 Rp[WS(rs, 8)] = KP500000000 * (T5R + T5S); | |
704 Rm[WS(rs, 7)] = KP500000000 * (T5R - T5S); | |
705 } | |
706 { | |
707 E T6U, T6T, T6Z, T70, T6J, T6Q; | |
708 T6V = T6I - T6H; | |
709 T6J = T6H + T6I; | |
710 T6Q = T6M + T6P; | |
711 T6U = T6P - T6M; | |
712 T6T = T6R - T6S; | |
713 T6Z = T6R + T6S; | |
714 Im[WS(rs, 7)] = KP500000000 * (T6E - T5T); | |
715 Ip[WS(rs, 8)] = KP500000000 * (T5T + T6E); | |
716 Im[WS(rs, 11)] = -(KP500000000 * (FNMS(KP707106781, T6Q, T6J))); | |
717 Ip[WS(rs, 4)] = KP500000000 * (FMA(KP707106781, T6Q, T6J)); | |
718 T70 = T6W + T6X; | |
719 T6Y = T6W - T6X; | |
720 Rp[WS(rs, 4)] = KP500000000 * (FMA(KP707106781, T70, T6Z)); | |
721 Rm[WS(rs, 11)] = KP500000000 * (FNMS(KP707106781, T70, T6Z)); | |
722 Rp[WS(rs, 12)] = KP500000000 * (FMA(KP707106781, T6U, T6T)); | |
723 Rm[WS(rs, 3)] = KP500000000 * (FNMS(KP707106781, T6U, T6T)); | |
724 } | |
725 } | |
726 } | |
727 { | |
728 E T7F, T73, T7P, T7t, T7G, T7w, T7Q, T7a, T7L, T7l, T7K, T7U, T7A, T7i, T7u; | |
729 E T76; | |
730 Im[WS(rs, 3)] = -(KP500000000 * (FNMS(KP707106781, T6Y, T6V))); | |
731 Ip[WS(rs, 12)] = KP500000000 * (FMA(KP707106781, T6Y, T6V)); | |
732 T7F = T72 - T71; | |
733 T73 = T71 + T72; | |
734 T7P = T7r - T7s; | |
735 T7t = T7r + T7s; | |
736 T7u = T75 + T74; | |
737 T76 = T74 - T75; | |
738 { | |
739 E T7I, T7e, T7v, T79, T7J, T7h; | |
740 T7v = T77 - T78; | |
741 T79 = T77 + T78; | |
742 T7I = T7c - T7d; | |
743 T7e = T7c + T7d; | |
744 T7G = T7v - T7u; | |
745 T7w = T7u + T7v; | |
746 T7Q = T76 - T79; | |
747 T7a = T76 + T79; | |
748 T7J = T7g - T7f; | |
749 T7h = T7f + T7g; | |
750 T7L = T7k - T7j; | |
751 T7l = T7j + T7k; | |
752 T7K = FMA(KP414213562, T7J, T7I); | |
753 T7U = FNMS(KP414213562, T7I, T7J); | |
754 T7A = FNMS(KP414213562, T7e, T7h); | |
755 T7i = FMA(KP414213562, T7h, T7e); | |
756 } | |
757 { | |
758 E T7z, T7b, T7D, T7x, T7M, T7o; | |
759 T7z = FNMS(KP707106781, T7a, T73); | |
760 T7b = FMA(KP707106781, T7a, T73); | |
761 T7D = FMA(KP707106781, T7w, T7t); | |
762 T7x = FNMS(KP707106781, T7w, T7t); | |
763 T7M = T7n - T7m; | |
764 T7o = T7m + T7n; | |
765 { | |
766 E T7S, T7R, T7X, T7Y; | |
767 { | |
768 E T7H, T7V, T7B, T7p, T7O, T7N; | |
769 T7T = FMA(KP707106781, T7G, T7F); | |
770 T7H = FNMS(KP707106781, T7G, T7F); | |
771 T7N = FMA(KP414213562, T7M, T7L); | |
772 T7V = FNMS(KP414213562, T7L, T7M); | |
773 T7B = FMA(KP414213562, T7l, T7o); | |
774 T7p = FNMS(KP414213562, T7o, T7l); | |
775 T7O = T7K - T7N; | |
776 T7S = T7K + T7N; | |
777 T7R = FMA(KP707106781, T7Q, T7P); | |
778 T7X = FNMS(KP707106781, T7Q, T7P); | |
779 { | |
780 E T7C, T7E, T7y, T7q; | |
781 T7C = T7A - T7B; | |
782 T7E = T7A + T7B; | |
783 T7y = T7p - T7i; | |
784 T7q = T7i + T7p; | |
785 Im[WS(rs, 1)] = -(KP500000000 * (FNMS(KP923879532, T7O, T7H))); | |
786 Ip[WS(rs, 14)] = KP500000000 * (FMA(KP923879532, T7O, T7H)); | |
787 Im[WS(rs, 5)] = -(KP500000000 * (FNMS(KP923879532, T7C, T7z))); | |
788 Ip[WS(rs, 10)] = KP500000000 * (FMA(KP923879532, T7C, T7z)); | |
789 Rp[WS(rs, 2)] = KP500000000 * (FMA(KP923879532, T7E, T7D)); | |
790 Rm[WS(rs, 13)] = KP500000000 * (FNMS(KP923879532, T7E, T7D)); | |
791 Rp[WS(rs, 10)] = KP500000000 * (FMA(KP923879532, T7y, T7x)); | |
792 Rm[WS(rs, 5)] = KP500000000 * (FNMS(KP923879532, T7y, T7x)); | |
793 Im[WS(rs, 13)] = -(KP500000000 * (FNMS(KP923879532, T7q, T7b))); | |
794 Ip[WS(rs, 2)] = KP500000000 * (FMA(KP923879532, T7q, T7b)); | |
795 T7Y = T7U + T7V; | |
796 T7W = T7U - T7V; | |
797 } | |
798 } | |
799 Rm[WS(rs, 1)] = KP500000000 * (FMA(KP923879532, T7Y, T7X)); | |
800 Rp[WS(rs, 14)] = KP500000000 * (FNMS(KP923879532, T7Y, T7X)); | |
801 Rp[WS(rs, 6)] = KP500000000 * (FMA(KP923879532, T7S, T7R)); | |
802 Rm[WS(rs, 9)] = KP500000000 * (FNMS(KP923879532, T7S, T7R)); | |
803 } | |
804 } | |
805 } | |
806 { | |
807 E Ta7, Tat, T9l, T89, T9H, Taj, T9v, T99, T9m, T9c, T9w, T8o, Tao, Tay, Tae; | |
808 E Ta3, T9q, T9A, T9g, T8I, T8Z, T8W, Tak, Taa, Tau, T9O, T9r, T8T, Tar, Taz; | |
809 E Taf, T9W; | |
810 { | |
811 E T9M, T9L, T9J, T9I, T8s, T8G, T8D, Ta0, Tam, T9Z, Ta1, T8z, Ta9, T9K; | |
812 { | |
813 E T9F, T81, Ta5, T95, T96, T97, Ta6, T88, T84, T87; | |
814 T9F = T80 + T7Z; | |
815 T81 = T7Z - T80; | |
816 Ta5 = T93 - T94; | |
817 T95 = T93 + T94; | |
818 T96 = T83 + T82; | |
819 T84 = T82 - T83; | |
820 Im[WS(rs, 9)] = -(KP500000000 * (FNMS(KP923879532, T7W, T7T))); | |
821 Ip[WS(rs, 6)] = KP500000000 * (FMA(KP923879532, T7W, T7T)); | |
822 T87 = T85 + T86; | |
823 T97 = T85 - T86; | |
824 Ta6 = T84 - T87; | |
825 T88 = T84 + T87; | |
826 { | |
827 E T8j, T9a, T8g, T8m; | |
828 { | |
829 E T8c, T9G, T98, T8f; | |
830 T9M = T8a + T8b; | |
831 T8c = T8a - T8b; | |
832 Ta7 = FMA(KP707106781, Ta6, Ta5); | |
833 Tat = FNMS(KP707106781, Ta6, Ta5); | |
834 T9l = FNMS(KP707106781, T88, T81); | |
835 T89 = FMA(KP707106781, T88, T81); | |
836 T9G = T97 - T96; | |
837 T98 = T96 + T97; | |
838 T8f = T8d + T8e; | |
839 T9L = T8d - T8e; | |
840 T9J = T8h + T8i; | |
841 T8j = T8h - T8i; | |
842 T9H = FMA(KP707106781, T9G, T9F); | |
