Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.3/rdft/scalar/r2cb/hc2cbdft_20.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
9:c0fb53affa76 | 10:37bf6b4a2645 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-11 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Sun Nov 25 07:42:07 EST 2012 */ | |
23 | |
24 #include "codelet-rdft.h" | |
25 | |
26 #ifdef HAVE_FMA | |
27 | |
28 /* Generated by: ../../../genfft/gen_hc2cdft.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -n 20 -dif -name hc2cbdft_20 -include hc2cb.h */ | |
29 | |
30 /* | |
31 * This function contains 286 FP additions, 148 FP multiplications, | |
32 * (or, 176 additions, 38 multiplications, 110 fused multiply/add), | |
33 * 122 stack variables, 4 constants, and 80 memory accesses | |
34 */ | |
35 #include "hc2cb.h" | |
36 | |
37 static void hc2cbdft_20(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) | |
38 { | |
39 DK(KP951056516, +0.951056516295153572116439333379382143405698634); | |
40 DK(KP559016994, +0.559016994374947424102293417182819058860154590); | |
41 DK(KP250000000, +0.250000000000000000000000000000000000000000000); | |
42 DK(KP618033988, +0.618033988749894848204586834365638117720309180); | |
43 { | |
44 INT m; | |
45 for (m = mb, W = W + ((mb - 1) * 38); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 38, MAKE_VOLATILE_STRIDE(80, rs)) { | |
46 E T5s, T5v, T5t, T5z, T5q, T5y, T5u, T5A, T5w; | |
47 { | |
48 E T3T, T27, T2o, T41, T2p, T40, TU, T15, T2Q, T1N, T2L, T1w, T59, T4n, T5e; | |
49 E T4A, T2m, T24, T2Z, T2h, T4J, T3P, T3Y, T3W, T2d, TJ, T3H, T2c, TD, T52; | |
50 E T3G, T1E, T4f, T5I, T4e, T4w, T5L, T4v, T1J, T1H; | |
51 { | |
52 E T1A, T3, T25, TI, TF, T6, T26, T1D, TO, T47, T3z, Te, T1S, T3M, T1e; | |
53 E T4k, TZ, T4a, T3C, Tt, T1Z, T3J, T1p, T4h, T14, T4b, T3D, TA, T22, T3K; | |
54 E T1u, T4i, Ti, T1f, Th, T1T, TS, Tj, T1g, T1h; | |
55 { | |
56 E T4, T5, T1B, T1C; | |
57 { | |
58 E T1, T2, TG, TH; | |
59 T1 = Rp[0]; | |
60 T2 = Rm[WS(rs, 9)]; | |
61 TG = Ip[0]; | |
62 TH = Im[WS(rs, 9)]; | |
63 T4 = Rp[WS(rs, 5)]; | |
64 T1A = T1 - T2; | |
65 T3 = T1 + T2; | |
66 T25 = TG - TH; | |
67 TI = TG + TH; | |
68 T5 = Rm[WS(rs, 4)]; | |
69 T1B = Ip[WS(rs, 5)]; | |
70 T1C = Im[WS(rs, 4)]; | |
71 } | |
72 { | |
73 E Tq, T1l, Tp, T1X, TY, Tr, T1m, T1n; | |
74 { | |
75 E Tb, T1a, Ta, T1Q, TN, Tc, T1b, T1c; | |
76 { | |
77 E T8, T9, TL, TM; | |
78 T8 = Rp[WS(rs, 4)]; | |
79 TF = T4 - T5; | |
80 T6 = T4 + T5; | |
81 T26 = T1B - T1C; | |
82 T1D = T1B + T1C; | |
83 T9 = Rm[WS(rs, 5)]; | |
84 TL = Ip[WS(rs, 4)]; | |
85 TM = Im[WS(rs, 5)]; | |
86 Tb = Rp[WS(rs, 9)]; | |
87 T1a = T8 - T9; | |
88 Ta = T8 + T9; | |
89 T1Q = TL - TM; | |
90 TN = TL + TM; | |
91 Tc = Rm[0]; | |
92 T1b = Ip[WS(rs, 9)]; | |
93 T1c = Im[0]; | |
94 } | |
95 { | |
96 E Tn, To, TW, TX; | |
97 Tn = Rp[WS(rs, 8)]; | |
98 { | |
99 E TK, Td, T1R, T1d; | |
100 TK = Tb - Tc; | |
101 Td = Tb + Tc; | |
102 T1R = T1b - T1c; | |
103 T1d = T1b + T1c; | |
104 TO = TK + TN; | |
105 T47 = TN - TK; | |
106 T3z = Ta - Td; | |
107 Te = Ta + Td; | |
108 T1S = T1Q + T1R; | |
109 T3M = T1Q - T1R; | |
110 T1e = T1a - T1d; | |
111 T4k = T1a + T1d; | |
112 To = Rm[WS(rs, 1)]; | |
113 } | |
114 TW = Ip[WS(rs, 8)]; | |
115 TX = Im[WS(rs, 1)]; | |
116 Tq = Rm[WS(rs, 6)]; | |
117 T1l = Tn - To; | |
118 Tp = Tn + To; | |
119 T1X = TW - TX; | |
120 TY = TW + TX; | |
121 Tr = Rp[WS(rs, 3)]; | |
122 T1m = Im[WS(rs, 6)]; | |
123 T1n = Ip[WS(rs, 3)]; | |
124 } | |
125 } | |
126 { | |
127 E Tx, T1q, Tw, T20, T13, Ty, T1r, T1s; | |
128 { | |
129 E Tu, Tv, T11, T12; | |
130 Tu = Rm[WS(rs, 7)]; | |
131 { | |
132 E TV, Ts, T1Y, T1o; | |
133 TV = Tq - Tr; | |
134 Ts = Tq + Tr; | |
135 T1Y = T1n - T1m; | |
136 T1o = T1m + T1n; | |
137 TZ = TV + TY; | |
138 T4a = TY - TV; | |
139 T3C = Tp - Ts; | |
140 Tt = Tp + Ts; | |
141 T1Z = T1X + T1Y; | |
142 T3J = T1X - T1Y; | |
143 T1p = T1l + T1o; | |
144 T4h = T1l - T1o; | |
145 Tv = Rp[WS(rs, 2)]; | |
146 } | |
