Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.3/rdft/scalar/r2cf/hc2cfdft2_20.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
9:c0fb53affa76 | 10:37bf6b4a2645 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-11 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Sun Nov 25 07:40:53 EST 2012 */ | |
23 | |
24 #include "codelet-rdft.h" | |
25 | |
26 #ifdef HAVE_FMA | |
27 | |
28 /* Generated by: ../../../genfft/gen_hc2cdft.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 20 -dit -name hc2cfdft2_20 -include hc2cf.h */ | |
29 | |
30 /* | |
31 * This function contains 316 FP additions, 238 FP multiplications, | |
32 * (or, 176 additions, 98 multiplications, 140 fused multiply/add), | |
33 * 180 stack variables, 5 constants, and 80 memory accesses | |
34 */ | |
35 #include "hc2cf.h" | |
36 | |
37 static void hc2cfdft2_20(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) | |
38 { | |
39 DK(KP951056516, +0.951056516295153572116439333379382143405698634); | |
40 DK(KP559016994, +0.559016994374947424102293417182819058860154590); | |
41 DK(KP250000000, +0.250000000000000000000000000000000000000000000); | |
42 DK(KP500000000, +0.500000000000000000000000000000000000000000000); | |
43 DK(KP618033988, +0.618033988749894848204586834365638117720309180); | |
44 { | |
45 INT m; | |
46 for (m = mb, W = W + ((mb - 1) * 8); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 8, MAKE_VOLATILE_STRIDE(80, rs)) { | |
47 E T5h, T5C, T5E, T5y, T5w, T5x, T5D, T5z; | |
48 { | |
49 E Tm, Tq, Tn, T1, T6, Tg, Tp, Tb, T1i, TU, Tr, TW, Tx, T2B, T1A; | |
50 E T1u, T2y, T33, T26, T1o, T30, T22, TD, T1Q, T2a, T2e, T2V, T2R, TG, T1V; | |
51 E TV, TH, TN, T2t, T12, T2p; | |
52 { | |
53 E Tw, To, T29, T1h, T1n, T2d, TC, T2U; | |
54 Tm = W[0]; | |
55 Tq = W[3]; | |
56 Tn = W[2]; | |
57 T1 = W[6]; | |
58 T6 = W[7]; | |
59 Tw = Tm * Tq; | |
60 To = Tm * Tn; | |
61 T29 = Tm * T1; | |
62 T1h = Tn * T1; | |
63 T1n = Tn * T6; | |
64 T2d = Tm * T6; | |
65 Tg = W[5]; | |
66 Tp = W[1]; | |
67 Tb = W[4]; | |
68 { | |
69 E T21, T25, T1t, T1z; | |
70 T1i = FMA(Tq, T6, T1h); | |
71 T25 = Tm * Tg; | |
72 T1z = Tn * Tg; | |
73 TU = FMA(Tp, Tq, To); | |
74 Tr = FNMS(Tp, Tq, To); | |
75 TW = FNMS(Tp, Tn, Tw); | |
76 Tx = FMA(Tp, Tn, Tw); | |
77 T1t = Tn * Tb; | |
78 T21 = Tm * Tb; | |
79 T2B = FMA(Tq, Tb, T1z); | |
80 T1A = FNMS(Tq, Tb, T1z); | |
81 TC = Tr * Tb; | |
82 T1u = FMA(Tq, Tg, T1t); | |
83 T2y = FNMS(Tq, Tg, T1t); | |
84 T33 = FMA(Tp, Tb, T25); | |
85 T26 = FNMS(Tp, Tb, T25); | |
86 T1o = FNMS(Tq, T1, T1n); | |
87 T30 = FNMS(Tp, Tg, T21); | |
88 T22 = FMA(Tp, Tg, T21); | |
89 } | |
90 TD = FMA(Tx, Tg, TC); | |
91 T1Q = FNMS(Tx, Tg, TC); | |
92 T2a = FMA(Tp, T6, T29); | |
93 T2e = FNMS(Tp, T1, T2d); | |
94 T2U = Tr * T6; | |
95 { | |
96 E T2Q, TE, TM, TF; | |
97 T2Q = Tr * T1; | |
98 TF = Tr * Tg; | |
99 T2V = FNMS(Tx, T1, T2U); | |
100 T2R = FMA(Tx, T6, T2Q); | |
101 TG = FNMS(Tx, Tb, TF); | |
102 T1V = FMA(Tx, Tb, TF); | |
103 TE = TD * T1; | |
104 TM = TD * T6; | |
105 TV = TU * Tb; | |
106 TH = FMA(TG, T6, TE); | |
107 TN = FNMS(TG, T1, TM); | |
108 T2t = TU * T1; | |
109 T12 = TU * Tg; | |
110 T2p = TU * T6; | |
111 } | |
112 } | |
113 { | |
114 E T36, T3Q, T5f, T4D, T5g, T2Y, T4E, T3P, T5R, T5k, T39, TT, T3T, T3m, T49; | |
115 E T4X, T5T, T5r, T3c, T2i, T3W, T3B, T4o, T4U, T5U, T5u, T3d, T2J, T3X, T3I; | |
116 E T4v, T4V, T5Q, T5n, T3a, T1G, T3U, T3t, T4g, T4Y; | |
117 { | |
118 E T13, T2m, T2q, T2u, T2f, T9, T2O, TA, T2c, T4k, T3i, T5, T2Z, T1e, T2G; | |
119 E T1O, T2W, TQ, T2C, T1Y, T3v, T27, Tj, T1l, T2v, T3g, T1m, T1D, T2n, T1x; | |
120 E T2k, T3E, T4c, T2l, T1y, T10, T31, T16, T34, T32, T11, T4B, T3p, T4A, T1T; | |
121 E T3n, T1b, T2A, T4q, T1U, Te, Tf, T24, T4i, T1r, T4a, T3C, T2s, T43, Tv; | |
122 E T3L, T2N, T45, TL, T3N, T2T, T2E, T1K; | |
123 { | |
124 E T2j, TX, T1B, T1C; | |
125 { | |
126 E T1c, T1d, T1M, T1N; | |
127 { | |
128 E T2, T3, T7, T8; | |
129 T7 = Rp[WS(rs, 9)]; | |
130 T8 = Rm[WS(rs, 9)]; | |
131 T2 = Ip[WS(rs, 9)]; | |
132 T2j = FMA(TW, Tg, TV); | |
133 TX = FNMS(TW, Tg, TV); | |
134 T13 = FMA(TW, Tb, T12); | |
135 T2m = FNMS(TW, Tb, T12); | |
136 T2q = FNMS(TW, T1, T2p); | |
137 T2u = FMA(TW, T6, T2t); | |
138 T2f = T7 + T8; | |
139 T9 = T7 - T8; | |
140 T3 = Im[WS(rs, 9)]; | |
141 { | |
142 E Ty, Tz, T2b, T4; | |
143 Ty = Rp[WS(rs, 2)]; | |
144 Tz = Rm[WS(rs, 2)]; | |