843 Taj = FNMS(KP707106781, T9G, T9F); | |
844 T9v = FNMS(KP707106781, T98, T95); | |
845 T99 = FMA(KP707106781, T98, T95); | |
846 T9a = FMA(KP414213562, T8c, T8f); | |
847 T8g = FNMS(KP414213562, T8f, T8c); | |
848 T8m = T8k + T8l; | |
849 T9I = T8k - T8l; | |
850 } | |
851 { | |
852 E T9X, T9Y, T9b, T8n; | |
853 T8s = T8q + T8r; | |
854 T9X = T8r - T8q; | |
855 T9Y = T8F - T8E; | |
856 T8G = T8E + T8F; | |
857 T8D = T8B + T8C; | |
858 Ta0 = T8B - T8C; | |
859 T9b = FNMS(KP414213562, T8j, T8m); | |
860 T8n = FMA(KP414213562, T8m, T8j); | |
861 Tam = FMA(KP707106781, T9Y, T9X); | |
862 T9Z = FNMS(KP707106781, T9Y, T9X); | |
863 T9m = T9b - T9a; | |
864 T9c = T9a + T9b; | |
865 T9w = T8g - T8n; | |
866 T8o = T8g + T8n; | |
867 Ta1 = T8y - T8v; | |
868 T8z = T8v + T8y; | |
869 } | |
870 } | |
871 } | |
872 { | |
873 E T9o, T8A, Tan, Ta2, T9p, T8H; | |
874 Tan = FMA(KP707106781, Ta1, Ta0); | |
875 Ta2 = FNMS(KP707106781, Ta1, Ta0); | |
876 T9o = FNMS(KP707106781, T8z, T8s); | |
877 T8A = FMA(KP707106781, T8z, T8s); | |
878 Tao = FMA(KP198912367, Tan, Tam); | |
879 Tay = FNMS(KP198912367, Tam, Tan); | |
880 Tae = FMA(KP668178637, T9Z, Ta2); | |
881 Ta3 = FNMS(KP668178637, Ta2, T9Z); | |
882 T9p = FNMS(KP707106781, T8G, T8D); | |
883 T8H = FMA(KP707106781, T8G, T8D); | |
884 Ta9 = FNMS(KP414213562, T9I, T9J); | |
885 T9K = FMA(KP414213562, T9J, T9I); | |
886 T9q = FNMS(KP668178637, T9p, T9o); | |
887 T9A = FMA(KP668178637, T9o, T9p); | |
888 T9g = FNMS(KP198912367, T8A, T8H); | |
889 T8I = FMA(KP198912367, T8H, T8A); | |
890 } | |
891 { | |
892 E T8L, T9T, Tap, T9S, T9U, T8S, Taq, T9V; | |
893 { | |
894 E T9Q, T9R, Ta8, T9N; | |
895 T8L = T8J - T8K; | |
896 T9Q = T8K + T8J; | |
897 T9R = T8X - T8Y; | |
898 T8Z = T8X + T8Y; | |
899 T8W = T8U + T8V; | |
900 T9T = T8V - T8U; | |
901 Ta8 = FMA(KP414213562, T9L, T9M); | |
902 T9N = FNMS(KP414213562, T9M, T9L); | |
903 Tap = FMA(KP707106781, T9R, T9Q); | |
904 T9S = FNMS(KP707106781, T9R, T9Q); | |
905 Tak = Ta8 + Ta9; | |
906 Taa = Ta8 - Ta9; | |
907 Tau = T9N + T9K; | |
908 T9O = T9K - T9N; | |
909 T9U = T8R - T8O; | |
910 T8S = T8O + T8R; | |
911 } | |
912 Taq = FMA(KP707106781, T9U, T9T); | |
913 T9V = FNMS(KP707106781, T9U, T9T); | |
914 T9r = FNMS(KP707106781, T8S, T8L); | |
915 T8T = FMA(KP707106781, T8S, T8L); | |
916 Tar = FMA(KP198912367, Taq, Tap); | |
917 Taz = FNMS(KP198912367, Tap, Taq); | |
918 Taf = FMA(KP668178637, T9S, T9V); | |
919 T9W = FNMS(KP668178637, T9V, T9S); | |
920 } | |
921 } | |
922 { | |
923 E T9z, T9C, Tad, Tag; | |
924 { | |
925 E T9f, T8p, T9j, T9d, T9s, T90; | |
926 T9f = FNMS(KP923879532, T8o, T89); | |
927 T8p = FMA(KP923879532, T8o, T89); | |
928 T9j = FMA(KP923879532, T9c, T99); | |
929 T9d = FNMS(KP923879532, T9c, T99); | |
930 T9s = FNMS(KP707106781, T8Z, T8W); | |
931 T90 = FMA(KP707106781, T8Z, T8W); | |
932 { | |
933 E T9y, T9x, T9D, T9E; | |
934 { | |
935 E T9n, T9B, T9h, T91, T9u, T9t; | |
936 T9z = FMA(KP923879532, T9m, T9l); | |
937 T9n = FNMS(KP923879532, T9m, T9l); | |
938 T9t = FMA(KP668178637, T9s, T9r); | |
939 T9B = FNMS(KP668178637, T9r, T9s); | |
940 T9h = FMA(KP198912367, T8T, T90); | |
941 T91 = FNMS(KP198912367, T90, T8T); | |
942 T9u = T9q + T9t; | |
943 T9y = T9t - T9q; | |
944 T9x = FMA(KP923879532, T9w, T9v); | |
945 T9D = FNMS(KP923879532, T9w, T9v); | |
946 { | |
947 E T9i, T9k, T9e, T92; | |
948 T9i = T9g - T9h; | |
949 T9k = T9g + T9h; | |
950 T9e = T91 - T8I; | |
951 T92 = T8I + T91; | |
952 Im[WS(rs, 2)] = -(KP500000000 * (FMA(KP831469612, T9u, T9n))); | |
953 Ip[WS(rs, 13)] = KP500000000 * (FNMS(KP831469612, T9u, T9n)); | |
954 Im[WS(rs, 6)] = -(KP500000000 * (FNMS(KP980785280, T9i, T9f))); | |
955 Ip[WS(rs, 9)] = KP500000000 * (FMA(KP980785280, T9i, T9f)); | |
956 Rp[WS(rs, 1)] = KP500000000 * (FMA(KP980785280, T9k, T9j)); | |
957 Rm[WS(rs, 14)] = KP500000000 * (FNMS(KP980785280, T9k, T9j)); | |
958 Rp[WS(rs, 9)] = KP500000000 * (FMA(KP980785280, T9e, T9d)); | |
959 Rm[WS(rs, 6)] = KP500000000 * (FNMS(KP980785280, T9e, T9d)); | |
960 Im[WS(rs, 14)] = -(KP500000000 * (FNMS(KP980785280, T92, T8p))); | |
961 Ip[WS(rs, 1)] = KP500000000 * (FMA(KP980785280, T92, T8p)); | |
962 T9E = T9A + T9B; | |
963 T9C = T9A - T9B; | |
964 } | |
965 } | |
966 Rm[WS(rs, 2)] = KP500000000 * (FMA(KP831469612, T9E, T9D)); | |
967 Rp[WS(rs, 13)] = KP500000000 * (FNMS(KP831469612, T9E, T9D)); | |
968 Rp[WS(rs, 5)] = KP500000000 * (FMA(KP831469612, T9y, T9x)); | |
969 Rm[WS(rs, 10)] = KP500000000 * (FNMS(KP831469612, T9y, T9x)); | |
970 } | |
971 } | |
972 { | |
973 E Tac, Tab, Tah, Tai, T9P, Ta4; | |
974 Tad = FNMS(KP923879532, T9O, T9H); | |
975 T9P = FMA(KP923879532, T9O, T9H); | |
976 Ta4 = T9W - Ta3; | |
977 Tac = Ta3 + T9W; | |
978 Tab = FNMS(KP923879532, Taa, Ta7); | |
979 Tah = FMA(KP923879532, Taa, Ta7); | |
980 Im[WS(rs, 10)] = -(KP500000000 * (FNMS(KP831469612, T9C, T9z))); | |
981 Ip[WS(rs, 5)] = KP500000000 * (FMA(KP831469612, T9C, T9z)); | |
982 Im[WS(rs, 12)] = -(KP500000000 * (FNMS(KP831469612, Ta4, T9P))); | |
983 Ip[WS(rs, 3)] = KP500000000 * (FMA(KP831469612, Ta4, T9P)); | |