147 T11 = Im[WS(rs, 7)]; | |
148 T12 = Ip[WS(rs, 2)]; | |
149 Tx = Rm[WS(rs, 2)]; | |
150 T1q = Tu - Tv; | |
151 Tw = Tu + Tv; | |
152 T20 = T12 - T11; | |
153 T13 = T11 + T12; | |
154 Ty = Rp[WS(rs, 7)]; | |
155 T1r = Im[WS(rs, 2)]; | |
156 T1s = Ip[WS(rs, 7)]; | |
157 } | |
158 { | |
159 E Tf, Tg, TQ, TR; | |
160 Tf = Rm[WS(rs, 3)]; | |
161 { | |
162 E T10, Tz, T21, T1t; | |
163 T10 = Tx - Ty; | |
164 Tz = Tx + Ty; | |
165 T21 = T1s - T1r; | |
166 T1t = T1r + T1s; | |
167 T14 = T10 - T13; | |
168 T4b = T10 + T13; | |
169 T3D = Tw - Tz; | |
170 TA = Tw + Tz; | |
171 T22 = T20 + T21; | |
172 T3K = T20 - T21; | |
173 T1u = T1q + T1t; | |
174 T4i = T1q - T1t; | |
175 Tg = Rp[WS(rs, 6)]; | |
176 } | |
177 TQ = Im[WS(rs, 3)]; | |
178 TR = Ip[WS(rs, 6)]; | |
179 Ti = Rp[WS(rs, 1)]; | |
180 T1f = Tf - Tg; | |
181 Th = Tf + Tg; | |
182 T1T = TR - TQ; | |
183 TS = TQ + TR; | |
184 Tj = Rm[WS(rs, 8)]; | |
185 T1g = Ip[WS(rs, 1)]; | |
186 T1h = Im[WS(rs, 8)]; | |
187 } | |
188 } | |
189 } | |
190 } | |
191 { | |
192 E T1V, T3N, TB, T3B, Tm, T3E, T1F, T1G, T4t, T4j, T4m, T4s, T4c, T4y, T4z; | |
193 E T49, T3y, T7; | |
194 { | |
195 E TT, T48, T1j, T4l, T3A, Tl; | |
196 T3T = T25 - T26; | |
197 T27 = T25 + T26; | |
198 { | |
199 E TP, Tk, T1U, T1i; | |
200 TP = Ti - Tj; | |
201 Tk = Ti + Tj; | |
202 T1U = T1g - T1h; | |
203 T1i = T1g + T1h; | |
204 TT = TP - TS; | |
205 T48 = TP + TS; | |
206 T3A = Th - Tk; | |
207 Tl = Th + Tk; | |
208 T1V = T1T + T1U; | |
209 T3N = T1T - T1U; | |
210 T1j = T1f - T1i; | |
211 T4l = T1f + T1i; | |
212 T2o = Tt - TA; | |
213 TB = Tt + TA; | |
214 } | |
215 T41 = T3z - T3A; | |
216 T3B = T3z + T3A; | |
217 Tm = Te + Tl; | |
218 T2p = Te - Tl; | |
219 { | |
220 E T1L, T1M, T1k, T1v; | |
221 T40 = T3C - T3D; | |
222 T3E = T3C + T3D; | |
223 TU = TO + TT; | |
224 T1L = TO - TT; | |
225 T1M = TZ - T14; | |
226 T15 = TZ + T14; | |
227 T1F = T1e + T1j; | |
228 T1k = T1e - T1j; | |
229 T1v = T1p - T1u; | |
230 T1G = T1p + T1u; | |
231 T4t = T4h + T4i; | |
232 T4j = T4h - T4i; | |
233 T2Q = FNMS(KP618033988, T1L, T1M); | |
234 T1N = FMA(KP618033988, T1M, T1L); | |
235 T2L = FNMS(KP618033988, T1k, T1v); | |
236 T1w = FMA(KP618033988, T1v, T1k); | |
237 T4m = T4k - T4l; | |
238 T4s = T4k + T4l; | |
239 T4c = T4a - T4b; | |
240 T4y = T4a + T4b; | |
241 T4z = T47 + T48; | |
242 T49 = T47 - T48; | |
243 } | |
244 } | |
245 { | |
246 E T2g, T1W, T23, T2f; | |
247 T2g = T1S - T1V; | |
248 T1W = T1S + T1V; | |
249 T59 = FMA(KP618033988, T4j, T4m); | |
250 T4n = FNMS(KP618033988, T4m, T4j); | |
251 T5e = FMA(KP618033988, T4y, T4z); | |
252 T4A = FNMS(KP618033988, T4z, T4y); | |
253 T23 = T1Z + T22; | |
254 T2f = T1Z - T22; | |
255 { | |
256 E T3V, T3L, T3O, T3U; | |
257 T3V = T3J + T3K; | |
258 T3L = T3J - T3K; | |
259 T2m = T1W - T23; | |
260 T24 = T1W + T23; | |
261 T2Z = FMA(KP618033988, T2f, T2g); | |
262 T2h = FNMS(KP618033988, T2g, T2f); | |
263 T3O = T3M - T3N; | |
264 T3U = T3M + T3N; | |
265 T3y = T3 - T6; | |
266 T7 = T3 + T6; | |
267 T4J = FMA(KP618033988, T3L, T3O); | |
268 T3P = FNMS(KP618033988, T3O, T3L); | |
269 T3Y = T3U - T3V; | |
270 T3W = T3U + T3V; | |
271 } | |
272 } | |
273 { | |
274 E T46, TC, T3F, T4r, T4d, T4u; | |
275 TC = Tm + TB; | |
276 T2d = Tm - TB; | |
277 TJ = TF + TI; | |
278 T46 = TI - TF; | |
279 T3H = T3B - T3E; | |
280 T3F = T3B + T3E; | |
281 T2c = FNMS(KP250000000, TC, T7); | |
282 TD = T7 + TC; | |
283 T52 = T3y + T3F; | |
284 T3G = FNMS(KP250000000, T3F, T3y); | |
285 T4r = T1A + T1D; | |
286 T1E = T1A - T1D; | |
287 T4f = T49 - T4c; | |
288 T4d = T49 + T4c; | |
289 T5I = T46 + T4d; | |
290 T4e = FNMS(KP250000000, T4d, T46); | |
291 T4w = T4s - T4t; | |
292 T4u = T4s + T4t; | |
293 T5L = T4u + T4r; | |
294 T4v = FNMS(KP250000000, T4u, T4r); | |
295 T1J = T1F - T1G; | |
296 T1H = T1F + T1G; | |
297 } | |
298 } | |
299 } | |
300 { | |
301 E T38, T3b, T39, T3f, T36, T3e, T3a; | |
302 { | |
303 E T28, T3r, T3o, T3v, T3p, T2b, T2k, T35, T3l, T2H, T2r, T2j, T2z, T2D, T2G; | |
