Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.3/rdft/scalar/r2cb/hc2cbdft_8.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
9:c0fb53affa76 | 10:37bf6b4a2645 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-11 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Sun Nov 25 07:42:04 EST 2012 */ | |
23 | |
24 #include "codelet-rdft.h" | |
25 | |
26 #ifdef HAVE_FMA | |
27 | |
28 /* Generated by: ../../../genfft/gen_hc2cdft.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -n 8 -dif -name hc2cbdft_8 -include hc2cb.h */ | |
29 | |
30 /* | |
31 * This function contains 82 FP additions, 36 FP multiplications, | |
32 * (or, 60 additions, 14 multiplications, 22 fused multiply/add), | |
33 * 55 stack variables, 1 constants, and 32 memory accesses | |
34 */ | |
35 #include "hc2cb.h" | |
36 | |
37 static void hc2cbdft_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) | |
38 { | |
39 DK(KP707106781, +0.707106781186547524400844362104849039284835938); | |
40 { | |
41 INT m; | |
42 for (m = mb, W = W + ((mb - 1) * 14); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 14, MAKE_VOLATILE_STRIDE(32, rs)) { | |
43 E T1m, T1r, T1i, T1u, T1o, T1v, T1n, T1w, T1s; | |
44 { | |
45 E T1k, Tl, T1p, TE, TP, T1g, TM, T1b, T1f, T1a, TU, Tf, T1l, TH, Tw; | |
46 E T1q; | |
47 { | |
48 E TA, T3, TN, Tk, Th, T6, TO, TD, Tb, Tm, Ta, TK, Tp, Tc, Ts; | |
49 E Tt; | |
50 { | |
51 E T4, T5, TB, TC; | |
52 { | |
53 E T1, T2, Ti, Tj; | |
54 T1 = Rp[0]; | |
55 T2 = Rm[WS(rs, 3)]; | |
56 Ti = Ip[0]; | |
57 Tj = Im[WS(rs, 3)]; | |
58 T4 = Rp[WS(rs, 2)]; | |
59 TA = T1 - T2; | |
60 T3 = T1 + T2; | |
61 TN = Ti - Tj; | |
62 Tk = Ti + Tj; | |
63 T5 = Rm[WS(rs, 1)]; | |
64 TB = Ip[WS(rs, 2)]; | |
65 TC = Im[WS(rs, 1)]; | |
66 } | |
67 { | |
68 E T8, T9, Tn, To; | |
69 T8 = Rp[WS(rs, 1)]; | |
70 Th = T4 - T5; | |
71 T6 = T4 + T5; | |
72 TO = TB - TC; | |
73 TD = TB + TC; | |
74 T9 = Rm[WS(rs, 2)]; | |
75 Tn = Ip[WS(rs, 1)]; | |
76 To = Im[WS(rs, 2)]; | |
77 Tb = Rm[0]; | |
78 Tm = T8 - T9; | |
79 Ta = T8 + T9; | |
80 TK = Tn - To; | |
81 Tp = Tn + To; | |
82 Tc = Rp[WS(rs, 3)]; | |
83 Ts = Im[0]; | |
84 Tt = Ip[WS(rs, 3)]; | |
85 } | |
86 } | |
87 { | |
88 E Tr, Td, Tu, TL, Te, T7; | |
89 T1k = Tk - Th; | |
90 Tl = Th + Tk; | |
91 Tr = Tb - Tc; | |
92 Td = Tb + Tc; | |
93 TL = Tt - Ts; | |
94 Tu = Ts + Tt; | |
95 T1p = TA + TD; | |
96 TE = TA - TD; | |
97 TP = TN + TO; | |
98 T1g = TN - TO; | |
99 TM = TK + TL; | |
100 T1b = TL - TK; | |
101 T1f = Ta - Td; | |
102 Te = Ta + Td; | |
103 T1a = T3 - T6; | |
104 T7 = T3 + T6; | |
105 { | |
106 E Tq, TF, TG, Tv; | |
107 Tq = Tm + Tp; | |
108 TF = Tm - Tp; | |
109 TG = Tr - Tu; | |
110 Tv = Tr + Tu; | |
111 TU = T7 - Te; | |
112 Tf = T7 + Te; | |