984 Tai = Tae + Taf; | |
985 Tag = Tae - Taf; | |
986 Rp[WS(rs, 3)] = KP500000000 * (FMA(KP831469612, Tai, Tah)); | |
987 Rm[WS(rs, 12)] = KP500000000 * (FNMS(KP831469612, Tai, Tah)); | |
988 Rp[WS(rs, 11)] = KP500000000 * (FMA(KP831469612, Tac, Tab)); | |
989 Rm[WS(rs, 4)] = KP500000000 * (FNMS(KP831469612, Tac, Tab)); | |
990 } | |
991 { | |
992 E Taw, Tav, TaB, TaC, Tal, Tas; | |
993 Tax = FNMS(KP923879532, Tak, Taj); | |
994 Tal = FMA(KP923879532, Tak, Taj); | |
995 Tas = Tao - Tar; | |
996 Taw = Tao + Tar; | |
997 Tav = FNMS(KP923879532, Tau, Tat); | |
998 TaB = FMA(KP923879532, Tau, Tat); | |
999 Im[WS(rs, 4)] = -(KP500000000 * (FNMS(KP831469612, Tag, Tad))); | |
1000 Ip[WS(rs, 11)] = KP500000000 * (FMA(KP831469612, Tag, Tad)); | |
1001 Im[0] = -(KP500000000 * (FNMS(KP980785280, Tas, Tal))); | |
1002 Ip[WS(rs, 15)] = KP500000000 * (FMA(KP980785280, Tas, Tal)); | |
1003 TaC = Tay + Taz; | |
1004 TaA = Tay - Taz; | |
1005 Rm[0] = KP500000000 * (FMA(KP980785280, TaC, TaB)); | |
1006 Rp[WS(rs, 15)] = KP500000000 * (FNMS(KP980785280, TaC, TaB)); | |
1007 Rp[WS(rs, 7)] = KP500000000 * (FMA(KP980785280, Taw, Tav)); | |
1008 Rm[WS(rs, 8)] = KP500000000 * (FNMS(KP980785280, Taw, Tav)); | |
1009 } | |
1010 } | |
1011 } | |
1012 } | |
1013 } | |
1014 } | |
1015 Im[WS(rs, 8)] = -(KP500000000 * (FNMS(KP980785280, TaA, Tax))); | |
1016 Ip[WS(rs, 7)] = KP500000000 * (FMA(KP980785280, TaA, Tax)); | |
1017 } | |
1018 } | |
1019 } | |
1020 | |
1021 static const tw_instr twinstr[] = { | |
1022 {TW_CEXP, 1, 1}, | |
1023 {TW_CEXP, 1, 3}, | |
1024 {TW_CEXP, 1, 9}, | |
1025 {TW_CEXP, 1, 27}, | |
1026 {TW_NEXT, 1, 0} | |
1027 }; | |
1028 | |
1029 static const hc2c_desc desc = { 32, "hc2cfdft2_32", twinstr, &GENUS, {300, 162, 252, 0} }; | |
1030 | |
1031 void X(codelet_hc2cfdft2_32) (planner *p) { | |
1032 X(khc2c_register) (p, hc2cfdft2_32, &desc, HC2C_VIA_DFT); | |
1033 } | |
1034 #else /* HAVE_FMA */ | |
1035 | |
1036 /* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 32 -dit -name hc2cfdft2_32 -include hc2cf.h */ | |
1037 | |
1038 /* | |
1039 * This function contains 552 FP additions, 300 FP multiplications, | |
1040 * (or, 440 additions, 188 multiplications, 112 fused multiply/add), | |
1041 * 166 stack variables, 9 constants, and 128 memory accesses | |
1042 */ | |
1043 #include "hc2cf.h" | |
1044 | |
1045 static void hc2cfdft2_32(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) | |
1046 { | |
1047 DK(KP277785116, +0.277785116509801112371415406974266437187468595); | |
1048 DK(KP415734806, +0.415734806151272618539394188808952878369280406); | |
1049 DK(KP097545161, +0.097545161008064133924142434238511120463845809); | |
1050 DK(KP490392640, +0.490392640201615224563091118067119518486966865); | |
1051 DK(KP707106781, +0.707106781186547524400844362104849039284835938); | |
1052 DK(KP191341716, +0.191341716182544885864229992015199433380672281); | |
1053 DK(KP461939766, +0.461939766255643378064091594698394143411208313); | |
1054 DK(KP353553390, +0.353553390593273762200422181052424519642417969); | |
1055 DK(KP500000000, +0.500000000000000000000000000000000000000000000); | |
1056 { | |
1057 INT m; | |
1058 for (m = mb, W = W + ((mb - 1) * 8); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 8, MAKE_VOLATILE_STRIDE(128, rs)) { | |
1059 E T1, T4, T2, T5, T7, T1b, T1d, Td, Ti, Tk, Tj, Tl, TL, TR, T2h; | |
1060 E T2O, T16, T2l, T10, T2K, Tm, Tq, T3s, T3K, T3w, T3M, T4e, T4u, T4i, T4w; | |
1061 E Ty, TE, T3h, T3j, T2q, T2u, T4l, T4n, T1v, T1B, T3E, T3G, T2B, T2F, T3Y; | |
1062 E T40, T1f, T1G, T1i, T1H, T1j, T1M, T1n, T1I, T23, T2U, T26, T2V, T27, T30; | |
1063 E T2b, T2W; | |
1064 { | |
1065 E Tw, T1A, TD, T1t, Tx, T1z, TC, T1u, TJ, T15, TQ, TY, TK, T14, TP; | |
1066 E TZ; | |
1067 { | |
1068 E T3, Tc, T6, Tb; | |
1069 T1 = W[0]; | |
1070 T4 = W[1]; | |
1071 T2 = W[2]; | |
1072 T5 = W[3]; | |
1073 T3 = T1 * T2; | |
1074 Tc = T4 * T2; | |
1075 T6 = T4 * T5; | |
1076 Tb = T1 * T5; | |
1077 T7 = T3 + T6; | |
1078 T1b = T3 - T6; | |
1079 T1d = Tb + Tc; | |
1080 Td = Tb - Tc; | |
1081 Ti = W[4]; | |
1082 Tw = T1 * Ti; | |
1083 T1A = T5 * Ti; | |
1084 TD = T4 * Ti; | |
1085 T1t = T2 * Ti; | |
1086 Tk = W[5]; | |
1087 Tx = T4 * Tk; | |
1088 T1z = T2 * Tk; | |
1089 TC = T1 * Tk; | |
1090 T1u = T5 * Tk; | |
1091 Tj = W[6]; | |
1092 TJ = T1 * Tj; | |
1093 T15 = T5 * Tj; | |
1094 TQ = T4 * Tj; | |
1095 TY = T2 * Tj; | |
1096 Tl = W[7]; | |
1097 TK = T4 * Tl; | |
1098 T14 = T2 * Tl; | |
1099 TP = T1 * Tl; | |
1100 TZ = T5 * Tl; | |
1101 } | |
1102 TL = TJ + TK; | |
1103 TR = TP - TQ; | |
1104 T2h = TJ - TK; | |
1105 T2O = T14 - T15; | |
1106 T16 = T14 + T15; | |
1107 T2l = TP + TQ; | |
1108 T10 = TY - TZ; | |
1109 T2K = TY + TZ; | |
1110 Tm = FMA(Ti, Tj, Tk * Tl); | |
1111 Tq = FNMS(Tk, Tj, Ti * Tl); | |
1112 { | |
1113 E T3q, T3r, T3u, T3v; | |
1114 T3q = T7 * Tj; | |
1115 T3r = Td * Tl; | |
1116 T3s = T3q + T3r; | |
1117 T3K = T3q - T3r; | |
1118 T3u = T7 * Tl; | |
1119 T3v = Td * Tj; | |
1120 T3w = T3u - T3v; | |
1121 T3M = T3u + T3v; | |
1122 } | |
1123 { | |
1124 E T4c, T4d, T4g, T4h; | |