304 E T2X, T2F, T2T, T32, T3h, T3k, T31, T3d, T3j, T3t, T1x, T2u, T1O, T2x, T2v; | |
305 E T1y, T2B, T29, T2J, T2M, T2R, T2N, T2V; | |
306 { | |
307 E T2l, T1I, T18, T2q, T34, T17, T16, T3n; | |
308 T28 = T24 + T27; | |
309 T2l = FNMS(KP250000000, T24, T27); | |
310 T3r = T1H + T1E; | |
311 T1I = FNMS(KP250000000, T1H, T1E); | |
312 T18 = TU - T15; | |
313 T16 = TU + T15; | |
314 T3n = W[8]; | |
315 T2q = FNMS(KP618033988, T2p, T2o); | |
316 T34 = FMA(KP618033988, T2o, T2p); | |
317 T17 = FNMS(KP250000000, T16, TJ); | |
318 T3o = TJ + T16; | |
319 T3v = T3n * T3r; | |
320 T3p = T3n * T3o; | |
321 { | |
322 E T2Y, T2E, T3i, T30; | |
323 { | |
324 E T2e, T33, T2n, T2i; | |
325 T2Y = FMA(KP559016994, T2d, T2c); | |
326 T2e = FNMS(KP559016994, T2d, T2c); | |
327 T2b = W[14]; | |
328 T2k = W[15]; | |
329 T33 = FMA(KP559016994, T2m, T2l); | |
330 T2n = FNMS(KP559016994, T2m, T2l); | |
331 T2E = FMA(KP951056516, T2h, T2e); | |
332 T2i = FNMS(KP951056516, T2h, T2e); | |
333 T35 = FMA(KP951056516, T34, T33); | |
334 T3l = FNMS(KP951056516, T34, T33); | |
335 T2H = FNMS(KP951056516, T2q, T2n); | |
336 T2r = FMA(KP951056516, T2q, T2n); | |
337 T2j = T2b * T2i; | |
338 T2z = T2k * T2i; | |
339 T2D = W[22]; | |
340 T2G = W[23]; | |
341 } | |
342 T2X = W[30]; | |
343 T2F = T2D * T2E; | |
344 T2T = T2G * T2E; | |
345 T3i = FMA(KP951056516, T2Z, T2Y); | |
346 T30 = FNMS(KP951056516, T2Z, T2Y); | |
347 T32 = W[31]; | |
348 T3h = W[6]; | |
349 T3k = W[7]; | |
350 T31 = T2X * T30; | |
351 T3d = T32 * T30; | |
352 T3j = T3h * T3i; | |
353 T3t = T3k * T3i; | |
354 } | |
355 { | |
356 E T2K, T2P, TE, T19, T1K, T2t, T37; | |
357 T2K = FNMS(KP559016994, T18, T17); | |
358 T19 = FMA(KP559016994, T18, T17); | |
359 T1K = FMA(KP559016994, T1J, T1I); | |
360 T2P = FNMS(KP559016994, T1J, T1I); | |
361 TE = W[0]; | |
362 T2t = W[16]; | |
363 T1x = FMA(KP951056516, T1w, T19); | |
364 T2u = FNMS(KP951056516, T1w, T19); | |
365 T1O = FNMS(KP951056516, T1N, T1K); | |
366 T2x = FMA(KP951056516, T1N, T1K); | |
367 T2v = T2t * T2u; | |
368 T1y = TE * T1x; | |
369 T2B = T2t * T2x; | |
370 T29 = TE * T1O; | |
371 T2J = W[24]; | |
372 T37 = W[32]; | |
373 T2M = FMA(KP951056516, T2L, T2K); | |
374 T38 = FNMS(KP951056516, T2L, T2K); | |
375 T2R = FNMS(KP951056516, T2Q, T2P); | |
376 T3b = FMA(KP951056516, T2Q, T2P); | |
377 T39 = T37 * T38; | |
378 T2N = T2J * T2M; | |
379 T3f = T37 * T3b; | |
380 } | |
381 } | |
382 T2V = T2J * T2R; | |
383 { | |
384 E T3m, T3u, T3q, T2a, T1P, T1z; | |
385 T1z = W[1]; | |
386 T3m = FNMS(T3k, T3l, T3j); | |
387 T3u = FMA(T3h, T3l, T3t); | |
388 T3q = W[9]; | |
389 T2a = FNMS(T1z, T1x, T29); | |
390 T1P = FMA(T1z, T1O, T1y); | |
391 { | |
392 E T2s, T2A, T2w, T3w, T3s; | |
393 T2s = FNMS(T2k, T2r, T2j); | |
394 T3w = FNMS(T3q, T3o, T3v); | |
395 T3s = FMA(T3q, T3r, T3p); | |
396 Im[0] = T2a - T28; | |
397 Ip[0] = T28 + T2a; | |
398 Rm[0] = TD + T1P; | |
399 Rp[0] = TD - T1P; | |
400 Im[WS(rs, 2)] = T3w - T3u; | |
401 Ip[WS(rs, 2)] = T3u + T3w; | |
402 Rm[WS(rs, 2)] = T3m + T3s; | |
403 Rp[WS(rs, 2)] = T3m - T3s; | |
404 T2A = FMA(T2b, T2r, T2z); | |
405 T2w = W[17]; | |
406 { | |
407 E T2I, T2U, T2O, T2C, T2y, T2W, T2S; | |
408 T2I = FNMS(T2G, T2H, T2F); | |
409 T2U = FMA(T2D, T2H, T2T); | |
410 T2O = W[25]; | |
411 T2C = FNMS(T2w, T2u, T2B); | |
412 T2y = FMA(T2w, T2x, T2v); | |
413 T36 = FNMS(T32, T35, T31); | |
414 T2W = FNMS(T2O, T2M, T2V); | |
415 T2S = FMA(T2O, T2R, T2N); | |
416 Im[WS(rs, 4)] = T2C - T2A; | |
417 Ip[WS(rs, 4)] = T2A + T2C; | |
418 Rm[WS(rs, 4)] = T2s + T2y; | |
419 Rp[WS(rs, 4)] = T2s - T2y; | |
420 Im[WS(rs, 6)] = T2W - T2U; | |
421 Ip[WS(rs, 6)] = T2U + T2W; | |
422 Rm[WS(rs, 6)] = T2I + T2S; | |
423 Rp[WS(rs, 6)] = T2I - T2S; | |
424 T3e = FMA(T2X, T35, T3d); | |
425 T3a = W[33]; | |
426 } | |
427 } | |
428 } | |
429 } | |
430 { | |
431 E T55, T51, T54, T53, T5h, T5P, T5J, T3x, T4P, T5F, T5p, T43, T3R, T3S, T5l; | |
432 E T5o, T4D, T5n, T5x, T4H, T4M, T5B, T5E, T4L, T4X, T5D, T5N, T4S, T4o, T4V; | |
