comparison src/fftw-3.3.3/rdft/scalar/r2cb/hc2cbdft_20.c @ 10:37bf6b4a2645

Add FFTW3
author Chris Cannam
date Wed, 20 Mar 2013 15:35:50 +0000
parents
children
comparison
equal deleted inserted replaced
9:c0fb53affa76 10:37bf6b4a2645
1 /*
2 * Copyright (c) 2003, 2007-11 Matteo Frigo
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 */
20
21 /* This file was automatically generated --- DO NOT EDIT */
22 /* Generated on Sun Nov 25 07:42:07 EST 2012 */
23
24 #include "codelet-rdft.h"
25
26 #ifdef HAVE_FMA
27
28 /* Generated by: ../../../genfft/gen_hc2cdft.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -n 20 -dif -name hc2cbdft_20 -include hc2cb.h */
29
30 /*
31 * This function contains 286 FP additions, 148 FP multiplications,
32 * (or, 176 additions, 38 multiplications, 110 fused multiply/add),
33 * 122 stack variables, 4 constants, and 80 memory accesses
34 */
35 #include "hc2cb.h"
36
37 static void hc2cbdft_20(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
38 {
39 DK(KP951056516, +0.951056516295153572116439333379382143405698634);
40 DK(KP559016994, +0.559016994374947424102293417182819058860154590);
41 DK(KP250000000, +0.250000000000000000000000000000000000000000000);
42 DK(KP618033988, +0.618033988749894848204586834365638117720309180);
43 {
44 INT m;
45 for (m = mb, W = W + ((mb - 1) * 38); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 38, MAKE_VOLATILE_STRIDE(80, rs)) {
46 E T5s, T5v, T5t, T5z, T5q, T5y, T5u, T5A, T5w;
47 {
48 E T3T, T27, T2o, T41, T2p, T40, TU, T15, T2Q, T1N, T2L, T1w, T59, T4n, T5e;
49 E T4A, T2m, T24, T2Z, T2h, T4J, T3P, T3Y, T3W, T2d, TJ, T3H, T2c, TD, T52;
50 E T3G, T1E, T4f, T5I, T4e, T4w, T5L, T4v, T1J, T1H;
51 {
52 E T1A, T3, T25, TI, TF, T6, T26, T1D, TO, T47, T3z, Te, T1S, T3M, T1e;
53 E T4k, TZ, T4a, T3C, Tt, T1Z, T3J, T1p, T4h, T14, T4b, T3D, TA, T22, T3K;
54 E T1u, T4i, Ti, T1f, Th, T1T, TS, Tj, T1g, T1h;
55 {
56 E T4, T5, T1B, T1C;
57 {
58 E T1, T2, TG, TH;
59 T1 = Rp[0];
60 T2 = Rm[WS(rs, 9)];
61 TG = Ip[0];
62 TH = Im[WS(rs, 9)];
63 T4 = Rp[WS(rs, 5)];
64 T1A = T1 - T2;
65 T3 = T1 + T2;
66 T25 = TG - TH;
67 TI = TG + TH;
68 T5 = Rm[WS(rs, 4)];
69 T1B = Ip[WS(rs, 5)];
70 T1C = Im[WS(rs, 4)];
71 }
72 {
73 E Tq, T1l, Tp, T1X, TY, Tr, T1m, T1n;
74 {
75 E Tb, T1a, Ta, T1Q, TN, Tc, T1b, T1c;
76 {
77 E T8, T9, TL, TM;
78 T8 = Rp[WS(rs, 4)];
79 TF = T4 - T5;
80 T6 = T4 + T5;
81 T26 = T1B - T1C;
82 T1D = T1B + T1C;
83 T9 = Rm[WS(rs, 5)];
84 TL = Ip[WS(rs, 4)];