1125 T4c = T1b * Tj; | |
1126 T4d = T1d * Tl; | |
1127 T4e = T4c - T4d; | |
1128 T4u = T4c + T4d; | |
1129 T4g = T1b * Tl; | |
1130 T4h = T1d * Tj; | |
1131 T4i = T4g + T4h; | |
1132 T4w = T4g - T4h; | |
1133 Ty = Tw - Tx; | |
1134 TE = TC + TD; | |
1135 T3h = FMA(Ty, Tj, TE * Tl); | |
1136 T3j = FNMS(TE, Tj, Ty * Tl); | |
1137 } | |
1138 T2q = T1t - T1u; | |
1139 T2u = T1z + T1A; | |
1140 T4l = FMA(T2q, Tj, T2u * Tl); | |
1141 T4n = FNMS(T2u, Tj, T2q * Tl); | |
1142 T1v = T1t + T1u; | |
1143 T1B = T1z - T1A; | |
1144 T3E = FMA(T1v, Tj, T1B * Tl); | |
1145 T3G = FNMS(T1B, Tj, T1v * Tl); | |
1146 T2B = Tw + Tx; | |
1147 T2F = TC - TD; | |
1148 T3Y = FMA(T2B, Tj, T2F * Tl); | |
1149 T40 = FNMS(T2F, Tj, T2B * Tl); | |
1150 { | |
1151 E T1c, T1e, T1g, T1h; | |
1152 T1c = T1b * Ti; | |
1153 T1e = T1d * Tk; | |
1154 T1f = T1c - T1e; | |
1155 T1G = T1c + T1e; | |
1156 T1g = T1b * Tk; | |
1157 T1h = T1d * Ti; | |
1158 T1i = T1g + T1h; | |
1159 T1H = T1g - T1h; | |
1160 } | |
1161 T1j = FMA(T1f, Tj, T1i * Tl); | |
1162 T1M = FNMS(T1H, Tj, T1G * Tl); | |
1163 T1n = FNMS(T1i, Tj, T1f * Tl); | |
1164 T1I = FMA(T1G, Tj, T1H * Tl); | |
1165 { | |
1166 E T21, T22, T24, T25; | |
1167 T21 = T7 * Ti; | |
1168 T22 = Td * Tk; | |
1169 T23 = T21 + T22; | |
1170 T2U = T21 - T22; | |
1171 T24 = T7 * Tk; | |
1172 T25 = Td * Ti; | |
1173 T26 = T24 - T25; | |
1174 T2V = T24 + T25; | |
1175 } | |
1176 T27 = FMA(T23, Tj, T26 * Tl); | |
1177 T30 = FNMS(T2V, Tj, T2U * Tl); | |
1178 T2b = FNMS(T26, Tj, T23 * Tl); | |
1179 T2W = FMA(T2U, Tj, T2V * Tl); | |
1180 } | |
1181 { | |
1182 E T38, T7l, T7S, T8Y, T7Z, T91, T3A, T6k, T4F, T83, T5C, T6n, T2T, T84, T4I; | |
1183 E T7m, T2g, T4M, T4P, T2z, T3T, T6m, T7O, T7V, T7j, T87, T5v, T6j, T7L, T7U; | |
1184 E T7g, T86, Tv, TW, T61, T4U, T4X, T62, T4b, T6c, T7v, T7C, T5g, T6f, T74; | |
1185 E T8G, T7s, T7B, T71, T8F, T1s, T1R, T65, T51, T54, T64, T4A, T6g, T7G, T8U; | |
1186 E T5n, T6d, T7b, T8J, T7z, T8R, T78, T8I; | |
1187 { | |
1188 E T2E, T2I, T3p, T5w, T37, T4D, T3g, T5A, T2N, T2R, T3y, T5x, T2Z, T33, T3l; | |
1189 E T5z; | |
1190 { | |
1191 E T2C, T2D, T3o, T2G, T2H, T3n; | |
1192 T2C = Ip[WS(rs, 4)]; | |
1193 T2D = Im[WS(rs, 4)]; | |
1194 T3o = T2C + T2D; | |
1195 T2G = Rp[WS(rs, 4)]; | |
1196 T2H = Rm[WS(rs, 4)]; | |
1197 T3n = T2G - T2H; | |
1198 T2E = T2C - T2D; | |
1199 T2I = T2G + T2H; | |
1200 T3p = FMA(Ti, T3n, Tk * T3o); | |
1201 T5w = FNMS(Tk, T3n, Ti * T3o); | |
1202 } | |
1203 { | |
1204 E T35, T36, T3f, T3c, T3d, T3e; | |
1205 T35 = Ip[0]; | |
1206 T36 = Im[0]; | |
1207 T3f = T35 + T36; | |
1208 T3c = Rm[0]; | |
1209 T3d = Rp[0]; | |
1210 T3e = T3c - T3d; | |
1211 T37 = T35 - T36; | |
1212 T4D = T3d + T3c; | |
1213 T3g = FNMS(T4, T3f, T1 * T3e); | |
1214 T5A = FMA(T4, T3e, T1 * T3f); | |
1215 } | |
1216 { | |
1217 E T2L, T2M, T3x, T2P, T2Q, T3t; | |
1218 T2L = Ip[WS(rs, 12)]; | |
1219 T2M = Im[WS(rs, 12)]; | |
1220 T3x = T2L + T2M; | |
1221 T2P = Rp[WS(rs, 12)]; | |
1222 T2Q = Rm[WS(rs, 12)]; | |
1223 T3t = T2P - T2Q; | |
1224 T2N = T2L - T2M; | |
1225 T2R = T2P + T2Q; | |
1226 T3y = FMA(T3s, T3t, T3w * T3x); | |
1227 T5x = FNMS(T3w, T3t, T3s * T3x); | |
1228 } | |
1229 { | |
1230 E T2X, T2Y, T3k, T31, T32, T3i; | |
1231 T2X = Ip[WS(rs, 8)]; | |
1232 T2Y = Im[WS(rs, 8)]; | |
1233 T3k = T2X + T2Y; | |
1234 T31 = Rp[WS(rs, 8)]; | |
1235 T32 = Rm[WS(rs, 8)]; | |
1236 T3i = T31 - T32; | |
1237 T2Z = T2X - T2Y; | |
1238 T33 = T31 + T32; | |
1239 T3l = FMA(T3h, T3i, T3j * T3k); | |
1240 T5z = FNMS(T3j, T3i, T3h * T3k); | |
1241 } | |
1242 { | |
1243 E T34, T7Q, T7R, T4E, T5y, T5B; | |
1244 T34 = FNMS(T30, T33, T2W * T2Z); | |
1245 T38 = T34 + T37; | |
1246 T7l = T37 - T34; | |
1247 T7Q = T3l + T3g; | |
1248 T7R = T5w - T5x; | |
1249 T7S = T7Q - T7R; | |
1250 T8Y = T7R + T7Q; | |
1251 { | |
1252 E T7X, T7Y, T3m, T3z; | |
1253 T7X = T3y - T3p; | |
1254 T7Y = T5A - T5z; | |
1255 T7Z = T7X + T7Y; | |
1256 T91 = T7Y - T7X; | |
1257 T3m = T3g - T3l; | |
1258 T3z = T3p + T3y; | |
1259 T3A = T3m - T3z; | |
1260 T6k = T3z + T3m; | |
1261 } | |
1262 T4E = FMA(T2W, T33, T30 * T2Z); | |
1263 T4F = T4D + T4E; | |
1264 T83 = T4D - T4E; | |
1265 T5y = T5w + T5x; | |
1266 T5B = T5z + T5A; | |
1267 T5C = T5y + T5B; | |
1268 T6n = T5B - T5y; | |
1269 { | |
1270 E T2J, T2S, T4G, T4H; | |
1271 T2J = FNMS(T2F, T2I, T2B * T2E); | |
1272 T2S = FNMS(T2O, T2R, T2K * T2N); | |
1273 T2T = T2J + T2S; | |
1274 T84 = T2J - T2S; | |
1275 T4G = FMA(T2B, T2I, T2F * T2E); | |
1276 T4H = FMA(T2K, T2R, T2O * T2N); | |
1277 T4I = T4G + T4H; | |
1278 T7m = T4G - T4H; | |
1279 } | |
1280 } | |
1281 } | |
1282 { | |
1283 E T20, T5p, T3D, T4K, T2y, T5t, T3R, T4O, T2f, T5q, T3I, T4L, T2p, T5s, T3O; | |
1284 E T4N; | |
1285 { | |
1286 E T1W, T3C, T1Z, T3B; | |
1287 { | |
1288 E T1U, T1V, T1X, T1Y; | |
1289 T1U = Ip[WS(rs, 2)]; | |
1290 T1V = Im[WS(rs, 2)]; | |
1291 T1W = T1U - T1V; | |
1292 T3C = T1U + T1V; | |
1293 T1X = Rp[WS(rs, 2)]; | |
1294 T1Y = Rm[WS(rs, 2)]; | |
1295 T1Z = T1X + T1Y; | |
1296 T3B = T1X - T1Y; | |
1297 } | |
1298 T20 = FNMS(T1d, T1Z, T1b * T1W); | |