433 E T4B, T4T, T4p, T4Z, T4F, T57, T5a, T5f, T5b, T5j; | |
434 { | |
435 E T3X, T4O, T42, T3g, T3c, T5H; | |
436 T55 = T3W + T3T; | |
437 T3X = FNMS(KP250000000, T3W, T3T); | |
438 T51 = W[18]; | |
439 T3g = FNMS(T3a, T38, T3f); | |
440 T3c = FMA(T3a, T3b, T39); | |
441 T54 = W[19]; | |
442 T53 = T51 * T52; | |
443 Im[WS(rs, 8)] = T3g - T3e; | |
444 Ip[WS(rs, 8)] = T3e + T3g; | |
445 Rm[WS(rs, 8)] = T36 + T3c; | |
446 Rp[WS(rs, 8)] = T36 - T3c; | |
447 T5h = T54 * T52; | |
448 T5H = W[28]; | |
449 T4O = FMA(KP618033988, T40, T41); | |
450 T42 = FNMS(KP618033988, T41, T40); | |
451 T5P = T5H * T5L; | |
452 T5J = T5H * T5I; | |
453 { | |
454 E T4I, T5m, T3Q, T3I, T3Z, T4N, T4K, T5C; | |
455 T3I = FNMS(KP559016994, T3H, T3G); | |
456 T4I = FMA(KP559016994, T3H, T3G); | |
457 T3Z = FNMS(KP559016994, T3Y, T3X); | |
458 T4N = FMA(KP559016994, T3Y, T3X); | |
459 T3x = W[2]; | |
460 T5m = FNMS(KP951056516, T3P, T3I); | |
461 T3Q = FMA(KP951056516, T3P, T3I); | |
462 T4P = FMA(KP951056516, T4O, T4N); | |
463 T5F = FNMS(KP951056516, T4O, T4N); | |
464 T5p = FMA(KP951056516, T42, T3Z); | |
465 T43 = FNMS(KP951056516, T42, T3Z); | |
466 T3R = T3x * T3Q; | |
467 T3S = W[3]; | |
468 T5l = W[34]; | |
469 T5o = W[35]; | |
470 T4D = T3S * T3Q; | |
471 T5n = T5l * T5m; | |
472 T5x = T5o * T5m; | |
473 T4K = FNMS(KP951056516, T4J, T4I); | |
474 T5C = FMA(KP951056516, T4J, T4I); | |
475 T4H = W[10]; | |
476 T4M = W[11]; | |
477 T5B = W[26]; | |
478 T5E = W[27]; | |
479 T4L = T4H * T4K; | |
480 T4X = T4M * T4K; | |
481 T5D = T5B * T5C; | |
482 T5N = T5E * T5C; | |
483 } | |
484 { | |
485 E T58, T5d, T45, T4g, T4x, T4R, T5r; | |
486 T4g = FNMS(KP559016994, T4f, T4e); | |
487 T58 = FMA(KP559016994, T4f, T4e); | |
488 T5d = FMA(KP559016994, T4w, T4v); | |
489 T4x = FNMS(KP559016994, T4w, T4v); | |
490 T45 = W[4]; | |
491 T4R = W[12]; | |
492 T4S = FNMS(KP951056516, T4n, T4g); | |
493 T4o = FMA(KP951056516, T4n, T4g); | |
494 T4V = FMA(KP951056516, T4A, T4x); | |
495 T4B = FNMS(KP951056516, T4A, T4x); | |
496 T4T = T4R * T4S; | |
497 T4p = T45 * T4o; | |
498 T4Z = T4R * T4V; | |
499 T4F = T45 * T4B; | |
500 T57 = W[20]; | |
501 T5r = W[36]; | |
502 T5s = FNMS(KP951056516, T59, T58); | |
503 T5a = FMA(KP951056516, T59, T58); | |
504 T5v = FMA(KP951056516, T5e, T5d); | |
505 T5f = FNMS(KP951056516, T5e, T5d); | |
506 T5t = T5r * T5s; | |
507 T5b = T57 * T5a; | |
508 T5z = T5r * T5v; | |
509 } | |
510 } | |
511 T5j = T57 * T5f; | |
512 { | |
513 E T44, T4E, T5G, T5O, T5K, T4G, T4C, T4q; | |
514 T44 = FNMS(T3S, T43, T3R); | |
515 T4E = FMA(T3x, T43, T4D); | |
516 T4q = W[5]; | |
517 T5G = FNMS(T5E, T5F, T5D); | |
518 T5O = FMA(T5B, T5F, T5N); | |
519 T5K = W[29]; | |
520 T4G = FNMS(T4q, T4o, T4F); | |
521 T4C = FMA(T4q, T4B, T4p); | |
522 { | |
523 E T4Q, T4Y, T4U, T5Q, T5M; | |
524 T4Q = FNMS(T4M, T4P, T4L); | |
525 T5Q = FNMS(T5K, T5I, T5P); | |
526 T5M = FMA(T5K, T5L, T5J); | |
527 Im[WS(rs, 1)] = T4G - T4E; | |
528 Ip[WS(rs, 1)] = T4E + T4G; | |
529 Rm[WS(rs, 1)] = T44 + T4C; | |
530 Rp[WS(rs, 1)] = T44 - T4C; | |
531 Im[WS(rs, 7)] = T5Q - T5O; | |
532 Ip[WS(rs, 7)] = T5O + T5Q; | |
533 Rm[WS(rs, 7)] = T5G + T5M; | |
534 Rp[WS(rs, 7)] = T5G - T5M; | |
535 T4Y = FMA(T4H, T4P, T4X); | |
536 T4U = W[13]; | |
537 { | |
538 E T56, T5i, T5c, T50, T4W, T5k, T5g; | |
539 T56 = FNMS(T54, T55, T53); | |
540 T5i = FMA(T51, T55, T5h); | |
541 T5c = W[21]; | |
542 T50 = FNMS(T4U, T4S, T4Z); | |
543 T4W = FMA(T4U, T4V, T4T); | |
544 T5q = FNMS(T5o, T5p, T5n); | |
545 T5k = FNMS(T5c, T5a, T5j); | |
546 T5g = FMA(T5c, T5f, T5b); | |
547 Im[WS(rs, 3)] = T50 - T4Y; | |
548 Ip[WS(rs, 3)] = T4Y + T50; | |
549 Rm[WS(rs, 3)] = T4Q + T4W; | |
550 Rp[WS(rs, 3)] = T4Q - T4W; | |
551 Im[WS(rs, 5)] = T5k - T5i; | |
552 Ip[WS(rs, 5)] = T5i + T5k; | |
553 Rm[WS(rs, 5)] = T56 + T5g; | |
554 Rp[WS(rs, 5)] = T56 - T5g; | |
555 T5y = FMA(T5l, T5p, T5x); | |
556 T5u = W[37]; | |
557 } | |
558 } | |
559 } | |