145 T1c = Ip[0]; | |
146 T2b = T2 - T3; | |
147 T4 = T2 + T3; | |
148 T2O = Ty - Tz; | |
149 TA = Ty + Tz; | |
150 T2c = T2a * T2b; | |
151 T4k = T2e * T2b; | |
152 T3i = T6 * T4; | |
153 T5 = T1 * T4; | |
154 T1d = Im[0]; | |
155 T1M = Rp[WS(rs, 1)]; | |
156 T1N = Rm[WS(rs, 1)]; | |
157 } | |
158 } | |
159 { | |
160 E TO, TP, T1W, T1X; | |
161 TO = Rp[WS(rs, 7)]; | |
162 T2Z = T1c - T1d; | |
163 T1e = T1c + T1d; | |
164 T2G = T1M + T1N; | |
165 T1O = T1M - T1N; | |
166 TP = Rm[WS(rs, 7)]; | |
167 T1W = Rm[WS(rs, 6)]; | |
168 T1X = Rp[WS(rs, 6)]; | |
169 { | |
170 E Th, Ti, T1j, T1k; | |
171 Th = Rm[WS(rs, 4)]; | |
172 T2W = TO - TP; | |
173 TQ = TO + TP; | |
174 T2C = T1X + T1W; | |
175 T1Y = T1W - T1X; | |
176 Ti = Rp[WS(rs, 4)]; | |
177 T1j = Ip[WS(rs, 8)]; | |
178 T1k = Im[WS(rs, 8)]; | |
179 T3v = T1Q * T1Y; | |
180 T27 = Ti + Th; | |
181 Tj = Th - Ti; | |
182 T1l = T1j - T1k; | |
183 T2v = T1j + T1k; | |
184 T1B = Rp[WS(rs, 3)]; | |
185 T3g = Tb * Tj; | |
186 T1m = T1i * T1l; | |
187 T1C = Rm[WS(rs, 3)]; | |
188 } | |
189 } | |
190 } | |
191 { | |
192 E T18, T19, T1R, T1S; | |
193 { | |
194 E TY, TZ, T1v, T1w, T14, T15; | |
195 T1v = Ip[WS(rs, 3)]; | |
196 T1w = Im[WS(rs, 3)]; | |
197 TY = Ip[WS(rs, 5)]; | |
198 T1D = T1B + T1C; | |
199 T2n = T1B - T1C; | |
200 T1x = T1v - T1w; | |
201 T2k = T1v + T1w; | |
202 T3E = T2j * T2n; | |
203 T4c = T1u * T1D; | |
204 T2l = T2j * T2k; | |
205 T1y = T1u * T1x; | |
206 TZ = Im[WS(rs, 5)]; | |
207 T14 = Rp[WS(rs, 5)]; | |
208 T15 = Rm[WS(rs, 5)]; | |
209 T18 = Rm[0]; | |
210 T10 = TY + TZ; | |
211 T31 = TY - TZ; | |
212 T16 = T14 - T15; | |
213 T34 = T14 + T15; | |
214 T32 = T30 * T31; | |
215 T11 = TX * T10; | |
216 T4B = T30 * T34; | |
217 T3p = TX * T16; | |
218 T19 = Rp[0]; | |
219 T1R = Ip[WS(rs, 6)]; | |
220 T1S = Im[WS(rs, 6)]; | |
221 } | |
222 { | |
223 E T2r, T23, T1p, T1q; | |
224 { | |
225 E Tc, T1a, T2z, Td; | |
226 Tc = Ip[WS(rs, 4)]; | |
227 T1a = T18 - T19; | |
228 T4A = T19 + T18; | |
229 T1T = T1R + T1S; | |
230 T2z = T1R - T1S; | |
231 Td = Im[WS(rs, 4)]; | |
232 T3n = Tm * T1a; | |
233 T1b = Tp * T1a; | |
234 T2A = T2y * T2z; | |
235 T4q = T2B * T2z; | |
236 T1U = T1Q * T1T; | |
237 T23 = Tc - Td; | |
238 Te = Tc + Td; | |
239 } | |
240 T1p = Rp[WS(rs, 8)]; | |
241 T1q = Rm[WS(rs, 8)]; | |
242 Tf = Tb * Te; | |
243 T24 = T22 * T23; | |
244 T4i = T26 * T23; | |
245 T1r = T1p + T1q; | |
246 T2r = T1q - T1p; | |
247 { | |
248 E T2M, Tu, Ts, Tt; | |
249 Ts = Ip[WS(rs, 2)]; | |
250 Tt = Im[WS(rs, 2)]; | |
251 T4a = T1i * T1r; | |
252 T3C = T2u * T2r; | |
253 T2s = T2q * T2r; | |
254 T2M = Ts + Tt; | |
255 Tu = Ts - Tt; | |
256 { | |
257 E T2S, TK, TI, TJ, T1I, T1J; | |
258 TI = Ip[WS(rs, 7)]; | |
259 TJ = Im[WS(rs, 7)]; | |
260 T43 = Tx * Tu; | |
261 Tv = Tr * Tu; | |
262 T3L = TG * T2M; | |
263 T2N = TD * T2M; | |
264 T2S = TI + TJ; | |
265 TK = TI - TJ; | |
266 T1I = Ip[WS(rs, 1)]; | |
267 T1J = Im[WS(rs, 1)]; | |
268 T45 = TN * TK; | |
269 TL = TH * TK; | |
270 T3N = T2V * T2S; | |
271 T2T = T2R * T2S; | |
272 T2E = T1I - T1J; | |
273 T1K = T1I + T1J; | |
274 } | |
275 } | |
276 } | |
277 } | |
278 } | |
279 { | |
280 E T3x, T1L, T2F, T4s, T2P, T2X, T3M, T3O, T35, T4C; | |
281 T35 = FNMS(T33, T34, T32); | |
282 T4C = FMA(T33, T31, T4B); | |
283 T3x = Tq * T1K; | |
284 T1L = Tn * T1K; | |
285 T2F = TU * T2E; | |
286 T4s = TW * T2E; | |
287 T36 = T2Z - T35; | |
288 T3Q = T35 + T2Z; | |
289 T5f = T4A + T4C; | |
290 T4D = T4A - T4C; | |
291 T2P = FNMS(TG, T2O, T2N); | |
292 T2X = FNMS(T2V, T2W, T2T); | |
293 T3M = FMA(TD, T2O, T3L); | |
294 T3O = FMA(T2R, T2W, T3N); | |
295 { | |
296 E TB, T5j, Tl, T5i, T47, TR, T3h, T3j; | |
297 { | |
298 E Ta, Tk, T44, T46; | |
299 Ta = FNMS(T6, T9, T5); | |
300 T5g = T2P + T2X; | |
301 T2Y = T2P - T2X; | |
302 T4E = T3O - T3M; | |
303 T3P = T3M + T3O; | |
304 Tk = FMA(Tg, Tj, Tf); | |
305 T44 = FMA(Tr, TA, T43); | |
306 T46 = FMA(TH, TQ, T45); | |
307 TB = FNMS(Tx, TA, Tv); | |
308 T5j = Tk + Ta; | |
309 Tl = Ta - Tk; | |
310 T5i = T44 + T46; | |
311 T47 = T44 - T46; | |
312 TR = FNMS(TN, TQ, TL); | |
313 T3h = FNMS(Tg, Te, T3g); | |
314 T3j = FMA(T1, T9, T3i); | |
315 } | |
316 { | |
317 E T3l, T48, T3k, TS; | |
318 T5R = T5i - T5j; | |
319 T5k = T5i + T5j; | |
320 T3l = TB + TR; | |
321 TS = TB - TR; | |
322 T48 = T3h + T3j; | |
323 T3k = T3h - T3j; | |