1299 T5p = FNMS(T1H, T3B, T1G * T3C); | |
1300 T3D = FMA(T1G, T3B, T1H * T3C); | |
1301 T4K = FMA(T1b, T1Z, T1d * T1W); | |
1302 } | |
1303 { | |
1304 E T2t, T3Q, T2x, T3P; | |
1305 { | |
1306 E T2r, T2s, T2v, T2w; | |
1307 T2r = Ip[WS(rs, 6)]; | |
1308 T2s = Im[WS(rs, 6)]; | |
1309 T2t = T2r - T2s; | |
1310 T3Q = T2r + T2s; | |
1311 T2v = Rp[WS(rs, 6)]; | |
1312 T2w = Rm[WS(rs, 6)]; | |
1313 T2x = T2v + T2w; | |
1314 T3P = T2v - T2w; | |
1315 } | |
1316 T2y = FNMS(T2u, T2x, T2q * T2t); | |
1317 T5t = FNMS(T1i, T3P, T1f * T3Q); | |
1318 T3R = FMA(T1f, T3P, T1i * T3Q); | |
1319 T4O = FMA(T2q, T2x, T2u * T2t); | |
1320 } | |
1321 { | |
1322 E T2a, T3H, T2e, T3F; | |
1323 { | |
1324 E T28, T29, T2c, T2d; | |
1325 T28 = Ip[WS(rs, 10)]; | |
1326 T29 = Im[WS(rs, 10)]; | |
1327 T2a = T28 - T29; | |
1328 T3H = T28 + T29; | |
1329 T2c = Rp[WS(rs, 10)]; | |
1330 T2d = Rm[WS(rs, 10)]; | |
1331 T2e = T2c + T2d; | |
1332 T3F = T2c - T2d; | |
1333 } | |
1334 T2f = FNMS(T2b, T2e, T27 * T2a); | |
1335 T5q = FNMS(T3G, T3F, T3E * T3H); | |
1336 T3I = FMA(T3E, T3F, T3G * T3H); | |
1337 T4L = FMA(T27, T2e, T2b * T2a); | |
1338 } | |
1339 { | |
1340 E T2k, T3N, T2o, T3L; | |
1341 { | |
1342 E T2i, T2j, T2m, T2n; | |
1343 T2i = Ip[WS(rs, 14)]; | |
1344 T2j = Im[WS(rs, 14)]; | |
1345 T2k = T2i - T2j; | |
1346 T3N = T2i + T2j; | |
1347 T2m = Rp[WS(rs, 14)]; | |
1348 T2n = Rm[WS(rs, 14)]; | |
1349 T2o = T2m + T2n; | |
1350 T3L = T2m - T2n; | |
1351 } | |
1352 T2p = FNMS(T2l, T2o, T2h * T2k); | |
1353 T5s = FNMS(T3M, T3L, T3K * T3N); | |
1354 T3O = FMA(T3K, T3L, T3M * T3N); | |
1355 T4N = FMA(T2h, T2o, T2l * T2k); | |
1356 } | |
1357 { | |
1358 E T3J, T3S, T5r, T5u; | |
1359 T2g = T20 + T2f; | |
1360 T4M = T4K + T4L; | |
1361 T4P = T4N + T4O; | |
1362 T2z = T2p + T2y; | |
1363 T3J = T3D + T3I; | |
1364 T3S = T3O + T3R; | |
1365 T3T = T3J + T3S; | |
1366 T6m = T3S - T3J; | |
1367 { | |
1368 E T7M, T7N, T7h, T7i; | |
1369 T7M = T5s - T5t; | |
1370 T7N = T3R - T3O; | |
1371 T7O = T7M + T7N; | |
1372 T7V = T7M - T7N; | |
1373 T7h = T4N - T4O; | |
1374 T7i = T2p - T2y; | |
1375 T7j = T7h + T7i; | |
1376 T87 = T7h - T7i; | |
1377 } | |
1378 T5r = T5p + T5q; | |
1379 T5u = T5s + T5t; | |
1380 T5v = T5r + T5u; | |
1381 T6j = T5u - T5r; | |
1382 { | |
1383 E T7J, T7K, T7e, T7f; | |
1384 T7J = T3I - T3D; | |
1385 T7K = T5p - T5q; | |
1386 T7L = T7J - T7K; | |
1387 T7U = T7K + T7J; | |
1388 T7e = T20 - T2f; | |
1389 T7f = T4K - T4L; | |
1390 T7g = T7e - T7f; | |
1391 T86 = T7f + T7e; | |
1392 } | |
1393 } | |
1394 } | |
1395 { | |
1396 E Th, T5a, T3X, T4S, TV, T5e, T49, T4W, Tu, T5b, T42, T4T, TI, T5d, T46; | |
1397 E T4V; | |
1398 { | |
1399 E Ta, T3W, Tg, T3V; | |
1400 { | |
1401 E T8, T9, Te, Tf; | |
1402 T8 = Ip[WS(rs, 1)]; | |
1403 T9 = Im[WS(rs, 1)]; | |
1404 Ta = T8 - T9; | |
1405 T3W = T8 + T9; | |
1406 Te = Rp[WS(rs, 1)]; | |
1407 Tf = Rm[WS(rs, 1)]; | |
1408 Tg = Te + Tf; | |
1409 T3V = Te - Tf; | |
1410 } | |
1411 Th = FNMS(Td, Tg, T7 * Ta); | |
1412 T5a = FNMS(T5, T3V, T2 * T3W); | |
1413 T3X = FMA(T2, T3V, T5 * T3W); | |
1414 T4S = FMA(T7, Tg, Td * Ta); | |
1415 } | |
1416 { | |
1417 E TO, T48, TU, T47; | |
1418 { | |
1419 E TM, TN, TS, TT; | |
1420 TM = Ip[WS(rs, 13)]; | |
1421 TN = Im[WS(rs, 13)]; | |
1422 TO = TM - TN; | |
1423 T48 = TM + TN; | |
1424 TS = Rp[WS(rs, 13)]; | |
1425 TT = Rm[WS(rs, 13)]; | |
1426 TU = TS + TT; | |
1427 T47 = TS - TT; | |
1428 } | |
1429 TV = FNMS(TR, TU, TL * TO); | |
1430 T5e = FNMS(Tl, T47, Tj * T48); | |
1431 T49 = FMA(Tj, T47, Tl * T48); | |
1432 T4W = FMA(TL, TU, TR * TO); | |
1433 } | |
1434 { | |
1435 E Tp, T41, Tt, T3Z; | |
1436 { | |
1437 E Tn, To, Tr, Ts; | |
1438 Tn = Ip[WS(rs, 9)]; | |
1439 To = Im[WS(rs, 9)]; | |
1440 Tp = Tn - To; | |
1441 T41 = Tn + To; | |
1442 Tr = Rp[WS(rs, 9)]; | |
1443 Ts = Rm[WS(rs, 9)]; | |
1444 Tt = Tr + Ts; | |
1445 T3Z = Tr - Ts; | |
1446 } | |
1447 Tu = FNMS(Tq, Tt, Tm * Tp); | |
1448 T5b = FNMS(T40, T3Z, T3Y * T41); | |
1449 T42 = FMA(T3Y, T3Z, T40 * T41); | |
1450 T4T = FMA(Tm, Tt, Tq * Tp); | |
1451 } | |
1452 { | |
1453 E TB, T45, TH, T44; | |
1454 { | |
1455 E Tz, TA, TF, TG; | |
1456 Tz = Ip[WS(rs, 5)]; | |
1457 TA = Im[WS(rs, 5)]; | |
1458 TB = Tz - TA; | |
1459 T45 = Tz + TA; | |
1460 TF = Rp[WS(rs, 5)]; | |
1461 TG = Rm[WS(rs, 5)]; | |
1462 TH = TF + TG; | |
1463 T44 = TF - TG; | |
1464 } | |
1465 TI = FNMS(TE, TH, Ty * TB); | |
1466 T5d = FNMS(T2V, T44, T2U * T45); | |
1467 T46 = FMA(T2U, T44, T2V * T45); | |
1468 T4V = FMA(Ty, TH, TE * TB); | |
1469 } | |
1470 Tv = Th + Tu; | |
1471 TW = TI + TV; | |
1472 T61 = Tv - TW; | |
1473 T4U = T4S + T4T; | |
1474 T4X = T4V + T4W; | |
1475 T62 = T4U - T4X; | |
1476 { | |
1477 E T43, T4a, T7t, T7u; | |
1478 T43 = T3X + T42; | |
1479 T4a = T46 + T49; | |
1480 T4b = T43 + T4a; | |
1481 T6c = T4a - T43; | |
1482 T7t = T5e - T5d; | |
1483 T7u = T46 - T49; | |
1484 T7v = T7t + T7u; | |
1485 T7C = T7t - T7u; | |
1486 } | |
1487 { | |
1488 E T5c, T5f, T72, T73; | |
1489 T5c = T5a + T5b; | |
1490 T5f = T5d + T5e; | |
1491 T5g = T5c + T5f; | |
1492 T6f = T5f - T5c; | |