85 TM = Im[WS(rs, 5)];
86 Tb = Rp[WS(rs, 9)];
87 T1a = T8 - T9;
88 Ta = T8 + T9;
89 T1Q = TL - TM;
90 TN = TL + TM;
91 Tc = Rm[0];
92 T1b = Ip[WS(rs, 9)];
93 T1c = Im[0];
94 }
95 {
96 E Tn, To, TW, TX;
97 Tn = Rp[WS(rs, 8)];
98 {
99 E TK, Td, T1R, T1d;
100 TK = Tb - Tc;
101 Td = Tb + Tc;
102 T1R = T1b - T1c;
103 T1d = T1b + T1c;
104 TO = TK + TN;
105 T47 = TN - TK;
106 T3z = Ta - Td;
107 Te = Ta + Td;
108 T1S = T1Q + T1R;
109 T3M = T1Q - T1R;
110 T1e = T1a - T1d;
111 T4k = T1a + T1d;
112 To = Rm[WS(rs, 1)];
113 }
114 TW = Ip[WS(rs, 8)];
115 TX = Im[WS(rs, 1)];
116 Tq = Rm[WS(rs, 6)];
117 T1l = Tn - To;
118 Tp = Tn + To;
119 T1X = TW - TX;
120 TY = TW + TX;
121 Tr = Rp[WS(rs, 3)];
122 T1m = Im[WS(rs, 6)];
123 T1n = Ip[WS(rs, 3)];
124 }
125 }
126 {
127 E Tx, T1q, Tw, T20, T13, Ty, T1r, T1s;
128 {
129 E Tu, Tv, T11, T12;
130 Tu = Rm[WS(rs, 7)];
131 {
132 E TV, Ts, T1Y, T1o;
133 TV = Tq - Tr;
134 Ts = Tq + Tr;
135 T1Y = T1n - T1m;
136 T1o = T1m + T1n;
137 TZ = TV + TY;
138 T4a = TY - TV;
139 T3C = Tp - Ts;
140 Tt = Tp + Ts;
141 T1Z = T1X + T1Y;
142 T3J = T1X - T1Y;
143 T1p = T1l + T1o;
144 T4h = T1l - T1o;
145 Tv = Rp[WS(rs, 2)];
146 }
147 T11 = Im[WS(rs, 7)];
148 T12 = Ip[WS(rs, 2)];
149 Tx = Rm[WS(rs, 2)];
150 T1q = Tu - Tv;
151 Tw = Tu + Tv;
152 T20 = T12 - T11;
153 T13 = T11 + T12;
154 Ty = Rp[WS(rs, 7)];
155 T1r = Im[WS(rs, 2)];
156 T1s = Ip[WS(rs, 7)];
157 }
158 {
159 E Tf, Tg, TQ, TR;
160 Tf = Rm[WS(rs, 3)];
161 {
162 E T10, Tz, T21, T1t;
163 T10 = Tx - Ty;
164 Tz = Tx + Ty;
165 T21 = T1s - T1r;
166 T1t = T1r + T1s;
167 T14 = T10 - T13;
168 T4b = T10 + T13;
169 T3D = Tw - Tz;
170 TA = Tw + Tz;
171 T22 = T20 + T21;
172 T3K = T20 - T21;
173 T1u = T1q + T1t;
174 T4i = T1q - T1t;
175 Tg = Rp[WS(rs, 6)];
176 }
177 TQ = Im[WS(rs, 3)];
178 TR = Ip[WS(rs, 6)];
179 Ti = Rp[WS(rs, 1)];
180 T1f = Tf - Tg;
181 Th = Tf + Tg;
182 T1T = TR - TQ;
183 TS = TQ + TR;
184 Tj = Rm[WS(rs, 8)];
185 T1g = Ip[WS(rs, 1)];
186 T1h = Im[WS(rs, 8)];
187 }
188 }
189 }
190 }
191 {
192 E T1V, T3N, TB, T3B, Tm, T3E, T1F, T1G, T4t, T4j, T4m, T4s, T4c, T4y, T4z;
193 E T49, T3y, T7;
194 {
195 E TT, T48, T1j, T4l, T3A, Tl;
196 T3T = T25 - T26;
197 T27 = T25 + T26;
198 {
199 E TP, Tk, T1U, T1i;
200 TP = Ti - Tj;
201 Tk = Ti + Tj;
202 T1U = T1g - T1h;
203 T1i = T1g + T1h;
204 TT = TP - TS;
205 T48 = TP + TS;
206 T3A = Th - Tk;
207 Tl = Th + Tk;
208 T1V = T1T + T1U;
209 T3N = T1T - T1U;
210 T1j = T1f - T1i;
211 T4l = T1f + T1i;
212 T2o = Tt - TA;
213 TB = Tt + TA;