324 T39 = TS + Tl; | |
325 TT = Tl - TS; | |
326 T3T = T3l + T3k; | |
327 T3m = T3k - T3l; | |
328 T49 = T47 + T48; | |
329 T4X = T47 - T48; | |
330 } | |
331 } | |
332 { | |
333 E T28, T5q, T20, T5p, T4m, T2g, T3w, T3y; | |
334 { | |
335 E T1P, T1Z, T4j, T4l; | |
336 T1P = FNMS(Tq, T1O, T1L); | |
337 T1Z = FMA(T1V, T1Y, T1U); | |
338 T4j = FMA(T22, T27, T4i); | |
339 T4l = FMA(T2a, T2f, T4k); | |
340 T28 = FNMS(T26, T27, T24); | |
341 T5q = T1Z + T1P; | |
342 T20 = T1P - T1Z; | |
343 T5p = T4j + T4l; | |
344 T4m = T4j - T4l; | |
345 T2g = FNMS(T2e, T2f, T2c); | |
346 T3w = FNMS(T1V, T1T, T3v); | |
347 T3y = FMA(Tn, T1O, T3x); | |
348 } | |
349 { | |
350 E T3A, T4n, T3z, T2h; | |
351 T5T = T5p - T5q; | |
352 T5r = T5p + T5q; | |
353 T3A = T28 + T2g; | |
354 T2h = T28 - T2g; | |
355 T4n = T3w + T3y; | |
356 T3z = T3w - T3y; | |
357 T3c = T2h + T20; | |
358 T2i = T20 - T2h; | |
359 T3W = T3A + T3z; | |
360 T3B = T3z - T3A; | |
361 T4o = T4m + T4n; | |
362 T4U = T4m - T4n; | |
363 } | |
364 } | |
365 { | |
366 E T2D, T5s, T2x, T5t, T4u, T2H, T3D, T3F; | |
367 { | |
368 E T2o, T2w, T4r, T4t; | |
369 T2o = FNMS(T2m, T2n, T2l); | |
370 T2w = FMA(T2u, T2v, T2s); | |
371 T4r = FMA(T2y, T2C, T4q); | |
372 T4t = FMA(TU, T2G, T4s); | |
373 T2D = FNMS(T2B, T2C, T2A); | |
374 T5s = T2w + T2o; | |
375 T2x = T2o - T2w; | |
376 T5t = T4r + T4t; | |
377 T4u = T4r - T4t; | |
378 T2H = FNMS(TW, T2G, T2F); | |
379 T3D = FNMS(T2q, T2v, T3C); | |
380 T3F = FMA(T2m, T2k, T3E); | |
381 } | |
382 { | |
383 E T3H, T4p, T3G, T2I; | |
384 T5U = T5t - T5s; | |
385 T5u = T5s + T5t; | |
386 T3H = T2D + T2H; | |
387 T2I = T2D - T2H; | |
388 T4p = T3D + T3F; | |
389 T3G = T3D - T3F; | |
390 T3d = T2x + T2I; | |
391 T2J = T2x - T2I; | |
392 T3X = T3G + T3H; | |
393 T3I = T3G - T3H; | |
394 T4v = T4p + T4u; | |
395 T4V = T4u - T4p; | |
396 } | |
397 } | |
398 { | |
399 E T1s, T5m, T1g, T5l, T4e, T1E, T3o, T3q; | |
400 { | |
401 E T17, T1f, T4b, T4d; | |
402 T17 = FNMS(T13, T16, T11); | |
403 T1f = FMA(Tm, T1e, T1b); | |
404 T4b = FMA(T1o, T1l, T4a); | |
405 T4d = FMA(T1A, T1x, T4c); | |
406 T1s = FNMS(T1o, T1r, T1m); | |
407 T5m = T17 + T1f; | |
408 T1g = T17 - T1f; | |
409 T5l = T4b + T4d; | |
410 T4e = T4b - T4d; | |
411 T1E = FNMS(T1A, T1D, T1y); | |
412 T3o = FNMS(Tp, T1e, T3n); | |
413 T3q = FMA(T13, T10, T3p); | |
414 } | |
415 { | |
416 E T3s, T4f, T3r, T1F; | |
417 T5Q = T5l - T5m; | |
418 T5n = T5l + T5m; | |
419 T3s = T1s + T1E; | |
420 T1F = T1s - T1E; | |
421 T4f = T3q + T3o; | |
422 T3r = T3o - T3q; | |
423 T3a = T1F + T1g; | |
424 T1G = T1g - T1F; | |
425 T3U = T3s + T3r; | |
426 T3t = T3r - T3s; | |
427 T4g = T4e + T4f; | |
428 T4Y = T4e - T4f; | |
429 } | |
430 } | |
431 } | |
432 } | |
433 { | |
434 E T4F, T4G, T4H, T4x, T4z, T41, T4O, T4Q, T40; | |
435 { | |
436 E T55, T38, T54, T50, T52, T53, T5e, T5c, T51, T4T; | |
437 { | |
438 E T4W, T37, T4Z, T1H, T5b, T5a, T2K, T2L, T4S, T4R; | |
439 T55 = T4U + T4V; | |
440 T4W = T4U - T4V; | |
441 T37 = T2Y + T36; | |
442 T38 = T36 - T2Y; | |
443 T54 = T4X + T4Y; | |
444 T4Z = T4X - T4Y; | |
445 T1H = TT + T1G; | |
446 T5b = T1G - TT; | |
447 T5a = T2J - T2i; | |
448 T2K = T2i + T2J; | |
449 T50 = FNMS(KP618033988, T4Z, T4W); | |
450 T52 = FMA(KP618033988, T4W, T4Z); | |
451 T2L = T1H + T2K; | |
452 T4S = T1H - T2K; | |
453 T53 = T4D - T4E; | |
454 T4F = T4D + T4E; | |
455 Im[WS(rs, 4)] = KP500000000 * (T2L - T37); | |
456 T4R = FMA(KP250000000, T2L, T37); | |
457 T5e = FMA(KP618033988, T5a, T5b); | |
458 T5c = FNMS(KP618033988, T5b, T5a); | |
459 T51 = FNMS(KP559016994, T4S, T4R); | |
460 T4T = FMA(KP559016994, T4S, T4R); | |
461 } | |
462 { | |
463 E T3b, T4M, T4N, T3e, T3f; | |
464 { | |
465 E T4h, T58, T57, T4w, T56, T5d, T59; | |
466 T4G = T49 + T4g; | |
467 T4h = T49 - T4g; | |
468 T58 = T54 - T55; | |
469 T56 = T54 + T55; | |
470 Ip[WS(rs, 7)] = KP500000000 * (FMA(KP951056516, T50, T4T)); | |
471 Ip[WS(rs, 3)] = KP500000000 * (FNMS(KP951056516, T50, T4T)); | |
472 Im[WS(rs, 8)] = -(KP500000000 * (FNMS(KP951056516, T52, T51))); | |
473 Im[0] = -(KP500000000 * (FMA(KP951056516, T52, T51))); | |
474 Rm[WS(rs, 4)] = KP500000000 * (T53 + T56); | |
475 T57 = FNMS(KP250000000, T56, T53); | |
476 T4w = T4o - T4v; | |
477 T4H = T4o + T4v; | |
478 T3b = T39 + T3a; | |
479 T4M = T39 - T3a; | |
480 T5d = FMA(KP559016994, T58, T57); | |