1493 T72 = T4S - T4T; | |
1494 T73 = TI - TV; | |
1495 T74 = T72 + T73; | |
1496 T8G = T72 - T73; | |
1497 } | |
1498 { | |
1499 E T7q, T7r, T6Z, T70; | |
1500 T7q = T42 - T3X; | |
1501 T7r = T5a - T5b; | |
1502 T7s = T7q - T7r; | |
1503 T7B = T7r + T7q; | |
1504 T6Z = Th - Tu; | |
1505 T70 = T4V - T4W; | |
1506 T71 = T6Z - T70; | |
1507 T8F = T6Z + T70; | |
1508 } | |
1509 } | |
1510 { | |
1511 E T1a, T5h, T4k, T4Z, T1Q, T5l, T4y, T53, T1r, T5i, T4p, T50, T1F, T5k, T4t; | |
1512 E T52; | |
1513 { | |
1514 E T13, T4j, T19, T4f; | |
1515 { | |
1516 E T11, T12, T17, T18; | |
1517 T11 = Ip[WS(rs, 15)]; | |
1518 T12 = Im[WS(rs, 15)]; | |
1519 T13 = T11 - T12; | |
1520 T4j = T11 + T12; | |
1521 T17 = Rp[WS(rs, 15)]; | |
1522 T18 = Rm[WS(rs, 15)]; | |
1523 T19 = T17 + T18; | |
1524 T4f = T17 - T18; | |
1525 } | |
1526 T1a = FNMS(T16, T19, T10 * T13); | |
1527 T5h = FNMS(T4i, T4f, T4e * T4j); | |
1528 T4k = FMA(T4e, T4f, T4i * T4j); | |
1529 T4Z = FMA(T10, T19, T16 * T13); | |
1530 } | |
1531 { | |
1532 E T1L, T4x, T1P, T4v; | |
1533 { | |
1534 E T1J, T1K, T1N, T1O; | |
1535 T1J = Ip[WS(rs, 11)]; | |
1536 T1K = Im[WS(rs, 11)]; | |
1537 T1L = T1J - T1K; | |
1538 T4x = T1J + T1K; | |
1539 T1N = Rp[WS(rs, 11)]; | |
1540 T1O = Rm[WS(rs, 11)]; | |
1541 T1P = T1N + T1O; | |
1542 T4v = T1N - T1O; | |
1543 } | |
1544 T1Q = FNMS(T1M, T1P, T1I * T1L); | |
1545 T5l = FNMS(T4w, T4v, T4u * T4x); | |
1546 T4y = FMA(T4u, T4v, T4w * T4x); | |
1547 T53 = FMA(T1I, T1P, T1M * T1L); | |
1548 } | |
1549 { | |
1550 E T1m, T4o, T1q, T4m; | |
1551 { | |
1552 E T1k, T1l, T1o, T1p; | |
1553 T1k = Ip[WS(rs, 7)]; | |
1554 T1l = Im[WS(rs, 7)]; | |
1555 T1m = T1k - T1l; | |
1556 T4o = T1k + T1l; | |
1557 T1o = Rp[WS(rs, 7)]; | |
1558 T1p = Rm[WS(rs, 7)]; | |
1559 T1q = T1o + T1p; | |
1560 T4m = T1o - T1p; | |
1561 } | |
1562 T1r = FNMS(T1n, T1q, T1j * T1m); | |
1563 T5i = FNMS(T4n, T4m, T4l * T4o); | |
1564 T4p = FMA(T4l, T4m, T4n * T4o); | |
1565 T50 = FMA(T1j, T1q, T1n * T1m); | |
1566 } | |
1567 { | |
1568 E T1y, T4s, T1E, T4r; | |
1569 { | |
1570 E T1w, T1x, T1C, T1D; | |
1571 T1w = Ip[WS(rs, 3)]; | |
1572 T1x = Im[WS(rs, 3)]; | |
1573 T1y = T1w - T1x; | |
1574 T4s = T1w + T1x; | |
1575 T1C = Rp[WS(rs, 3)]; | |
1576 T1D = Rm[WS(rs, 3)]; | |
1577 T1E = T1C + T1D; | |
1578 T4r = T1C - T1D; | |
1579 } | |
1580 T1F = FNMS(T1B, T1E, T1v * T1y); | |
1581 T5k = FNMS(T26, T4r, T23 * T4s); | |
1582 T4t = FMA(T23, T4r, T26 * T4s); | |
1583 T52 = FMA(T1v, T1E, T1B * T1y); | |
1584 } | |
1585 T1s = T1a + T1r; | |
1586 T1R = T1F + T1Q; | |
1587 T65 = T1s - T1R; | |
1588 T51 = T4Z + T50; | |
1589 T54 = T52 + T53; | |
1590 T64 = T51 - T54; | |
1591 { | |
1592 E T4q, T4z, T7E, T7F; | |
1593 T4q = T4k + T4p; | |
1594 T4z = T4t + T4y; | |
1595 T4A = T4q + T4z; | |
1596 T6g = T4z - T4q; | |
1597 T7E = T5h - T5i; | |
1598 T7F = T4y - T4t; | |
1599 T7G = T7E + T7F; | |
1600 T8U = T7E - T7F; | |
1601 } | |
1602 { | |
1603 E T5j, T5m, T79, T7a; | |
1604 T5j = T5h + T5i; | |
1605 T5m = T5k + T5l; | |
1606 T5n = T5j + T5m; | |
1607 T6d = T5j - T5m; | |
1608 T79 = T4Z - T50; | |
1609 T7a = T1F - T1Q; | |
1610 T7b = T79 + T7a; | |
1611 T8J = T79 - T7a; | |
1612 } | |
1613 { | |
1614 E T7x, T7y, T76, T77; | |
1615 T7x = T4p - T4k; | |
1616 T7y = T5k - T5l; | |
1617 T7z = T7x - T7y; | |
1618 T8R = T7x + T7y; | |
1619 T76 = T1a - T1r; | |
1620 T77 = T52 - T53; | |
1621 T78 = T76 - T77; | |
1622 T8I = T76 + T77; | |
1623 } | |
1624 } | |
1625 { | |
1626 E T1T, T5S, T5M, T5W, T5P, T5X, T3a, T5I, T4C, T58, T56, T5H, T5E, T5G, T4R; | |
1627 E T5R; | |
1628 { | |
1629 E TX, T1S, T5K, T5L; | |
1630 TX = Tv + TW; | |
1631 T1S = T1s + T1R; | |
1632 T1T = TX + T1S; | |
1633 T5S = TX - T1S; | |
1634 T5K = T5n - T5g; | |
1635 T5L = T4b - T4A; | |
1636 T5M = T5K + T5L; | |
1637 T5W = T5K - T5L; | |
1638 } | |
1639 { | |
1640 E T5N, T5O, T2A, T39; | |
1641 T5N = T3T + T3A; | |
1642 T5O = T5C - T5v; | |
1643 T5P = T5N - T5O; | |
1644 T5X = T5N + T5O; | |
1645 T2A = T2g + T2z; | |
1646 T39 = T2T + T38; | |
1647 T3a = T2A + T39; | |
1648 T5I = T39 - T2A; | |
1649 } | |
1650 { | |
1651 E T3U, T4B, T4Y, T55; | |
1652 T3U = T3A - T3T; | |
1653 T4B = T4b + T4A; | |
1654 T4C = T3U - T4B; | |
1655 T58 = T4B + T3U; | |
1656 T4Y = T4U + T4X; | |
1657 T55 = T51 + T54; | |
1658 T56 = T4Y + T55; | |
1659 T5H = T55 - T4Y; | |
1660 } | |
1661 { | |
1662 E T5o, T5D, T4J, T4Q; | |
1663 T5o = T5g + T5n; | |
1664 T5D = T5v + T5C; | |
1665 T5E = T5o - T5D; | |
1666 T5G = T5o + T5D; | |
1667 T4J = T4F + T4I; | |
1668 T4Q = T4M + T4P; | |
1669 T4R = T4J + T4Q; | |
1670 T5R = T4J - T4Q; | |
1671 } | |
1672 { | |
1673 E T3b, T5F, T57, T59; | |
1674 T3b = T1T + T3a; | |
1675 Ip[0] = KP500000000 * (T3b + T4C); | |
1676 Im[WS(rs, 15)] = KP500000000 * (T4C - T3b); | |
1677 T5F = T4R + T56; | |
1678 Rm[WS(rs, 15)] = KP500000000 * (T5F - T5G); | |
1679 Rp[0] = KP500000000 * (T5F + T5G); | |
1680 T57 = T4R - T56; | |
1681 Rm[WS(rs, 7)] = KP500000000 * (T57 - T58); | |
1682 Rp[WS(rs, 8)] = KP500000000 * (T57 + T58); | |
1683 T59 = T3a - T1T; | |