214 }
215 T41 = T3z - T3A;
216 T3B = T3z + T3A;
217 Tm = Te + Tl;
218 T2p = Te - Tl;
219 {
220 E T1L, T1M, T1k, T1v;
221 T40 = T3C - T3D;
222 T3E = T3C + T3D;
223 TU = TO + TT;
224 T1L = TO - TT;
225 T1M = TZ - T14;
226 T15 = TZ + T14;
227 T1F = T1e + T1j;
228 T1k = T1e - T1j;
229 T1v = T1p - T1u;
230 T1G = T1p + T1u;
231 T4t = T4h + T4i;
232 T4j = T4h - T4i;
233 T2Q = FNMS(KP618033988, T1L, T1M);
234 T1N = FMA(KP618033988, T1M, T1L);
235 T2L = FNMS(KP618033988, T1k, T1v);
236 T1w = FMA(KP618033988, T1v, T1k);
237 T4m = T4k - T4l;
238 T4s = T4k + T4l;
239 T4c = T4a - T4b;
240 T4y = T4a + T4b;
241 T4z = T47 + T48;
242 T49 = T47 - T48;
243 }
244 }
245 {
246 E T2g, T1W, T23, T2f;
247 T2g = T1S - T1V;
248 T1W = T1S + T1V;
249 T59 = FMA(KP618033988, T4j, T4m);
250 T4n = FNMS(KP618033988, T4m, T4j);
251 T5e = FMA(KP618033988, T4y, T4z);
252 T4A = FNMS(KP618033988, T4z, T4y);
253 T23 = T1Z + T22;
254 T2f = T1Z - T22;
255 {
256 E T3V, T3L, T3O, T3U;
257 T3V = T3J + T3K;
258 T3L = T3J - T3K;
259 T2m = T1W - T23;
260 T24 = T1W + T23;
261 T2Z = FMA(KP618033988, T2f, T2g);
262 T2h = FNMS(KP618033988, T2g, T2f);
263 T3O = T3M - T3N;
264 T3U = T3M + T3N;
265 T3y = T3 - T6;
266 T7 = T3 + T6;
267 T4J = FMA(KP618033988, T3L, T3O);
268 T3P = FNMS(KP618033988, T3O, T3L);
269 T3Y = T3U - T3V;
270 T3W = T3U + T3V;
271 }
272 }
273 {
274 E T46, TC, T3F, T4r, T4d, T4u;
275 TC = Tm + TB;
276 T2d = Tm - TB;
277 TJ = TF + TI;
278 T46 = TI - TF;
279 T3H = T3B - T3E;
280 T3F = T3B + T3E;
281 T2c = FNMS(KP250000000, TC, T7);
282 TD = T7 + TC;
283 T52 = T3y + T3F;
284 T3G = FNMS(KP250000000, T3F, T3y);
285 T4r = T1A + T1D;
286 T1E = T1A - T1D;
287 T4f = T49 - T4c;
288 T4d = T49 + T4c;
289 T5I = T46 + T4d;
290 T4e = FNMS(KP250000000, T4d, T46);
291 T4w = T4s - T4t;
292 T4u = T4s + T4t;
293 T5L = T4u + T4r;
294 T4v = FNMS(KP250000000, T4u, T4r);
295 T1J = T1F - T1G;
296 T1H = T1F + T1G;
297 }
298 }
299 }
300 {
301 E T38, T3b, T39, T3f, T36, T3e, T3a;
302 {
303 E T28, T3r, T3o, T3v, T3p, T2b, T2k, T35, T3l, T2H, T2r, T2j, T2z, T2D, T2G;
304 E T2X, T2F, T2T, T32, T3h, T3k, T31, T3d, T3j, T3t, T1x, T2u, T1O, T2x, T2v;
305 E T1y, T2B, T29, T2J, T2M, T2R, T2N, T2V;
306 {
307 E T2l, T1I, T18, T2q, T34, T17, T16, T3n;
308 T28 = T24 + T27;
309 T2l = FNMS(KP250000000, T24, T27);
310 T3r = T1H + T1E;
311 T1I = FNMS(KP250000000, T1H, T1E);
312 T18 = TU - T15;
313 T16 = TU + T15;
314 T3n = W[8];
315 T2q = FNMS(KP618033988, T2p, T2o);
316 T34 = FMA(KP618033988, T2o, T2p);