560 } | |
561 } | |
562 } | |
563 T5A = FNMS(T5u, T5s, T5z); | |
564 T5w = FMA(T5u, T5v, T5t); | |
565 Im[WS(rs, 9)] = T5A - T5y; | |
566 Ip[WS(rs, 9)] = T5y + T5A; | |
567 Rm[WS(rs, 9)] = T5q + T5w; | |
568 Rp[WS(rs, 9)] = T5q - T5w; | |
569 } | |
570 } | |
571 } | |
572 | |
573 static const tw_instr twinstr[] = { | |
574 {TW_FULL, 1, 20}, | |
575 {TW_NEXT, 1, 0} | |
576 }; | |
577 | |
578 static const hc2c_desc desc = { 20, "hc2cbdft_20", twinstr, &GENUS, {176, 38, 110, 0} }; | |
579 | |
580 void X(codelet_hc2cbdft_20) (planner *p) { | |
581 X(khc2c_register) (p, hc2cbdft_20, &desc, HC2C_VIA_DFT); | |
582 } | |
583 #else /* HAVE_FMA */ | |
584 | |
585 /* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 20 -dif -name hc2cbdft_20 -include hc2cb.h */ | |
586 | |
587 /* | |
588 * This function contains 286 FP additions, 124 FP multiplications, | |
589 * (or, 224 additions, 62 multiplications, 62 fused multiply/add), | |
590 * 89 stack variables, 4 constants, and 80 memory accesses | |
591 */ | |
592 #include "hc2cb.h" | |
593 | |
594 static void hc2cbdft_20(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) | |
595 { | |
596 DK(KP250000000, +0.250000000000000000000000000000000000000000000); | |
597 DK(KP951056516, +0.951056516295153572116439333379382143405698634); | |
598 DK(KP587785252, +0.587785252292473129168705954639072768597652438); | |
599 DK(KP559016994, +0.559016994374947424102293417182819058860154590); | |
600 { | |
601 INT m; | |
602 for (m = mb, W = W + ((mb - 1) * 38); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 38, MAKE_VOLATILE_STRIDE(80, rs)) { | |
603 E T7, T3N, T4a, T16, T1G, T3g, T3D, T26, T1k, T3A, T3B, T1v, T2e, T48, T47; | |
604 E T2d, T1L, T43, T40, T1K, T2l, T3t, T2m, T3w, T3n, T3p, TC, T2b, T4d, T4f; | |
605 E T23, T2j, T1B, T1H, T3U, T3W, T3G, T3I, T11, T17; | |
606 { | |
607 E T3, T1C, T15, T24, T6, T12, T1F, T25; | |
608 { | |
609 E T1, T2, T13, T14; | |
610 T1 = Rp[0]; | |
611 T2 = Rm[WS(rs, 9)]; | |
612 T3 = T1 + T2; | |
613 T1C = T1 - T2; | |
614 T13 = Ip[0]; | |
615 T14 = Im[WS(rs, 9)]; | |
616 T15 = T13 + T14; | |
617 T24 = T13 - T14; | |
618 } | |
619 { | |
620 E T4, T5, T1D, T1E; | |
621 T4 = Rp[WS(rs, 5)]; | |
622 T5 = Rm[WS(rs, 4)]; | |
623 T6 = T4 + T5; | |
624 T12 = T4 - T5; | |
625 T1D = Ip[WS(rs, 5)]; | |
626 T1E = Im[WS(rs, 4)]; | |
627 T1F = T1D + T1E; | |
628 T25 = T1D - T1E; | |
629 } | |
630 T7 = T3 + T6; | |
631 T3N = T15 - T12; | |
632 T4a = T1C + T1F; | |
633 T16 = T12 + T15; | |
634 T1G = T1C - T1F; | |
635 T3g = T3 - T6; | |
636 T3D = T24 - T25; | |
637 T26 = T24 + T25; | |
638 } | |
639 { | |
640 E Te, T3O, T3Y, TJ, T1e, T3h, T3r, T1R, TA, T3S, T42, TZ, T1u, T3l, T3v; | |
641 E T21, Tl, T3P, T3Z, TO, T1j, T3i, T3s, T1U, Tt, T3R, T41, TU, T1p, T3k; | |
642 E T3u, T1Y; | |
643 { | |
644 E Ta, T1a, TI, T1P, Td, TF, T1d, T1Q; | |
645 { | |
646 E T8, T9, TG, TH; | |
647 T8 = Rp[WS(rs, 4)]; | |
648 T9 = Rm[WS(rs, 5)]; | |
649 Ta = T8 + T9; | |
650 T1a = T8 - T9; | |
651 TG = Ip[WS(rs, 4)]; | |
652 TH = Im[WS(rs, 5)]; | |
653 TI = TG + TH; | |
654 T1P = TG - TH; | |
655 } | |
656 { | |
657 E Tb, Tc, T1b, T1c; | |
658 Tb = Rp[WS(rs, 9)]; | |
659 Tc = Rm[0]; | |
660 Td = Tb + Tc; | |
661 TF = Tb - Tc; | |
662 T1b = Ip[WS(rs, 9)]; | |
663 T1c = Im[0]; | |
664 T1d = T1b + T1c; | |
665 T1Q = T1b - T1c; | |
666 } | |
667 Te = Ta + Td; | |
668 T3O = TI - TF; | |
669 T3Y = T1a + T1d; | |
670 TJ = TF + TI; | |
671 T1e = T1a - T1d; | |
672 T3h = Ta - Td; | |
673 T3r = T1P - T1Q; | |
674 T1R = T1P + T1Q; | |
675 } | |
676 { | |
677 E Tw, T1q, TY, T1Z, Tz, TV, T1t, T20; | |
678 { | |
679 E Tu, Tv, TW, TX; | |
680 Tu = Rm[WS(rs, 7)]; | |
681 Tv = Rp[WS(rs, 2)]; | |
682 Tw = Tu + Tv; | |
683 T1q = Tu - Tv; | |
684 TW = Im[WS(rs, 7)]; | |
685 TX = Ip[WS(rs, 2)]; | |
686 TY = TW + TX; | |
687 T1Z = TX - TW; | |
688 } | |
689 { | |
690 E Tx, Ty, T1r, T1s; | |
691 Tx = Rm[WS(rs, 2)]; | |
692 Ty = Rp[WS(rs, 7)]; | |
693 Tz = Tx + Ty; | |
694 TV = Tx - Ty; | |