113 T1l = TF - TG; | |
114 TH = TF + TG; | |
115 Tw = Tq - Tv; | |
116 T1q = Tq + Tv; | |
117 } | |
118 } | |
119 } | |
120 { | |
121 E TX, T10, T1c, T13, T1h, T1E, T1H, T1C, T1K, T1G, T1L, T1F; | |
122 { | |
123 E TQ, Tx, T1y, TI, Tg, Tz; | |
124 TX = TP - TM; | |
125 TQ = TM + TP; | |
126 Tx = FMA(KP707106781, Tw, Tl); | |
127 T10 = FNMS(KP707106781, Tw, Tl); | |
128 T1c = T1a + T1b; | |
129 T1y = T1a - T1b; | |
130 T13 = FNMS(KP707106781, TH, TE); | |
131 TI = FMA(KP707106781, TH, TE); | |
132 Tg = W[0]; | |
133 Tz = W[1]; | |
134 { | |
135 E T1B, T1A, T1x, T1J, T1z, T1D; | |
136 { | |
137 E TR, Ty, TS, TJ; | |
138 T1B = T1g - T1f; | |
139 T1h = T1f + T1g; | |
140 T1A = W[11]; | |
141 TR = Tg * TI; | |
142 Ty = Tg * Tx; | |
143 T1x = W[10]; | |
144 T1J = T1A * T1y; | |
145 TS = FNMS(Tz, Tx, TR); | |
146 TJ = FMA(Tz, TI, Ty); | |
147 T1z = T1x * T1y; | |
148 T1m = FMA(KP707106781, T1l, T1k); | |
149 T1E = FNMS(KP707106781, T1l, T1k); | |
150 Im[0] = TS - TQ; | |
151 Ip[0] = TQ + TS; | |
152 Rm[0] = Tf + TJ; | |
153 Rp[0] = Tf - TJ; | |
154 T1H = FMA(KP707106781, T1q, T1p); | |
155 T1r = FNMS(KP707106781, T1q, T1p); | |
156 T1D = W[12]; | |
157 } | |
158 T1C = FNMS(T1A, T1B, T1z); | |
159 T1K = FMA(T1x, T1B, T1J); | |
160 T1G = W[13]; | |
161 T1L = T1D * T1H; | |
162 T1F = T1D * T1E; | |
163 } | |
164 } | |
165 { | |
166 E TY, T16, T12, T17, T11; | |
167 { | |
168 E TW, TT, T15, TV, TZ, T1M, T1I; | |
169 TW = W[7]; | |
170 T1M = FNMS(T1G, T1E, T1L); | |
171 T1I = FMA(T1G, T1H, T1F); | |
172 TT = W[6]; | |
173 T15 = TW * TU; | |
174 Im[WS(rs, 3)] = T1M - T1K; | |
175 Ip[WS(rs, 3)] = T1K + T1M; | |
176 Rm[WS(rs, 3)] = T1C + T1I; | |
177 Rp[WS(rs, 3)] = T1C - T1I; | |
178 TV = TT * TU; | |
179 TZ = W[8]; | |
180 TY = FNMS(TW, TX, TV); | |
181 T16 = FMA(TT, TX, T15); | |
182 T12 = W[9]; | |
183 T17 = TZ * T13; | |
184 T11 = TZ * T10; | |
185 } | |
186 { | |
187 E T1e, T19, T1t, T1d, T1j, T18, T14; | |
188 T1e = W[3]; | |
189 T18 = FNMS(T12, T10, T17); | |
190 T14 = FMA(T12, T13, T11); | |
191 T19 = W[2]; | |
192 T1t = T1e * T1c; | |
193 Im[WS(rs, 2)] = T18 - T16; | |
194 Ip[WS(rs, 2)] = T16 + T18; | |
195 Rm[WS(rs, 2)] = TY + T14; | |
196 Rp[WS(rs, 2)] = TY - T14; | |
197 T1d = T19 * T1c; | |
198 T1j = W[4]; | |
199 T1i = FNMS(T1e, T1h, T1d); | |
200 T1u = FMA(T19, T1h, T1t); | |
201 T1o = W[5]; | |
202 T1v = T1j * T1r; | |
203 T1n = T1j * T1m; | |
204 } | |
205 } | |
206 } | |
207 } | |
208 T1w = FNMS(T1o, T1m, T1v); | |
209 T1s = FMA(T1o, T1r, T1n); | |
210 Im[WS(rs, 1)] = T1w - T1u; | |
211 Ip[WS(rs, 1)] = T1u + T1w; | |
212 Rm[WS(rs, 1)] = T1i + T1s; | |
213 Rp[WS(rs, 1)] = T1i - T1s; | |
214 } | |
215 } | |
216 } | |
217 | |
218 static const tw_instr twinstr[] = { | |