1684 Ip[WS(rs, 8)] = KP500000000 * (T59 + T5E); | |
1685 Im[WS(rs, 7)] = KP500000000 * (T5E - T59); | |
1686 } | |
1687 { | |
1688 E T5J, T5Q, T5Z, T60; | |
1689 T5J = KP500000000 * (T5H + T5I); | |
1690 T5Q = KP353553390 * (T5M + T5P); | |
1691 Ip[WS(rs, 4)] = T5J + T5Q; | |
1692 Im[WS(rs, 11)] = T5Q - T5J; | |
1693 T5Z = KP500000000 * (T5R + T5S); | |
1694 T60 = KP353553390 * (T5W + T5X); | |
1695 Rm[WS(rs, 11)] = T5Z - T60; | |
1696 Rp[WS(rs, 4)] = T5Z + T60; | |
1697 } | |
1698 { | |
1699 E T5T, T5U, T5V, T5Y; | |
1700 T5T = KP500000000 * (T5R - T5S); | |
1701 T5U = KP353553390 * (T5P - T5M); | |
1702 Rm[WS(rs, 3)] = T5T - T5U; | |
1703 Rp[WS(rs, 12)] = T5T + T5U; | |
1704 T5V = KP500000000 * (T5I - T5H); | |
1705 T5Y = KP353553390 * (T5W - T5X); | |
1706 Ip[WS(rs, 12)] = T5V + T5Y; | |
1707 Im[WS(rs, 3)] = T5Y - T5V; | |
1708 } | |
1709 } | |
1710 { | |
1711 E T67, T6Q, T6K, T6U, T6N, T6V, T6a, T6G, T6i, T6A, T6t, T6P, T6w, T6F, T6p; | |
1712 E T6B; | |
1713 { | |
1714 E T63, T66, T6I, T6J; | |
1715 T63 = T61 - T62; | |
1716 T66 = T64 + T65; | |
1717 T67 = KP353553390 * (T63 + T66); | |
1718 T6Q = KP353553390 * (T63 - T66); | |
1719 T6I = T6d - T6c; | |
1720 T6J = T6g - T6f; | |
1721 T6K = FMA(KP461939766, T6I, KP191341716 * T6J); | |
1722 T6U = FNMS(KP461939766, T6J, KP191341716 * T6I); | |
1723 } | |
1724 { | |
1725 E T6L, T6M, T68, T69; | |
1726 T6L = T6k - T6j; | |
1727 T6M = T6n - T6m; | |
1728 T6N = FNMS(KP461939766, T6M, KP191341716 * T6L); | |
1729 T6V = FMA(KP461939766, T6L, KP191341716 * T6M); | |
1730 T68 = T4P - T4M; | |
1731 T69 = T38 - T2T; | |
1732 T6a = KP500000000 * (T68 + T69); | |
1733 T6G = KP500000000 * (T69 - T68); | |
1734 } | |
1735 { | |
1736 E T6e, T6h, T6r, T6s; | |
1737 T6e = T6c + T6d; | |
1738 T6h = T6f + T6g; | |
1739 T6i = FMA(KP191341716, T6e, KP461939766 * T6h); | |
1740 T6A = FNMS(KP191341716, T6h, KP461939766 * T6e); | |
1741 T6r = T4F - T4I; | |
1742 T6s = T2g - T2z; | |
1743 T6t = KP500000000 * (T6r + T6s); | |
1744 T6P = KP500000000 * (T6r - T6s); | |
1745 } | |
1746 { | |
1747 E T6u, T6v, T6l, T6o; | |
1748 T6u = T62 + T61; | |
1749 T6v = T64 - T65; | |
1750 T6w = KP353553390 * (T6u + T6v); | |
1751 T6F = KP353553390 * (T6v - T6u); | |
1752 T6l = T6j + T6k; | |
1753 T6o = T6m + T6n; | |
1754 T6p = FNMS(KP191341716, T6o, KP461939766 * T6l); | |
1755 T6B = FMA(KP191341716, T6l, KP461939766 * T6o); | |
1756 } | |
1757 { | |
1758 E T6b, T6q, T6D, T6E; | |
1759 T6b = T67 + T6a; | |
1760 T6q = T6i + T6p; | |
1761 Ip[WS(rs, 2)] = T6b + T6q; | |
1762 Im[WS(rs, 13)] = T6q - T6b; | |
1763 T6D = T6t + T6w; | |
1764 T6E = T6A + T6B; | |
1765 Rm[WS(rs, 13)] = T6D - T6E; | |
1766 Rp[WS(rs, 2)] = T6D + T6E; | |
1767 } | |
1768 { | |
1769 E T6x, T6y, T6z, T6C; | |
1770 T6x = T6t - T6w; | |
1771 T6y = T6p - T6i; | |
1772 Rm[WS(rs, 5)] = T6x - T6y; | |
1773 Rp[WS(rs, 10)] = T6x + T6y; | |
1774 T6z = T6a - T67; | |
1775 T6C = T6A - T6B; | |
1776 Ip[WS(rs, 10)] = T6z + T6C; | |
1777 Im[WS(rs, 5)] = T6C - T6z; | |
1778 } | |
1779 { | |
1780 E T6H, T6O, T6X, T6Y; | |
1781 T6H = T6F + T6G; | |
1782 T6O = T6K + T6N; | |
1783 Ip[WS(rs, 6)] = T6H + T6O; | |
1784 Im[WS(rs, 9)] = T6O - T6H; | |
1785 T6X = T6P + T6Q; | |
1786 T6Y = T6U + T6V; | |
1787 Rm[WS(rs, 9)] = T6X - T6Y; | |
1788 Rp[WS(rs, 6)] = T6X + T6Y; | |
1789 } | |
1790 { | |
1791 E T6R, T6S, T6T, T6W; | |
1792 T6R = T6P - T6Q; | |
1793 T6S = T6N - T6K; | |
1794 Rm[WS(rs, 1)] = T6R - T6S; | |
1795 Rp[WS(rs, 14)] = T6R + T6S; | |
1796 T6T = T6G - T6F; | |
1797 T6W = T6U - T6V; | |
1798 Ip[WS(rs, 14)] = T6T + T6W; | |
1799 Im[WS(rs, 1)] = T6W - T6T; | |
1800 } | |
1801 } | |
1802 { | |
1803 E T7d, T8w, T7o, T8m, T8c, T8l, T89, T8v, T81, T8B, T8h, T8t, T7I, T8A, T8g; | |
1804 E T8q; | |
1805 { | |
1806 E T75, T7c, T85, T88; | |
1807 T75 = FNMS(KP191341716, T74, KP461939766 * T71); | |
1808 T7c = FMA(KP461939766, T78, KP191341716 * T7b); | |
1809 T7d = T75 + T7c; | |
1810 T8w = T75 - T7c; | |
1811 { | |
1812 E T7k, T7n, T8a, T8b; | |
1813 T7k = KP353553390 * (T7g + T7j); | |
1814 T7n = KP500000000 * (T7l - T7m); | |
1815 T7o = T7k + T7n; | |
1816 T8m = T7n - T7k; | |
1817 T8a = FMA(KP191341716, T71, KP461939766 * T74); | |
1818 T8b = FNMS(KP191341716, T78, KP461939766 * T7b); | |
1819 T8c = T8a + T8b; | |
1820 T8l = T8b - T8a; | |
1821 } | |
1822 T85 = KP500000000 * (T83 + T84); | |
1823 T88 = KP353553390 * (T86 + T87); | |
1824 T89 = T85 + T88; | |
1825 T8v = T85 - T88; | |
1826 { | |
1827 E T7T, T8r, T80, T8s, T7P, T7W; | |
1828 T7P = KP707106781 * (T7L + T7O); | |
1829 T7T = T7P + T7S; | |
1830 T8r = T7S - T7P; | |
1831 T7W = KP707106781 * (T7U + T7V); | |
1832 T80 = T7W + T7Z; | |
1833 T8s = T7Z - T7W; | |
1834 T81 = FNMS(KP097545161, T80, KP490392640 * T7T); | |
1835 T8B = FMA(KP415734806, T8r, KP277785116 * T8s); | |
1836 T8h = FMA(KP097545161, T7T, KP490392640 * T80); | |
1837 T8t = FNMS(KP415734806, T8s, KP277785116 * T8r); | |
1838 } | |
1839 { | |
1840 E T7A, T8o, T7H, T8p, T7w, T7D; | |
1841 T7w = KP707106781 * (T7s + T7v); | |
1842 T7A = T7w + T7z; | |
1843 T8o = T7z - T7w; | |