481 T59 = FNMS(KP559016994, T58, T57); | |
482 T4x = FMA(KP618033988, T4w, T4h); | |
483 T4z = FNMS(KP618033988, T4h, T4w); | |
484 Rp[WS(rs, 7)] = KP500000000 * (FNMS(KP951056516, T5c, T59)); | |
485 Rp[WS(rs, 3)] = KP500000000 * (FMA(KP951056516, T5c, T59)); | |
486 Rm[0] = KP500000000 * (FNMS(KP951056516, T5e, T5d)); | |
487 Rm[WS(rs, 8)] = KP500000000 * (FMA(KP951056516, T5e, T5d)); | |
488 T4N = T3c - T3d; | |
489 T3e = T3c + T3d; | |
490 } | |
491 T3f = T3b + T3e; | |
492 T41 = T3b - T3e; | |
493 T4O = FMA(KP618033988, T4N, T4M); | |
494 T4Q = FNMS(KP618033988, T4M, T4N); | |
495 Ip[WS(rs, 5)] = KP500000000 * (T38 + T3f); | |
496 T40 = FNMS(KP250000000, T3f, T38); | |
497 } | |
498 } | |
499 { | |
500 E T3S, T5Z, T68, T6a, T64, T62; | |
501 { | |
502 E T60, T61, T5Y, T5W, T3R, T67, T66, T3K, T5O, T4K, T4J, T5N, T5X, T5P; | |
503 { | |
504 E T5S, T5V, T4y, T42, T4I; | |
505 T60 = T5R + T5Q; | |
506 T5S = T5Q - T5R; | |
507 T5V = T5T - T5U; | |
508 T61 = T5T + T5U; | |
509 T4y = FNMS(KP559016994, T41, T40); | |
510 T42 = FMA(KP559016994, T41, T40); | |
511 T4I = T4G + T4H; | |
512 T4K = T4G - T4H; | |
513 Ip[WS(rs, 9)] = KP500000000 * (FMA(KP951056516, T4x, T42)); | |
514 Ip[WS(rs, 1)] = KP500000000 * (FNMS(KP951056516, T4x, T42)); | |
515 Im[WS(rs, 6)] = -(KP500000000 * (FNMS(KP951056516, T4z, T4y))); | |
516 Im[WS(rs, 2)] = -(KP500000000 * (FMA(KP951056516, T4z, T4y))); | |
517 Rp[WS(rs, 5)] = KP500000000 * (T4F + T4I); | |
518 T4J = FNMS(KP250000000, T4I, T4F); | |
519 T5Y = FMA(KP618033988, T5S, T5V); | |
520 T5W = FNMS(KP618033988, T5V, T5S); | |
521 } | |
522 T3S = T3Q - T3P; | |
523 T3R = T3P + T3Q; | |
524 { | |
525 E T4L, T4P, T3u, T3J; | |
526 T4L = FMA(KP559016994, T4K, T4J); | |
527 T4P = FNMS(KP559016994, T4K, T4J); | |
528 T3u = T3m + T3t; | |
529 T67 = T3t - T3m; | |
530 T66 = T3I - T3B; | |
531 T3J = T3B + T3I; | |
532 Rp[WS(rs, 9)] = KP500000000 * (FNMS(KP951056516, T4O, T4L)); | |
533 Rp[WS(rs, 1)] = KP500000000 * (FMA(KP951056516, T4O, T4L)); | |
534 Rm[WS(rs, 2)] = KP500000000 * (FNMS(KP951056516, T4Q, T4P)); | |
535 Rm[WS(rs, 6)] = KP500000000 * (FMA(KP951056516, T4Q, T4P)); | |
536 T3K = T3u + T3J; | |
537 T5O = T3J - T3u; | |
538 } | |
539 Im[WS(rs, 9)] = KP500000000 * (T3K - T3R); | |
540 T5N = FMA(KP250000000, T3K, T3R); | |
541 T5Z = T5f - T5g; | |
542 T5h = T5f + T5g; | |
543 T68 = FNMS(KP618033988, T67, T66); | |
544 T6a = FMA(KP618033988, T66, T67); | |
545 T5X = FNMS(KP559016994, T5O, T5N); | |
546 T5P = FMA(KP559016994, T5O, T5N); | |
547 Im[WS(rs, 5)] = -(KP500000000 * (FNMS(KP951056516, T5W, T5P))); | |
548 Ip[WS(rs, 6)] = KP500000000 * (FMA(KP951056516, T5W, T5P)); | |
549 Im[WS(rs, 1)] = -(KP500000000 * (FNMS(KP951056516, T5Y, T5X))); | |
550 Ip[WS(rs, 2)] = KP500000000 * (FMA(KP951056516, T5Y, T5X)); | |
551 T64 = T60 - T61; | |
552 T62 = T60 + T61; | |
553 } | |
554 { | |
555 E T5o, T5v, T5M, T5K, T5A, T5B, T3Z, T5G, T5I, T5J, T63, T5F, T5L, T5H; | |
556 T5o = T5k + T5n; | |
557 T5I = T5k - T5n; | |
558 T5J = T5u - T5r; | |
559 T5v = T5r + T5u; | |
560 Rm[WS(rs, 9)] = KP500000000 * (T5Z + T62); | |
561 T63 = FNMS(KP250000000, T62, T5Z); | |
562 T5M = FMA(KP618033988, T5I, T5J); | |
563 T5K = FNMS(KP618033988, T5J, T5I); | |
564 { | |
565 E T65, T69, T3V, T3Y; | |
566 T65 = FNMS(KP559016994, T64, T63); | |
567 T69 = FMA(KP559016994, T64, T63); | |
568 T3V = T3T + T3U; | |
569 T5A = T3T - T3U; | |
570 T5B = T3W - T3X; | |
571 T3Y = T3W + T3X; | |
572 Rm[WS(rs, 1)] = KP500000000 * (FMA(KP951056516, T68, T65)); | |
573 Rp[WS(rs, 2)] = KP500000000 * (FNMS(KP951056516, T68, T65)); | |
574 Rm[WS(rs, 5)] = KP500000000 * (FNMS(KP951056516, T6a, T69)); | |
575 Rp[WS(rs, 6)] = KP500000000 * (FMA(KP951056516, T6a, T69)); | |
576 T3Z = T3V + T3Y; | |
577 T5G = T3V - T3Y; | |
578 } | |
579 Ip[0] = KP500000000 * (T3S + T3Z); | |
580 T5F = FNMS(KP250000000, T3Z, T3S); | |
581 T5C = FMA(KP618033988, T5B, T5A); | |
582 T5E = FNMS(KP618033988, T5A, T5B); | |
583 T5L = FNMS(KP559016994, T5G, T5F); | |
584 T5H = FMA(KP559016994, T5G, T5F); | |
585 Im[WS(rs, 3)] = -(KP500000000 * (FNMS(KP951056516, T5K, T5H))); | |
586 Ip[WS(rs, 4)] = KP500000000 * (FMA(KP951056516, T5K, T5H)); | |
587 Im[WS(rs, 7)] = -(KP500000000 * (FNMS(KP951056516, T5M, T5L))); | |
588 Ip[WS(rs, 8)] = KP500000000 * (FMA(KP951056516, T5M, T5L)); | |
589 T5y = T5o - T5v; | |
590 T5w = T5o + T5v; | |