695 T1r = Im[WS(rs, 2)]; | |
696 T1s = Ip[WS(rs, 7)]; | |
697 T1t = T1r + T1s; | |
698 T20 = T1s - T1r; | |
699 } | |
700 TA = Tw + Tz; | |
701 T3S = TV + TY; | |
702 T42 = T1q - T1t; | |
703 TZ = TV - TY; | |
704 T1u = T1q + T1t; | |
705 T3l = Tw - Tz; | |
706 T3v = T1Z - T20; | |
707 T21 = T1Z + T20; | |
708 } | |
709 { | |
710 E Th, T1f, TN, T1S, Tk, TK, T1i, T1T; | |
711 { | |
712 E Tf, Tg, TL, TM; | |
713 Tf = Rm[WS(rs, 3)]; | |
714 Tg = Rp[WS(rs, 6)]; | |
715 Th = Tf + Tg; | |
716 T1f = Tf - Tg; | |
717 TL = Im[WS(rs, 3)]; | |
718 TM = Ip[WS(rs, 6)]; | |
719 TN = TL + TM; | |
720 T1S = TM - TL; | |
721 } | |
722 { | |
723 E Ti, Tj, T1g, T1h; | |
724 Ti = Rp[WS(rs, 1)]; | |
725 Tj = Rm[WS(rs, 8)]; | |
726 Tk = Ti + Tj; | |
727 TK = Ti - Tj; | |
728 T1g = Ip[WS(rs, 1)]; | |
729 T1h = Im[WS(rs, 8)]; | |
730 T1i = T1g + T1h; | |
731 T1T = T1g - T1h; | |
732 } | |
733 Tl = Th + Tk; | |
734 T3P = TK + TN; | |
735 T3Z = T1f + T1i; | |
736 TO = TK - TN; | |
737 T1j = T1f - T1i; | |
738 T3i = Th - Tk; | |
739 T3s = T1S - T1T; | |
740 T1U = T1S + T1T; | |
741 } | |
742 { | |
743 E Tp, T1l, TT, T1W, Ts, TQ, T1o, T1X; | |
744 { | |
745 E Tn, To, TR, TS; | |
746 Tn = Rp[WS(rs, 8)]; | |
747 To = Rm[WS(rs, 1)]; | |
748 Tp = Tn + To; | |
749 T1l = Tn - To; | |
750 TR = Ip[WS(rs, 8)]; | |
751 TS = Im[WS(rs, 1)]; | |
752 TT = TR + TS; | |
753 T1W = TR - TS; | |
754 } | |
755 { | |
756 E Tq, Tr, T1m, T1n; | |
757 Tq = Rm[WS(rs, 6)]; | |
758 Tr = Rp[WS(rs, 3)]; | |
759 Ts = Tq + Tr; | |
760 TQ = Tq - Tr; | |
761 T1m = Im[WS(rs, 6)]; | |
762 T1n = Ip[WS(rs, 3)]; | |
763 T1o = T1m + T1n; | |
764 T1X = T1n - T1m; | |
765 } | |
766 Tt = Tp + Ts; | |
767 T3R = TT - TQ; | |
768 T41 = T1l - T1o; | |
769 TU = TQ + TT; | |
770 T1p = T1l + T1o; | |
771 T3k = Tp - Ts; | |
772 T3u = T1W - T1X; | |
773 T1Y = T1W + T1X; | |
774 } | |
775 T1k = T1e - T1j; | |
776 T3A = T3h - T3i; | |
777 T3B = T3k - T3l; | |
778 T1v = T1p - T1u; | |
779 T2e = T1Y - T21; | |
780 T48 = T3R + T3S; | |
781 T47 = T3O + T3P; | |
782 T2d = T1R - T1U; | |
783 T1L = TU - TZ; | |
784 T43 = T41 - T42; | |
785 T40 = T3Y - T3Z; | |
786 T1K = TJ - TO; | |
787 T2l = Te - Tl; | |
788 T3t = T3r - T3s; | |
789 T2m = Tt - TA; | |
790 T3w = T3u - T3v; | |
791 { | |
792 E T3j, T3m, Tm, TB; | |
793 T3j = T3h + T3i; | |
794 T3m = T3k + T3l; | |
795 T3n = T3j + T3m; | |
796 T3p = KP559016994 * (T3j - T3m); | |
797 Tm = Te + Tl; | |
798 TB = Tt + TA; | |
799 TC = Tm + TB; | |
800 T2b = KP559016994 * (Tm - TB); | |
801 } | |
802 { | |
803 E T4b, T4c, T3Q, T3T; | |
804 T4b = T3Y + T3Z; | |
805 T4c = T41 + T42; | |
806 T4d = T4b + T4c; | |
807 T4f = KP559016994 * (T4b - T4c); | |
808 { | |
809 E T1V, T22, T1z, T1A; | |
810 T1V = T1R + T1U; | |
811 T22 = T1Y + T21; | |
812 T23 = T1V + T22; | |
813 T2j = KP559016994 * (T1V - T22); | |
814 T1z = T1e + T1j; | |
815 T1A = T1p + T1u; | |
816 T1B = KP559016994 * (T1z - T1A); | |
817 T1H = T1z + T1A; | |
818 } | |
819 T3Q = T3O - T3P; | |
820 T3T = T3R - T3S; | |
821 T3U = T3Q + T3T; | |
822 T3W = KP559016994 * (T3Q - T3T); | |
823 { | |
824 E T3E, T3F, TP, T10; | |
825 T3E = T3r + T3s; | |
826 T3F = T3u + T3v; | |
827 T3G = T3E + T3F; | |
828 T3I = KP559016994 * (T3E - T3F); | |
829 TP = TJ + TO; | |
830 T10 = TU + TZ; | |
831 T11 = KP559016994 * (TP - T10); | |
832 T17 = TP + T10; | |
833 } | |
834 } | |
835 } | |
836 { | |
837 E TD, T27, T3c, T3e, T2o, T36, T2A, T2U, T1N, T2Z, T2t, T2J, T1x, T2X, T2r; | |
838 E T2F, T2g, T34, T2y, T2Q; | |
839 TD = T7 + TC; | |
840 T27 = T23 + T26; | |
841 { | |
842 E T39, T3b, T38, T3a; | |
843 T39 = T16 + T17; | |
844 T3b = T1H + T1G; | |
845 T38 = W[8]; | |
846 T3a = W[9]; | |
847 T3c = FMA(T38, T39, T3a * T3b); | |
848 T3e = FNMS(T3a, T39, T38 * T3b); | |
849 } | |
850 { | |
851 E T2n, T2S, T2k, T2T, T2i; | |
852 T2n = FNMS(KP951056516, T2m, KP587785252 * T2l); | |
853 T2S = FMA(KP951056516, T2l, KP587785252 * T2m); | |
854 T2i = FNMS(KP250000000, T23, T26); | |
855 T2k = T2i - T2j; | |