1844 T7D = KP707106781 * (T7B + T7C); | |
1845 T7H = T7D + T7G; | |
1846 T8p = T7G - T7D; | |
1847 T7I = FMA(KP490392640, T7A, KP097545161 * T7H); | |
1848 T8A = FNMS(KP415734806, T8o, KP277785116 * T8p); | |
1849 T8g = FNMS(KP097545161, T7A, KP490392640 * T7H); | |
1850 T8q = FMA(KP277785116, T8o, KP415734806 * T8p); | |
1851 } | |
1852 } | |
1853 { | |
1854 E T7p, T82, T8j, T8k; | |
1855 T7p = T7d + T7o; | |
1856 T82 = T7I + T81; | |
1857 Ip[WS(rs, 1)] = T7p + T82; | |
1858 Im[WS(rs, 14)] = T82 - T7p; | |
1859 T8j = T89 + T8c; | |
1860 T8k = T8g + T8h; | |
1861 Rm[WS(rs, 14)] = T8j - T8k; | |
1862 Rp[WS(rs, 1)] = T8j + T8k; | |
1863 } | |
1864 { | |
1865 E T8d, T8e, T8f, T8i; | |
1866 T8d = T89 - T8c; | |
1867 T8e = T81 - T7I; | |
1868 Rm[WS(rs, 6)] = T8d - T8e; | |
1869 Rp[WS(rs, 9)] = T8d + T8e; | |
1870 T8f = T7o - T7d; | |
1871 T8i = T8g - T8h; | |
1872 Ip[WS(rs, 9)] = T8f + T8i; | |
1873 Im[WS(rs, 6)] = T8i - T8f; | |
1874 } | |
1875 { | |
1876 E T8n, T8u, T8D, T8E; | |
1877 T8n = T8l + T8m; | |
1878 T8u = T8q + T8t; | |
1879 Ip[WS(rs, 5)] = T8n + T8u; | |
1880 Im[WS(rs, 10)] = T8u - T8n; | |
1881 T8D = T8v + T8w; | |
1882 T8E = T8A + T8B; | |
1883 Rm[WS(rs, 10)] = T8D - T8E; | |
1884 Rp[WS(rs, 5)] = T8D + T8E; | |
1885 } | |
1886 { | |
1887 E T8x, T8y, T8z, T8C; | |
1888 T8x = T8v - T8w; | |
1889 T8y = T8t - T8q; | |
1890 Rm[WS(rs, 2)] = T8x - T8y; | |
1891 Rp[WS(rs, 13)] = T8x + T8y; | |
1892 T8z = T8m - T8l; | |
1893 T8C = T8A - T8B; | |
1894 Ip[WS(rs, 13)] = T8z + T8C; | |
1895 Im[WS(rs, 2)] = T8C - T8z; | |
1896 } | |
1897 } | |
1898 { | |
1899 E T8L, T9u, T8O, T9k, T9a, T9j, T97, T9t, T93, T9z, T9f, T9r, T8W, T9y, T9e; | |
1900 E T9o; | |
1901 { | |
1902 E T8H, T8K, T95, T96; | |
1903 T8H = FNMS(KP461939766, T8G, KP191341716 * T8F); | |
1904 T8K = FMA(KP191341716, T8I, KP461939766 * T8J); | |
1905 T8L = T8H + T8K; | |
1906 T9u = T8H - T8K; | |
1907 { | |
1908 E T8M, T8N, T98, T99; | |
1909 T8M = KP353553390 * (T87 - T86); | |
1910 T8N = KP500000000 * (T7m + T7l); | |
1911 T8O = T8M + T8N; | |
1912 T9k = T8N - T8M; | |
1913 T98 = FMA(KP461939766, T8F, KP191341716 * T8G); | |
1914 T99 = FNMS(KP461939766, T8I, KP191341716 * T8J); | |
1915 T9a = T98 + T99; | |
1916 T9j = T99 - T98; | |
1917 } | |
1918 T95 = KP500000000 * (T83 - T84); | |
1919 T96 = KP353553390 * (T7g - T7j); | |
1920 T97 = T95 + T96; | |
1921 T9t = T95 - T96; | |
1922 { | |
1923 E T8Z, T9p, T92, T9q, T8X, T90; | |
1924 T8X = KP707106781 * (T7V - T7U); | |
1925 T8Z = T8X + T8Y; | |
1926 T9p = T8Y - T8X; | |
1927 T90 = KP707106781 * (T7L - T7O); | |
1928 T92 = T90 + T91; | |
1929 T9q = T91 - T90; | |
1930 T93 = FNMS(KP277785116, T92, KP415734806 * T8Z); | |
1931 T9z = FMA(KP490392640, T9p, KP097545161 * T9q); | |
1932 T9f = FMA(KP277785116, T8Z, KP415734806 * T92); | |
1933 T9r = FNMS(KP490392640, T9q, KP097545161 * T9p); | |
1934 } | |
1935 { | |
1936 E T8S, T9m, T8V, T9n, T8Q, T8T; | |
1937 T8Q = KP707106781 * (T7C - T7B); | |
1938 T8S = T8Q + T8R; | |
1939 T9m = T8R - T8Q; | |
1940 T8T = KP707106781 * (T7s - T7v); | |
1941 T8V = T8T + T8U; | |
1942 T9n = T8U - T8T; | |
1943 T8W = FMA(KP415734806, T8S, KP277785116 * T8V); | |
1944 T9y = FNMS(KP490392640, T9m, KP097545161 * T9n); | |
1945 T9e = FNMS(KP277785116, T8S, KP415734806 * T8V); | |
1946 T9o = FMA(KP097545161, T9m, KP490392640 * T9n); | |
1947 } | |
1948 } | |
1949 { | |
1950 E T8P, T94, T9h, T9i; | |
1951 T8P = T8L + T8O; | |
1952 T94 = T8W + T93; | |
1953 Ip[WS(rs, 3)] = T8P + T94; | |
1954 Im[WS(rs, 12)] = T94 - T8P; | |
1955 T9h = T97 + T9a; | |
1956 T9i = T9e + T9f; | |
1957 Rm[WS(rs, 12)] = T9h - T9i; | |
1958 Rp[WS(rs, 3)] = T9h + T9i; | |
1959 } | |
1960 { | |
1961 E T9b, T9c, T9d, T9g; | |
1962 T9b = T97 - T9a; | |
1963 T9c = T93 - T8W; | |
1964 Rm[WS(rs, 4)] = T9b - T9c; | |
1965 Rp[WS(rs, 11)] = T9b + T9c; | |
1966 T9d = T8O - T8L; | |
1967 T9g = T9e - T9f; | |
1968 Ip[WS(rs, 11)] = T9d + T9g; | |
1969 Im[WS(rs, 4)] = T9g - T9d; | |
1970 } | |
1971 { | |
1972 E T9l, T9s, T9B, T9C; | |
1973 T9l = T9j + T9k; | |
1974 T9s = T9o + T9r; | |
1975 Ip[WS(rs, 7)] = T9l + T9s; | |
1976 Im[WS(rs, 8)] = T9s - T9l; | |
1977 T9B = T9t + T9u; | |
1978 T9C = T9y + T9z; | |
1979 Rm[WS(rs, 8)] = T9B - T9C; | |
1980 Rp[WS(rs, 7)] = T9B + T9C; | |
1981 } | |
1982 { | |
1983 E T9v, T9w, T9x, T9A; | |
1984 T9v = T9t - T9u; | |
1985 T9w = T9r - T9o; | |
1986 Rm[0] = T9v - T9w; | |
1987 Rp[WS(rs, 15)] = T9v + T9w; | |
1988 T9x = T9k - T9j; | |
1989 T9A = T9y - T9z; | |
1990 Ip[WS(rs, 15)] = T9x + T9A; | |
1991 Im[0] = T9A - T9x; | |
1992 } | |
1993 } | |
1994 } | |
1995 } | |
1996 } | |
1997 } | |
1998 | |
1999 static const tw_instr twinstr[] = { | |
2000 {TW_CEXP, 1, 1}, | |
2001 {TW_CEXP, 1, 3}, | |
2002 {TW_CEXP, 1, 9}, | |
2003 {TW_CEXP, 1, 27}, | |
2004 {TW_NEXT, 1, 0} | |
2005 }; | |
2006 | |
2007 static const hc2c_desc desc = { 32, "hc2cfdft2_32", twinstr, &GENUS, {440, 188, 112, 0} }; | |
2008 | |
2009 void X(codelet_hc2cfdft2_32) (planner *p) { | |
2010 X(khc2c_register) (p, hc2cfdft2_32, &desc, HC2C_VIA_DFT); | |
2011 } | |
2012 #endif /* HAVE_FMA */ |