591 } | |
592 } | |
593 } | |
594 } | |
595 } | |
596 Rp[0] = KP500000000 * (T5h + T5w); | |
597 T5x = FNMS(KP250000000, T5w, T5h); | |
598 T5D = FNMS(KP559016994, T5y, T5x); | |
599 T5z = FMA(KP559016994, T5y, T5x); | |
600 Rm[WS(rs, 3)] = KP500000000 * (FMA(KP951056516, T5C, T5z)); | |
601 Rp[WS(rs, 4)] = KP500000000 * (FNMS(KP951056516, T5C, T5z)); | |
602 Rm[WS(rs, 7)] = KP500000000 * (FNMS(KP951056516, T5E, T5D)); | |
603 Rp[WS(rs, 8)] = KP500000000 * (FMA(KP951056516, T5E, T5D)); | |
604 } | |
605 } | |
606 } | |
607 | |
608 static const tw_instr twinstr[] = { | |
609 {TW_CEXP, 1, 1}, | |
610 {TW_CEXP, 1, 3}, | |
611 {TW_CEXP, 1, 9}, | |
612 {TW_CEXP, 1, 19}, | |
613 {TW_NEXT, 1, 0} | |
614 }; | |
615 | |
616 static const hc2c_desc desc = { 20, "hc2cfdft2_20", twinstr, &GENUS, {176, 98, 140, 0} }; | |
617 | |
618 void X(codelet_hc2cfdft2_20) (planner *p) { | |
619 X(khc2c_register) (p, hc2cfdft2_20, &desc, HC2C_VIA_DFT); | |
620 } | |
621 #else /* HAVE_FMA */ | |
622 | |
623 /* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 20 -dit -name hc2cfdft2_20 -include hc2cf.h */ | |
624 | |
625 /* | |
626 * This function contains 316 FP additions, 180 FP multiplications, | |
627 * (or, 244 additions, 108 multiplications, 72 fused multiply/add), | |
628 * 134 stack variables, 5 constants, and 80 memory accesses | |
629 */ | |
630 #include "hc2cf.h" | |
631 | |
632 static void hc2cfdft2_20(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) | |
633 { | |
634 DK(KP125000000, +0.125000000000000000000000000000000000000000000); | |
635 DK(KP500000000, +0.500000000000000000000000000000000000000000000); | |
636 DK(KP279508497, +0.279508497187473712051146708591409529430077295); | |
637 DK(KP293892626, +0.293892626146236564584352977319536384298826219); | |
638 DK(KP475528258, +0.475528258147576786058219666689691071702849317); | |
639 { | |
640 INT m; | |
641 for (m = mb, W = W + ((mb - 1) * 8); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 8, MAKE_VOLATILE_STRIDE(80, rs)) { | |
642 E T4, T7, Tm, To, Tq, Tu, T1I, T1G, T8, T5, Ta, T1u, T2u, Tg, T2s; | |
643 E T21, T1A, T1Z, T1O, T2I, T1K, T2G, Tw, TC, T2a, T2e, TH, TI, TJ, TX; | |
644 E T2D, TN, T2B, T26, T1n, TZ, T24, T1j; | |
645 { | |
646 E T9, T1y, Te, T1t, T6, T1z, Tf, T1s; | |
647 { | |
648 E Tn, Tt, Tp, Ts; | |
649 T4 = W[0]; | |
650 T7 = W[1]; | |
651 Tm = W[2]; | |
652 To = W[3]; | |
653 Tn = T4 * Tm; | |
654 Tt = T7 * Tm; | |
655 Tp = T7 * To; | |
656 Ts = T4 * To; | |
657 Tq = Tn - Tp; | |
658 Tu = Ts + Tt; | |
659 T1I = Ts - Tt; | |
660 T1G = Tn + Tp; | |
661 T8 = W[5]; | |
662 T9 = T7 * T8; | |
663 T1y = Tm * T8; | |
664 Te = T4 * T8; | |
665 T1t = To * T8; | |
666 T5 = W[4]; | |
667 T6 = T4 * T5; | |
668 T1z = To * T5; | |
669 Tf = T7 * T5; | |
670 T1s = Tm * T5; | |
671 } | |
672 Ta = T6 - T9; | |
673 T1u = T1s + T1t; | |
674 T2u = T1y + T1z; | |
675 Tg = Te + Tf; | |
676 T2s = T1s - T1t; | |
677 T21 = Te - Tf; | |
678 T1A = T1y - T1z; | |
679 T1Z = T6 + T9; | |
680 { | |
681 E T1M, T1N, T1H, T1J; | |
682 T1M = T1G * T8; | |
683 T1N = T1I * T5; | |
684 T1O = T1M + T1N; | |
685 T2I = T1M - T1N; | |
686 T1H = T1G * T5; | |
687 T1J = T1I * T8; | |
688 T1K = T1H - T1J; | |
689 T2G = T1H + T1J; | |
690 { | |
691 E Tr, Tv, TA, TB; | |
692 Tr = Tq * T5; | |
693 Tv = Tu * T8; | |
694 Tw = Tr + Tv; | |
695 TA = Tq * T8; | |
696 TB = Tu * T5; | |
697 TC = TA - TB; | |
698 T2a = Tr - Tv; | |
699 T2e = TA + TB; | |
700 TH = W[6]; | |
701 TI = W[7]; | |
702 TJ = FMA(Tq, TH, Tu * TI); | |
703 TX = FMA(Tw, TH, TC * TI); | |
704 T2D = FMA(T1G, TH, T1I * TI); | |
705 TN = FNMS(Tu, TH, Tq * TI); | |
706 T2B = FNMS(T1I, TH, T1G * TI); | |
707 T26 = FNMS(T7, TH, T4 * TI); | |
708 T1n = FNMS(To, TH, Tm * TI); | |
709 TZ = FNMS(TC, TH, Tw * TI); | |
710 T24 = FMA(T4, TH, T7 * TI); | |
711 T1j = FMA(Tm, TH, To * TI); | |
712 } | |
713 } | |
714 } | |
715 { | |
716 E Tl, T3n, T1i, T2Q, T47, T50, T4S, T5i, T2M, T2T, T4I, T5f, T4L, T5e, T4P; | |
717 E T5h, T2r, T2S, T1X, T2P, T31, T3u, T36, T3t, T3E, T4l, T3U, T4j, T3h, T3r; | |
718 E T3J, T4m, T3c, T3q, T3P, T4i, TS, T51, T3m, T48; | |
719 { | |
720 E T3, T45, T1V, T3f, Tz, TF, TW, T3A, TM, TQ, T11, T3B, Td, Tj, T1Q; | |
721 E T3e, T19, T3L, T23, T39, T2p, T3S, T2z, T34, T1E, T3G, T2K, T2Y, T1g, T3M; | |
722 E T28, T3a, T2i, T3R, T2w, T33, T1r, T3F, T2F, T2X, T4N, T4O; | |