856 T2T = T2j + T2i; | |
857 T2o = T2k - T2n; | |
858 T36 = T2T - T2S; | |
859 T2A = T2n + T2k; | |
860 T2U = T2S + T2T; | |
861 } | |
862 { | |
863 E T1M, T2H, T1J, T2I, T1I; | |
864 T1M = FMA(KP951056516, T1K, KP587785252 * T1L); | |
865 T2H = FNMS(KP951056516, T1L, KP587785252 * T1K); | |
866 T1I = FNMS(KP250000000, T1H, T1G); | |
867 T1J = T1B + T1I; | |
868 T2I = T1I - T1B; | |
869 T1N = T1J - T1M; | |
870 T2Z = T2I - T2H; | |
871 T2t = T1M + T1J; | |
872 T2J = T2H + T2I; | |
873 } | |
874 { | |
875 E T1w, T2E, T19, T2D, T18; | |
876 T1w = FMA(KP951056516, T1k, KP587785252 * T1v); | |
877 T2E = FNMS(KP951056516, T1v, KP587785252 * T1k); | |
878 T18 = FNMS(KP250000000, T17, T16); | |
879 T19 = T11 + T18; | |
880 T2D = T18 - T11; | |
881 T1x = T19 + T1w; | |
882 T2X = T2D + T2E; | |
883 T2r = T19 - T1w; | |
884 T2F = T2D - T2E; | |
885 } | |
886 { | |
887 E T2f, T2P, T2c, T2O, T2a; | |
888 T2f = FNMS(KP951056516, T2e, KP587785252 * T2d); | |
889 T2P = FMA(KP951056516, T2d, KP587785252 * T2e); | |
890 T2a = FNMS(KP250000000, TC, T7); | |
891 T2c = T2a - T2b; | |
892 T2O = T2b + T2a; | |
893 T2g = T2c + T2f; | |
894 T34 = T2O + T2P; | |
895 T2y = T2c - T2f; | |
896 T2Q = T2O - T2P; | |
897 } | |
898 { | |
899 E T1O, T28, TE, T1y; | |
900 TE = W[0]; | |
901 T1y = W[1]; | |
902 T1O = FMA(TE, T1x, T1y * T1N); | |
903 T28 = FNMS(T1y, T1x, TE * T1N); | |
904 Rp[0] = TD - T1O; | |
905 Ip[0] = T27 + T28; | |
906 Rm[0] = TD + T1O; | |
907 Im[0] = T28 - T27; | |
908 } | |
909 { | |
910 E T37, T3d, T33, T35; | |
911 T33 = W[6]; | |
912 T35 = W[7]; | |
913 T37 = FNMS(T35, T36, T33 * T34); | |
914 T3d = FMA(T35, T34, T33 * T36); | |
915 Rp[WS(rs, 2)] = T37 - T3c; | |
916 Ip[WS(rs, 2)] = T3d + T3e; | |
917 Rm[WS(rs, 2)] = T37 + T3c; | |
918 Im[WS(rs, 2)] = T3e - T3d; | |
919 } | |
920 { | |
921 E T2p, T2v, T2u, T2w; | |
922 { | |
923 E T29, T2h, T2q, T2s; | |
924 T29 = W[14]; | |
925 T2h = W[15]; | |
926 T2p = FNMS(T2h, T2o, T29 * T2g); | |
927 T2v = FMA(T2h, T2g, T29 * T2o); | |
928 T2q = W[16]; | |
929 T2s = W[17]; | |
930 T2u = FMA(T2q, T2r, T2s * T2t); | |
931 T2w = FNMS(T2s, T2r, T2q * T2t); | |
932 } | |
933 Rp[WS(rs, 4)] = T2p - T2u; | |
934 Ip[WS(rs, 4)] = T2v + T2w; | |
935 Rm[WS(rs, 4)] = T2p + T2u; | |
936 Im[WS(rs, 4)] = T2w - T2v; | |
937 } | |
938 { | |
939 E T2B, T2L, T2K, T2M; | |
940 { | |
941 E T2x, T2z, T2C, T2G; | |
942 T2x = W[22]; | |
943 T2z = W[23]; | |
944 T2B = FNMS(T2z, T2A, T2x * T2y); | |
945 T2L = FMA(T2z, T2y, T2x * T2A); | |
946 T2C = W[24]; | |
947 T2G = W[25]; | |
948 T2K = FMA(T2C, T2F, T2G * T2J); | |
949 T2M = FNMS(T2G, T2F, T2C * T2J); | |
950 } | |
951 Rp[WS(rs, 6)] = T2B - T2K; | |
952 Ip[WS(rs, 6)] = T2L + T2M; | |
953 Rm[WS(rs, 6)] = T2B + T2K; | |
954 Im[WS(rs, 6)] = T2M - T2L; | |
955 } | |
956 { | |
957 E T2V, T31, T30, T32; | |
958 { | |
959 E T2N, T2R, T2W, T2Y; | |
960 T2N = W[30]; | |
961 T2R = W[31]; | |
962 T2V = FNMS(T2R, T2U, T2N * T2Q); | |
963 T31 = FMA(T2R, T2Q, T2N * T2U); | |
964 T2W = W[32]; | |
965 T2Y = W[33]; | |
966 T30 = FMA(T2W, T2X, T2Y * T2Z); | |
967 T32 = FNMS(T2Y, T2X, T2W * T2Z); | |
968 } | |
969 Rp[WS(rs, 8)] = T2V - T30; | |
970 Ip[WS(rs, 8)] = T31 + T32; | |
971 Rm[WS(rs, 8)] = T2V + T30; | |
972 Im[WS(rs, 8)] = T32 - T31; | |
973 } | |
974 } | |
975 { | |
976 E T4F, T4P, T5c, T5e, T3y, T54, T4o, T4S, T4h, T4Z, T4x, T4N, T45, T4X, T4v; | |
977 E T4J, T3K, T56, T4s, T4U; | |
978 { | |
979 E T4C, T4E, T4B, T4D; | |
980 T4C = T3g + T3n; | |
981 T4E = T3G + T3D; | |
982 T4B = W[18]; | |
983 T4D = W[19]; | |
984 T4F = FNMS(T4D, T4E, T4B * T4C); | |
985 T4P = FMA(T4D, T4C, T4B * T4E); | |
986 } | |
987 { | |
988 E T59, T5b, T58, T5a; | |
989 T59 = T3N + T3U; | |
990 T5b = T4d + T4a; | |
991 T58 = W[28]; | |
992 T5a = W[29]; | |
993 T5c = FMA(T58, T59, T5a * T5b); | |
994 T5e = FNMS(T5a, T59, T58 * T5b); | |
995 } | |
996 { | |
997 E T3x, T4n, T3q, T4m, T3o; | |
998 T3x = FNMS(KP951056516, T3w, KP587785252 * T3t); | |