219 {TW_FULL, 1, 8}, | |
220 {TW_NEXT, 1, 0} | |
221 }; | |
222 | |
223 static const hc2c_desc desc = { 8, "hc2cbdft_8", twinstr, &GENUS, {60, 14, 22, 0} }; | |
224 | |
225 void X(codelet_hc2cbdft_8) (planner *p) { | |
226 X(khc2c_register) (p, hc2cbdft_8, &desc, HC2C_VIA_DFT); | |
227 } | |
228 #else /* HAVE_FMA */ | |
229 | |
230 /* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 8 -dif -name hc2cbdft_8 -include hc2cb.h */ | |
231 | |
232 /* | |
233 * This function contains 82 FP additions, 32 FP multiplications, | |
234 * (or, 68 additions, 18 multiplications, 14 fused multiply/add), | |
235 * 30 stack variables, 1 constants, and 32 memory accesses | |
236 */ | |
237 #include "hc2cb.h" | |
238 | |
239 static void hc2cbdft_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) | |
240 { | |
241 DK(KP707106781, +0.707106781186547524400844362104849039284835938); | |
242 { | |
243 INT m; | |
244 for (m = mb, W = W + ((mb - 1) * 14); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 14, MAKE_VOLATILE_STRIDE(32, rs)) { | |
245 E T7, T1d, T1h, Tl, TG, T14, T19, TO, Te, TL, T18, T15, TB, T1e, Tw; | |
246 E T1i; | |
247 { | |
248 E T3, TC, Tk, TM, T6, Th, TF, TN; | |
249 { | |
250 E T1, T2, Ti, Tj; | |
251 T1 = Rp[0]; | |
252 T2 = Rm[WS(rs, 3)]; | |
253 T3 = T1 + T2; | |
254 TC = T1 - T2; | |
255 Ti = Ip[0]; | |
256 Tj = Im[WS(rs, 3)]; | |
257 Tk = Ti + Tj; | |
258 TM = Ti - Tj; | |
259 } | |
260 { | |
261 E T4, T5, TD, TE; | |
262 T4 = Rp[WS(rs, 2)]; | |
263 T5 = Rm[WS(rs, 1)]; | |
264 T6 = T4 + T5; | |
265 Th = T4 - T5; | |
266 TD = Ip[WS(rs, 2)]; | |
267 TE = Im[WS(rs, 1)]; | |
268 TF = TD + TE; | |
269 TN = TD - TE; | |
270 } | |
271 T7 = T3 + T6; | |
272 T1d = Tk - Th; | |
273 T1h = TC + TF; | |
274 Tl = Th + Tk; | |
275 TG = TC - TF; | |
276 T14 = T3 - T6; | |
277 T19 = TM - TN; | |
278 TO = TM + TN; | |
279 } | |
280 { | |
281 E Ta, Tm, Tp, TJ, Td, Tr, Tu, TK; | |
282 { | |
283 E T8, T9, Tn, To; | |
284 T8 = Rp[WS(rs, 1)]; | |
285 T9 = Rm[WS(rs, 2)]; | |
286 Ta = T8 + T9; | |
287 Tm = T8 - T9; | |
288 Tn = Ip[WS(rs, 1)]; | |
289 To = Im[WS(rs, 2)]; | |
290 Tp = Tn + To; | |
291 TJ = Tn - To; | |
292 } | |
293 { | |
294 E Tb, Tc, Ts, Tt; | |
295 Tb = Rm[0]; | |
296 Tc = Rp[WS(rs, 3)]; | |
297 Td = Tb + Tc; | |
298 Tr = Tb - Tc; | |
299 Ts = Im[0]; | |
300 Tt = Ip[WS(rs, 3)]; | |
301 Tu = Ts + Tt; | |
302 TK = Tt - Ts; | |
303 } | |
304 Te = Ta + Td; | |
305 TL = TJ + TK; | |
306 T18 = Ta - Td; | |
307 T15 = TK - TJ; | |
308 { | |
309 E Tz, TA, Tq, Tv; | |
310 Tz = Tm - Tp; | |
311 TA = Tr - Tu; | |
312 TB = KP707106781 * (Tz + TA); | |
313 T1e = KP707106781 * (Tz - TA); | |
314 Tq = Tm + Tp; | |
315 Tv = Tr + Tu; | |
316 Tw = KP707106781 * (Tq - Tv); | |