723 { | |
724 E T1, T2, T1R, T1S, T1T, T1U; | |
725 T1 = Ip[0]; | |
726 T2 = Im[0]; | |
727 T1R = T1 + T2; | |
728 T1S = Rp[0]; | |
729 T1T = Rm[0]; | |
730 T1U = T1S - T1T; | |
731 T3 = T1 - T2; | |
732 T45 = T1S + T1T; | |
733 T1V = FNMS(T7, T1U, T4 * T1R); | |
734 T3f = FMA(T4, T1U, T7 * T1R); | |
735 } | |
736 { | |
737 E Tx, Ty, TU, TD, TE, TV; | |
738 Tx = Ip[WS(rs, 2)]; | |
739 Ty = Im[WS(rs, 2)]; | |
740 TU = Tx - Ty; | |
741 TD = Rp[WS(rs, 2)]; | |
742 TE = Rm[WS(rs, 2)]; | |
743 TV = TD + TE; | |
744 Tz = Tx + Ty; | |
745 TF = TD - TE; | |
746 TW = FNMS(Tu, TV, Tq * TU); | |
747 T3A = FMA(Tu, TU, Tq * TV); | |
748 } | |
749 { | |
750 E TK, TL, TY, TO, TP, T10; | |
751 TK = Ip[WS(rs, 7)]; | |
752 TL = Im[WS(rs, 7)]; | |
753 TY = TK - TL; | |
754 TO = Rp[WS(rs, 7)]; | |
755 TP = Rm[WS(rs, 7)]; | |
756 T10 = TO + TP; | |
757 TM = TK + TL; | |
758 TQ = TO - TP; | |
759 T11 = FNMS(TZ, T10, TX * TY); | |
760 T3B = FMA(TZ, TY, TX * T10); | |
761 } | |
762 { | |
763 E Tb, Tc, T1L, Th, Ti, T1P; | |
764 Tb = Ip[WS(rs, 5)]; | |
765 Tc = Im[WS(rs, 5)]; | |
766 T1L = Tb + Tc; | |
767 Th = Rp[WS(rs, 5)]; | |
768 Ti = Rm[WS(rs, 5)]; | |
769 T1P = Th - Ti; | |
770 Td = Tb - Tc; | |
771 Tj = Th + Ti; | |
772 T1Q = FNMS(T1O, T1P, T1K * T1L); | |
773 T3e = FMA(T1K, T1P, T1O * T1L); | |
774 } | |
775 { | |
776 E T15, T20, T18, T22; | |
777 { | |
778 E T13, T14, T16, T17; | |
779 T13 = Ip[WS(rs, 4)]; | |
780 T14 = Im[WS(rs, 4)]; | |
781 T15 = T13 + T14; | |
782 T20 = T13 - T14; | |
783 T16 = Rp[WS(rs, 4)]; | |
784 T17 = Rm[WS(rs, 4)]; | |
785 T18 = T16 - T17; | |
786 T22 = T16 + T17; | |
787 } | |
788 T19 = FNMS(T8, T18, T5 * T15); | |
789 T3L = FMA(T21, T20, T1Z * T22); | |
790 T23 = FNMS(T21, T22, T1Z * T20); | |
791 T39 = FMA(T8, T15, T5 * T18); | |
792 } | |
793 { | |
794 E T2l, T2x, T2o, T2y; | |
795 { | |
796 E T2j, T2k, T2m, T2n; | |
797 T2j = Ip[WS(rs, 1)]; | |
798 T2k = Im[WS(rs, 1)]; | |
799 T2l = T2j + T2k; | |
800 T2x = T2j - T2k; | |
801 T2m = Rp[WS(rs, 1)]; | |
802 T2n = Rm[WS(rs, 1)]; | |
803 T2o = T2m - T2n; | |
804 T2y = T2m + T2n; | |
805 } | |
806 T2p = FNMS(To, T2o, Tm * T2l); | |
807 T3S = FMA(T1I, T2x, T1G * T2y); | |
808 T2z = FNMS(T1I, T2y, T1G * T2x); | |
809 T34 = FMA(To, T2l, Tm * T2o); | |
810 } | |
811 { | |
812 E T1x, T2H, T1D, T2J; | |
813 { | |
814 E T1v, T1w, T1B, T1C; | |
815 T1v = Ip[WS(rs, 3)]; | |
816 T1w = Im[WS(rs, 3)]; | |
817 T1x = T1v - T1w; | |
818 T2H = T1v + T1w; | |
819 T1B = Rp[WS(rs, 3)]; | |
820 T1C = Rm[WS(rs, 3)]; | |
821 T1D = T1B + T1C; | |
822 T2J = T1B - T1C; | |
823 } | |
824 T1E = FNMS(T1A, T1D, T1u * T1x); | |
825 T3G = FMA(T1u, T1D, T1A * T1x); | |
826 T2K = FNMS(T2I, T2J, T2G * T2H); | |
827 T2Y = FMA(T2G, T2J, T2I * T2H); | |
828 } | |
829 { | |
830 E T1c, T25, T1f, T27; | |
831 { | |
832 E T1a, T1b, T1d, T1e; | |
833 T1a = Ip[WS(rs, 9)]; | |
834 T1b = Im[WS(rs, 9)]; | |
835 T1c = T1a + T1b; | |
836 T25 = T1a - T1b; | |
837 T1d = Rp[WS(rs, 9)]; | |
838 T1e = Rm[WS(rs, 9)]; | |
839 T1f = T1d - T1e; | |
840 T27 = T1d + T1e; | |
841 } | |
842 T1g = FNMS(TI, T1f, TH * T1c); | |
843 T3M = FMA(T26, T25, T24 * T27); | |
844 T28 = FNMS(T26, T27, T24 * T25); | |
845 T3a = FMA(TI, T1c, TH * T1f); | |
846 } | |
847 { | |
848 E T2d, T2t, T2h, T2v; | |
849 { | |
850 E T2b, T2c, T2f, T2g; | |
851 T2b = Ip[WS(rs, 6)]; | |
852 T2c = Im[WS(rs, 6)]; | |
853 T2d = T2b + T2c; | |
854 T2t = T2b - T2c; | |
855 T2f = Rp[WS(rs, 6)]; | |
856 T2g = Rm[WS(rs, 6)]; | |
857 T2h = T2f - T2g; | |
858 T2v = T2f + T2g; | |
859 } | |
860 T2i = FNMS(T2e, T2h, T2a * T2d); | |
861 T3R = FMA(T2u, T2t, T2s * T2v); | |
862 T2w = FNMS(T2u, T2v, T2s * T2t); | |
863 T33 = FMA(T2e, T2d, T2a * T2h); | |
864 } | |
865 { | |
866 E T1m, T2E, T1q, T2C; | |
867 { | |
868 E T1k, T1l, T1o, T1p; | |
869 T1k = Ip[WS(rs, 8)]; | |
870 T1l = Im[WS(rs, 8)]; | |
871 T1m = T1k - T1l; | |
872 T2E = T1k + T1l; | |
873 T1o = Rp[WS(rs, 8)]; | |
874 T1p = Rm[WS(rs, 8)]; | |
875 T1q = T1o + T1p; | |
876 T2C = T1p - T1o; | |
877 } | |
878 T1r = FNMS(T1n, T1q, T1j * T1m); | |
879 T3F = FMA(T1j, T1q, T1n * T1m); | |
880 T2F = FMA(T2B, T2C, T2D * T2E); | |
881 T2X = FNMS(T2B, T2E, T2D * T2C); | |
882 } | |
883 { | |
884 E Tk, T12, T1h, T46; | |
885 Tk = FNMS(Tg, Tj, Ta * Td); | |
886 Tl = T3 - Tk; | |
887 T3n = Tk + T3; | |
888 T12 = TW - T11; | |
889 T1h = T19 - T1g; | |
890 T1i = T12 - T1h; | |