999 T4n = FMA(KP951056516, T3t, KP587785252 * T3w); | |
1000 T3o = FNMS(KP250000000, T3n, T3g); | |
1001 T3q = T3o - T3p; | |
1002 T4m = T3p + T3o; | |
1003 T3y = T3q - T3x; | |
1004 T54 = T4m + T4n; | |
1005 T4o = T4m - T4n; | |
1006 T4S = T3q + T3x; | |
1007 } | |
1008 { | |
1009 E T49, T4M, T4g, T4L, T4e; | |
1010 T49 = FNMS(KP951056516, T48, KP587785252 * T47); | |
1011 T4M = FMA(KP951056516, T47, KP587785252 * T48); | |
1012 T4e = FNMS(KP250000000, T4d, T4a); | |
1013 T4g = T4e - T4f; | |
1014 T4L = T4f + T4e; | |
1015 T4h = T49 + T4g; | |
1016 T4Z = T4M + T4L; | |
1017 T4x = T4g - T49; | |
1018 T4N = T4L - T4M; | |
1019 } | |
1020 { | |
1021 E T44, T4I, T3X, T4H, T3V; | |
1022 T44 = FNMS(KP951056516, T43, KP587785252 * T40); | |
1023 T4I = FMA(KP951056516, T40, KP587785252 * T43); | |
1024 T3V = FNMS(KP250000000, T3U, T3N); | |
1025 T3X = T3V - T3W; | |
1026 T4H = T3W + T3V; | |
1027 T45 = T3X - T44; | |
1028 T4X = T4H - T4I; | |
1029 T4v = T3X + T44; | |
1030 T4J = T4H + T4I; | |
1031 } | |
1032 { | |
1033 E T3C, T4q, T3J, T4r, T3H; | |
1034 T3C = FNMS(KP951056516, T3B, KP587785252 * T3A); | |
1035 T4q = FMA(KP951056516, T3A, KP587785252 * T3B); | |
1036 T3H = FNMS(KP250000000, T3G, T3D); | |
1037 T3J = T3H - T3I; | |
1038 T4r = T3I + T3H; | |
1039 T3K = T3C + T3J; | |
1040 T56 = T4r - T4q; | |
1041 T4s = T4q + T4r; | |
1042 T4U = T3J - T3C; | |
1043 } | |
1044 { | |
1045 E T4O, T4Q, T4G, T4K; | |
1046 T4G = W[20]; | |
1047 T4K = W[21]; | |
1048 T4O = FMA(T4G, T4J, T4K * T4N); | |
1049 T4Q = FNMS(T4K, T4J, T4G * T4N); | |
1050 Rp[WS(rs, 5)] = T4F - T4O; | |
1051 Ip[WS(rs, 5)] = T4P + T4Q; | |
1052 Rm[WS(rs, 5)] = T4F + T4O; | |
1053 Im[WS(rs, 5)] = T4Q - T4P; | |
1054 } | |
1055 { | |
1056 E T57, T5d, T53, T55; | |
1057 T53 = W[26]; | |
1058 T55 = W[27]; | |
1059 T57 = FNMS(T55, T56, T53 * T54); | |
1060 T5d = FMA(T55, T54, T53 * T56); | |
1061 Rp[WS(rs, 7)] = T57 - T5c; | |
1062 Ip[WS(rs, 7)] = T5d + T5e; | |
1063 Rm[WS(rs, 7)] = T57 + T5c; | |
1064 Im[WS(rs, 7)] = T5e - T5d; | |
1065 } | |
1066 { | |
1067 E T3L, T4j, T4i, T4k; | |
1068 { | |
1069 E T3f, T3z, T3M, T46; | |
1070 T3f = W[2]; | |
1071 T3z = W[3]; | |
1072 T3L = FNMS(T3z, T3K, T3f * T3y); | |
1073 T4j = FMA(T3z, T3y, T3f * T3K); | |
1074 T3M = W[4]; | |
1075 T46 = W[5]; | |
1076 T4i = FMA(T3M, T45, T46 * T4h); | |
1077 T4k = FNMS(T46, T45, T3M * T4h); | |
1078 } | |
1079 Rp[WS(rs, 1)] = T3L - T4i; | |
1080 Ip[WS(rs, 1)] = T4j + T4k; | |
1081 Rm[WS(rs, 1)] = T3L + T4i; | |
1082 Im[WS(rs, 1)] = T4k - T4j; | |
1083 } | |
1084 { | |
1085 E T4t, T4z, T4y, T4A; | |
1086 { | |
1087 E T4l, T4p, T4u, T4w; | |
1088 T4l = W[10]; | |
1089 T4p = W[11]; | |
1090 T4t = FNMS(T4p, T4s, T4l * T4o); | |
1091 T4z = FMA(T4p, T4o, T4l * T4s); | |
1092 T4u = W[12]; | |
1093 T4w = W[13]; | |
1094 T4y = FMA(T4u, T4v, T4w * T4x); | |
1095 T4A = FNMS(T4w, T4v, T4u * T4x); | |
1096 } | |
1097 Rp[WS(rs, 3)] = T4t - T4y; | |
1098 Ip[WS(rs, 3)] = T4z + T4A; | |
1099 Rm[WS(rs, 3)] = T4t + T4y; | |
1100 Im[WS(rs, 3)] = T4A - T4z; | |
1101 } | |
1102 { | |
1103 E T4V, T51, T50, T52; | |
1104 { | |
1105 E T4R, T4T, T4W, T4Y; | |
1106 T4R = W[34]; | |
1107 T4T = W[35]; | |
1108 T4V = FNMS(T4T, T4U, T4R * T4S); | |
1109 T51 = FMA(T4T, T4S, T4R * T4U); | |
1110 T4W = W[36]; | |
1111 T4Y = W[37]; | |
1112 T50 = FMA(T4W, T4X, T4Y * T4Z); | |
1113 T52 = FNMS(T4Y, T4X, T4W * T4Z); | |
1114 } | |
1115 Rp[WS(rs, 9)] = T4V - T50; | |
1116 Ip[WS(rs, 9)] = T51 + T52; | |
1117 Rm[WS(rs, 9)] = T4V + T50; | |
1118 Im[WS(rs, 9)] = T52 - T51; | |
1119 } | |
1120 } | |
1121 } | |
1122 } | |
1123 } | |
1124 | |
1125 static const tw_instr twinstr[] = { | |
1126 {TW_FULL, 1, 20}, | |
1127 {TW_NEXT, 1, 0} | |
1128 }; | |
1129 | |
1130 static const hc2c_desc desc = { 20, "hc2cbdft_20", twinstr, &GENUS, {224, 62, 62, 0} }; | |
1131 | |
1132 void X(codelet_hc2cbdft_20) (planner *p) { | |
1133 X(khc2c_register) (p, hc2cbdft_20, &desc, HC2C_VIA_DFT); | |
1134 } | |
1135 #endif /* HAVE_FMA */ |