317 T1i = KP707106781 * (Tq + Tv); | |
318 } | |
319 } | |
320 { | |
321 E Tf, TP, TI, TQ; | |
322 Tf = T7 + Te; | |
323 TP = TL + TO; | |
324 { | |
325 E Tx, TH, Tg, Ty; | |
326 Tx = Tl + Tw; | |
327 TH = TB + TG; | |
328 Tg = W[0]; | |
329 Ty = W[1]; | |
330 TI = FMA(Tg, Tx, Ty * TH); | |
331 TQ = FNMS(Ty, Tx, Tg * TH); | |
332 } | |
333 Rp[0] = Tf - TI; | |
334 Ip[0] = TP + TQ; | |
335 Rm[0] = Tf + TI; | |
336 Im[0] = TQ - TP; | |
337 } | |
338 { | |
339 E T1r, T1x, T1w, T1y; | |
340 { | |
341 E T1o, T1q, T1n, T1p; | |
342 T1o = T14 - T15; | |
343 T1q = T19 - T18; | |
344 T1n = W[10]; | |
345 T1p = W[11]; | |
346 T1r = FNMS(T1p, T1q, T1n * T1o); | |
347 T1x = FMA(T1p, T1o, T1n * T1q); | |
348 } | |
349 { | |
350 E T1t, T1v, T1s, T1u; | |
351 T1t = T1d - T1e; | |
352 T1v = T1i + T1h; | |
353 T1s = W[12]; | |
354 T1u = W[13]; | |
355 T1w = FMA(T1s, T1t, T1u * T1v); | |
356 T1y = FNMS(T1u, T1t, T1s * T1v); | |
357 } | |
358 Rp[WS(rs, 3)] = T1r - T1w; | |
359 Ip[WS(rs, 3)] = T1x + T1y; | |
360 Rm[WS(rs, 3)] = T1r + T1w; | |
361 Im[WS(rs, 3)] = T1y - T1x; | |
362 } | |
363 { | |
364 E TV, T11, T10, T12; | |
365 { | |
366 E TS, TU, TR, TT; | |
367 TS = T7 - Te; | |
368 TU = TO - TL; | |
369 TR = W[6]; | |
370 TT = W[7]; | |
371 TV = FNMS(TT, TU, TR * TS); | |
372 T11 = FMA(TT, TS, TR * TU); | |
373 } | |
374 { | |
375 E TX, TZ, TW, TY; | |
376 TX = Tl - Tw; | |
377 TZ = TG - TB; | |
378 TW = W[8]; | |
379 TY = W[9]; | |
380 T10 = FMA(TW, TX, TY * TZ); | |
381 T12 = FNMS(TY, TX, TW * TZ); | |
382 } | |
383 Rp[WS(rs, 2)] = TV - T10; | |
384 Ip[WS(rs, 2)] = T11 + T12; | |
385 Rm[WS(rs, 2)] = TV + T10; | |
386 Im[WS(rs, 2)] = T12 - T11; | |
387 } | |
388 { | |
389 E T1b, T1l, T1k, T1m; | |
390 { | |
391 E T16, T1a, T13, T17; | |
392 T16 = T14 + T15; | |
393 T1a = T18 + T19; | |
394 T13 = W[2]; | |
395 T17 = W[3]; | |
396 T1b = FNMS(T17, T1a, T13 * T16); | |
397 T1l = FMA(T17, T16, T13 * T1a); | |
398 } | |
399 { | |
400 E T1f, T1j, T1c, T1g; | |
401 T1f = T1d + T1e; | |
402 T1j = T1h - T1i; | |
403 T1c = W[4]; | |
404 T1g = W[5]; | |
405 T1k = FMA(T1c, T1f, T1g * T1j); | |
406 T1m = FNMS(T1g, T1f, T1c * T1j); | |
407 } | |
408 Rp[WS(rs, 1)] = T1b - T1k; | |
409 Ip[WS(rs, 1)] = T1l + T1m; | |
410 Rm[WS(rs, 1)] = T1b + T1k; | |
411 Im[WS(rs, 1)] = T1m - T1l; | |
412 } | |
413 } | |
414 } | |
415 } | |
416 | |
417 static const tw_instr twinstr[] = { | |
418 {TW_FULL, 1, 8}, | |
419 {TW_NEXT, 1, 0} | |
420 }; | |
421 | |
422 static const hc2c_desc desc = { 8, "hc2cbdft_8", twinstr, &GENUS, {68, 18, 14, 0} }; | |
423 | |
424 void X(codelet_hc2cbdft_8) (planner *p) { | |
425 X(khc2c_register) (p, hc2cbdft_8, &desc, HC2C_VIA_DFT); | |
426 } | |
427 #endif /* HAVE_FMA */ |