891 T2Q = T12 + T1h; | |
892 T46 = FMA(Ta, Tj, Tg * Td); | |
893 T47 = T45 - T46; | |
894 T50 = T45 + T46; | |
895 { | |
896 E T4Q, T4R, T2A, T2L; | |
897 T4Q = T2F + T2K; | |
898 T4R = T3R + T3S; | |
899 T4S = T4Q + T4R; | |
900 T5i = T4R - T4Q; | |
901 T2A = T2w - T2z; | |
902 T2L = T2F - T2K; | |
903 T2M = T2A - T2L; | |
904 T2T = T2L + T2A; | |
905 } | |
906 } | |
907 { | |
908 E T4G, T4H, T4J, T4K; | |
909 T4G = T3A + T3B; | |
910 T4H = T19 + T1g; | |
911 T4I = T4G + T4H; | |
912 T5f = T4G - T4H; | |
913 T4J = T3F + T3G; | |
914 T4K = T1Q + T1V; | |
915 T4L = T4J + T4K; | |
916 T5e = T4J - T4K; | |
917 } | |
918 T4N = T3L + T3M; | |
919 T4O = T2i + T2p; | |
920 T4P = T4N + T4O; | |
921 T5h = T4N - T4O; | |
922 { | |
923 E T29, T2q, T1F, T1W; | |
924 T29 = T23 - T28; | |
925 T2q = T2i - T2p; | |
926 T2r = T29 - T2q; | |
927 T2S = T29 + T2q; | |
928 T1F = T1r - T1E; | |
929 T1W = T1Q - T1V; | |
930 T1X = T1F + T1W; | |
931 T2P = T1W - T1F; | |
932 } | |
933 { | |
934 E T3C, T3D, T3N, T3O; | |
935 { | |
936 E T2Z, T30, T32, T35; | |
937 T2Z = T2X - T2Y; | |
938 T30 = T2w + T2z; | |
939 T31 = T2Z - T30; | |
940 T3u = T2Z + T30; | |
941 T32 = T23 + T28; | |
942 T35 = T33 + T34; | |
943 T36 = T32 + T35; | |
944 T3t = T32 - T35; | |
945 } | |
946 T3C = T3A - T3B; | |
947 T3D = T3a - T39; | |
948 T3E = T3C + T3D; | |
949 T4l = T3C - T3D; | |
950 { | |
951 E T3Q, T3T, T3d, T3g; | |
952 T3Q = T2X + T2Y; | |
953 T3T = T3R - T3S; | |
954 T3U = T3Q + T3T; | |
955 T4j = T3T - T3Q; | |
956 T3d = T1r + T1E; | |
957 T3g = T3e + T3f; | |
958 T3h = T3d + T3g; | |
959 T3r = T3d - T3g; | |
960 } | |
961 { | |
962 E T3H, T3I, T38, T3b; | |
963 T3H = T3F - T3G; | |
964 T3I = T3e - T3f; | |
965 T3J = T3H + T3I; | |
966 T4m = T3H - T3I; | |
967 T38 = TW + T11; | |
968 T3b = T39 + T3a; | |
969 T3c = T38 + T3b; | |
970 T3q = T38 - T3b; | |
971 } | |
972 T3N = T3L - T3M; | |
973 T3O = T34 - T33; | |
974 T3P = T3N + T3O; | |
975 T4i = T3N - T3O; | |
976 { | |
977 E TG, TR, T3k, T3l; | |
978 TG = FNMS(TC, TF, Tw * Tz); | |
979 TR = FNMS(TN, TQ, TJ * TM); | |
980 TS = TG - TR; | |
981 T51 = TG + TR; | |
982 T3k = FMA(TC, Tz, Tw * TF); | |
983 T3l = FMA(TN, TM, TJ * TQ); | |
984 T3m = T3k + T3l; | |
985 T48 = T3l - T3k; | |
986 } | |
987 } | |
988 } | |
989 { | |
990 E T3W, T3Y, TT, T2O, T3x, T3y, T3X, T3z; | |
991 { | |
992 E T3K, T3V, T1Y, T2N; | |
993 T3K = T3E - T3J; | |
994 T3V = T3P - T3U; | |
995 T3W = FMA(KP475528258, T3K, KP293892626 * T3V); | |
996 T3Y = FNMS(KP293892626, T3K, KP475528258 * T3V); | |
997 TT = Tl - TS; | |
998 T1Y = T1i + T1X; | |
999 T2N = T2r + T2M; | |
1000 T2O = T1Y + T2N; | |
1001 T3x = KP279508497 * (T1Y - T2N); | |
1002 T3y = FNMS(KP125000000, T2O, KP500000000 * TT); | |
1003 } | |
1004 Ip[WS(rs, 5)] = KP500000000 * (TT + T2O); | |
1005 T3X = T3x - T3y; | |
1006 Im[WS(rs, 2)] = T3X - T3Y; | |
1007 Im[WS(rs, 6)] = T3X + T3Y; | |
1008 T3z = T3x + T3y; | |
1009 Ip[WS(rs, 1)] = T3z - T3W; | |
1010 Ip[WS(rs, 9)] = T3z + T3W; | |
1011 } | |
1012 { | |
1013 E T41, T4d, T49, T4a, T44, T4b, T4e, T4c; | |
1014 { | |
1015 E T3Z, T40, T42, T43; | |
1016 T3Z = T1i - T1X; | |
1017 T40 = T2r - T2M; | |
1018 T41 = FMA(KP475528258, T3Z, KP293892626 * T40); | |
1019 T4d = FNMS(KP293892626, T3Z, KP475528258 * T40); | |
1020 T49 = T47 + T48; | |
1021 T42 = T3E + T3J; | |
1022 T43 = T3P + T3U; | |
1023 T4a = T42 + T43; | |
1024 T44 = KP279508497 * (T42 - T43); | |
1025 T4b = FNMS(KP125000000, T4a, KP500000000 * T49); | |
1026 } | |
1027 Rp[WS(rs, 5)] = KP500000000 * (T49 + T4a); | |
1028 T4e = T4b - T44; | |
1029 Rm[WS(rs, 6)] = T4d + T4e; | |
1030 Rm[WS(rs, 2)] = T4e - T4d; | |
1031 T4c = T44 + T4b; | |
1032 Rp[WS(rs, 1)] = T41 + T4c; | |
1033 Rp[WS(rs, 9)] = T4c - T41; | |
1034 } | |
1035 { | |
1036 E T4o, T4q, T2W, T2V, T4f, T4g, T4p, T4h; | |
1037 { | |
1038 E T4k, T4n, T2R, T2U; | |
1039 T4k = T4i - T4j; | |
1040 T4n = T4l - T4m; | |
1041 T4o = FNMS(KP293892626, T4n, KP475528258 * T4k); | |
1042 T4q = FMA(KP475528258, T4n, KP293892626 * T4k); | |
1043 T2W = TS + Tl; | |
1044 T2R = T2P - T2Q; | |
1045 T2U = T2S + T2T; | |
1046 T2V = T2R - T2U; | |
1047 T4f = FMA(KP500000000, T2W, KP125000000 * T2V); | |
1048 T4g = KP279508497 * (T2R + T2U); | |
1049 } | |
1050 Im[WS(rs, 4)] = KP500000000 * (T2V - T2W); | |
1051 T4p = T4g - T4f; | |
1052 Im[0] = T4p - T4q; | |
1053 Im[WS(rs, 8)] = T4p + T4q; | |
1054 T4h = T4f + T4g; | |
1055 Ip[WS(rs, 3)] = T4h - T4o; | |
1056 Ip[WS(rs, 7)] = T4h + T4o; | |
1057 } | |
1058 { | |
1059 E T4t, T4B, T4u, T4x, T4y, T4z, T4C, T4A; | |
1060 { | |
1061 E T4r, T4s, T4v, T4w; | |
1062 T4r = T2S - T2T; | |
1063 T4s = T2Q + T2P; | |
1064 T4t = FNMS(KP293892626, T4s, KP475528258 * T4r); | |
1065 T4B = FMA(KP475528258, T4s, KP293892626 * T4r); | |
1066 T4u = T47 - T48; | |
1067 T4v = T4l + T4m; | |
1068 T4w = T4i + T4j; | |
1069 T4x = T4v + T4w; | |
1070 T4y = FNMS(KP125000000, T4x, KP500000000 * T4u); | |
1071 T4z = KP279508497 * (T4v - T4w); | |
1072 } | |
1073 Rm[WS(rs, 4)] = KP500000000 * (T4u + T4x); | |
1074 T4C = T4z + T4y; | |
1075 Rm[WS(rs, 8)] = T4B + T4C; | |
1076 Rm[0] = T4C - T4B; | |
1077 T4A = T4y - T4z; | |
1078 Rp[WS(rs, 3)] = T4t + T4A; | |
1079 Rp[WS(rs, 7)] = T4A - T4t; | |
1080 } | |
1081 { | |
1082 E T5k, T5m, T3o, T3j, T5b, T5c, T5l, T5d; | |
1083 { | |
1084 E T5g, T5j, T37, T3i; | |
1085 T5g = T5e - T5f; | |
1086 T5j = T5h - T5i; | |
1087 T5k = FNMS(KP293892626, T5j, KP475528258 * T5g); | |
1088 T5m = FMA(KP293892626, T5g, KP475528258 * T5j); | |
1089 T3o = T3m + T3n; | |
1090 T37 = T31 - T36; | |
1091 T3i = T3c + T3h; | |
1092 T3j = T37 - T3i; | |
1093 T5b = FMA(KP500000000, T3o, KP125000000 * T3j); | |
1094 T5c = KP279508497 * (T3i + T37); | |
1095 } | |
1096 Im[WS(rs, 9)] = KP500000000 * (T3j - T3o); | |
1097 T5l = T5b - T5c; | |
1098 Ip[WS(rs, 2)] = T5l + T5m; | |
1099 Im[WS(rs, 1)] = T5m - T5l; | |
1100 T5d = T5b + T5c; | |
1101 Ip[WS(rs, 6)] = T5d + T5k; | |
1102 Im[WS(rs, 5)] = T5k - T5d; | |
1103 } | |
1104 { | |
1105 E T5w, T5x, T5n, T5q, T5r, T5s, T5y, T5t; | |
1106 { | |
1107 E T5u, T5v, T5o, T5p; | |
1108 T5u = T36 + T31; | |
1109 T5v = T3c - T3h; | |
1110 T5w = FNMS(KP293892626, T5v, KP475528258 * T5u); | |
1111 T5x = FMA(KP475528258, T5v, KP293892626 * T5u); | |
1112 T5n = T50 - T51; | |
1113 T5o = T5f + T5e; | |
1114 T5p = T5h + T5i; | |
1115 T5q = T5o + T5p; | |
1116 T5r = FNMS(KP125000000, T5q, KP500000000 * T5n); | |
1117 T5s = KP279508497 * (T5o - T5p); | |
1118 } | |
1119 Rm[WS(rs, 9)] = KP500000000 * (T5n + T5q); | |
1120 T5y = T5s + T5r; | |
1121 Rp[WS(rs, 6)] = T5x + T5y; | |
1122 Rm[WS(rs, 5)] = T5y - T5x; | |
1123 T5t = T5r - T5s; | |
1124 Rp[WS(rs, 2)] = T5t - T5w; | |
1125 Rm[WS(rs, 1)] = T5w + T5t; | |
1126 } | |
1127 { | |
1128 E T4U, T4W, T3p, T3w, T4D, T4E, T4V, T4F; | |
1129 { | |
1130 E T4M, T4T, T3s, T3v; | |
1131 T4M = T4I - T4L; | |
1132 T4T = T4P - T4S; | |
1133 T4U = FNMS(KP475528258, T4T, KP293892626 * T4M); | |
1134 T4W = FMA(KP475528258, T4M, KP293892626 * T4T); | |
1135 T3p = T3n - T3m; | |
1136 T3s = T3q + T3r; | |
1137 T3v = T3t + T3u; | |
1138 T3w = T3s + T3v; | |
1139 T4D = FNMS(KP125000000, T3w, KP500000000 * T3p); | |
1140 T4E = KP279508497 * (T3s - T3v); | |
1141 } | |
1142 Ip[0] = KP500000000 * (T3p + T3w); | |
1143 T4V = T4E + T4D; | |
1144 Ip[WS(rs, 4)] = T4V + T4W; | |
1145 Im[WS(rs, 3)] = T4W - T4V; | |
1146 T4F = T4D - T4E; | |
1147 Ip[WS(rs, 8)] = T4F + T4U; | |
1148 Im[WS(rs, 7)] = T4U - T4F; | |
1149 } | |
1150 { | |
1151 E T58, T59, T52, T53, T4Z, T54, T5a, T55; | |
1152 { | |
1153 E T56, T57, T4X, T4Y; | |
1154 T56 = T3q - T3r; | |
1155 T57 = T3t - T3u; | |
1156 T58 = FMA(KP475528258, T56, KP293892626 * T57); | |
1157 T59 = FNMS(KP293892626, T56, KP475528258 * T57); | |
1158 T52 = T50 + T51; | |
1159 T4X = T4I + T4L; | |
1160 T4Y = T4P + T4S; | |
1161 T53 = T4X + T4Y; | |
1162 T4Z = KP279508497 * (T4X - T4Y); | |
1163 T54 = FNMS(KP125000000, T53, KP500000000 * T52); | |
1164 } | |
1165 Rp[0] = KP500000000 * (T52 + T53); | |
1166 T5a = T54 - T4Z; | |
1167 Rp[WS(rs, 8)] = T59 + T5a; | |
1168 Rm[WS(rs, 7)] = T5a - T59; | |
1169 T55 = T4Z + T54; | |
1170 Rp[WS(rs, 4)] = T55 - T58; | |
1171 Rm[WS(rs, 3)] = T58 + T55; | |
1172 } | |
1173 } | |
1174 } | |
1175 } | |
1176 } | |
1177 | |
1178 static const tw_instr twinstr[] = { | |
1179 {TW_CEXP, 1, 1}, | |
1180 {TW_CEXP, 1, 3}, | |
1181 {TW_CEXP, 1, 9}, | |
1182 {TW_CEXP, 1, 19}, | |
1183 {TW_NEXT, 1, 0} | |
1184 }; | |
1185 | |
1186 static const hc2c_desc desc = { 20, "hc2cfdft2_20", twinstr, &GENUS, {244, 108, 72, 0} }; | |
1187 | |
1188 void X(codelet_hc2cfdft2_20) (planner *p) { | |
1189 X(khc2c_register) (p, hc2cfdft2_20, &desc, HC2C_VIA_DFT); | |
1190 } | |
1191 #endif /* HAVE_FMA */ |