317 T17 = FNMS(KP250000000, T16, TJ);
318 T3o = TJ + T16;
319 T3v = T3n * T3r;
320 T3p = T3n * T3o;
321 {
322 E T2Y, T2E, T3i, T30;
323 {
324 E T2e, T33, T2n, T2i;
325 T2Y = FMA(KP559016994, T2d, T2c);
326 T2e = FNMS(KP559016994, T2d, T2c);
327 T2b = W[14];
328 T2k = W[15];
329 T33 = FMA(KP559016994, T2m, T2l);
330 T2n = FNMS(KP559016994, T2m, T2l);
331 T2E = FMA(KP951056516, T2h, T2e);
332 T2i = FNMS(KP951056516, T2h, T2e);
333 T35 = FMA(KP951056516, T34, T33);
334 T3l = FNMS(KP951056516, T34, T33);
335 T2H = FNMS(KP951056516, T2q, T2n);
336 T2r = FMA(KP951056516, T2q, T2n);
337 T2j = T2b * T2i;
338 T2z = T2k * T2i;
339 T2D = W[22];
340 T2G = W[23];
341 }
342 T2X = W[30];
343 T2F = T2D * T2E;
344 T2T = T2G * T2E;
345 T3i = FMA(KP951056516, T2Z, T2Y);
346 T30 = FNMS(KP951056516, T2Z, T2Y);
347 T32 = W[31];
348 T3h = W[6];
349 T3k = W[7];
350 T31 = T2X * T30;
351 T3d = T32 * T30;
352 T3j = T3h * T3i;
353 T3t = T3k * T3i;
354 }
355 {
356 E T2K, T2P, TE, T19, T1K, T2t, T37;
357 T2K = FNMS(KP559016994, T18, T17);
358 T19 = FMA(KP559016994, T18, T17);
359 T1K = FMA(KP559016994, T1J, T1I);
360 T2P = FNMS(KP559016994, T1J, T1I);
361 TE = W[0];
362 T2t = W[16];
363 T1x = FMA(KP951056516, T1w, T19);
364 T2u = FNMS(KP951056516, T1w, T19);
365 T1O = FNMS(KP951056516, T1N, T1K);
366 T2x = FMA(KP951056516, T1N, T1K);
367 T2v = T2t * T2u;
368 T1y = TE * T1x;
369 T2B = T2t * T2x;
370 T29 = TE * T1O;
371 T2J = W[24];
372 T37 = W[32];
373 T2M = FMA(KP951056516, T2L, T2K);
374 T38 = FNMS(KP951056516, T2L, T2K);
375 T2R = FNMS(KP951056516, T2Q, T2P);
376 T3b = FMA(KP951056516, T2Q, T2P);
377 T39 = T37 * T38;
378 T2N = T2J * T2M;
379 T3f = T37 * T3b;
380 }
381 }
382 T2V = T2J * T2R;
383 {
384 E T3m, T3u, T3q, T2a, T1P, T1z;
385 T1z = W[1];
386 T3m = FNMS(T3k, T3l, T3j);
387 T3u = FMA(T3h, T3l, T3t);
388 T3q = W[9];
389 T2a = FNMS(T1z, T1x, T29);
390 T1P = FMA(T1z, T1O, T1y);
391 {
392 E T2s, T2A, T2w, T3w, T3s;
393 T2s = FNMS(T2k, T2r, T2j);
394 T3w = FNMS(T3q, T3o, T3v);
395 T3s = FMA(T3q, T3r, T3p);
396 Im[0] = T2a - T28;
397 Ip[0] = T28 + T2a;
398 Rm[0] = TD + T1P;
399 Rp[0] = TD - T1P;
400 Im[WS(rs, 2)] = T3w - T3u;
401 Ip[WS(rs, 2)] = T3u + T3w;
402 Rm[WS(rs, 2)] = T3m + T3s;
403 Rp[WS(rs, 2)] = T3m - T3s;
404 T2A = FMA(T2b, T2r, T2z);
405 T2w = W[17];
406 {
407 E T2I, T2U, T2O, T2C, T2y, T2W, T2S;
408 T2I = FNMS(T2G, T2H, T2F);
409 T2U = FMA(T2D, T2H, T2T);
410 T2O = W[25];
411 T2C = FNMS(T2w, T2u, T2B);
412 T2y = FMA(T2w, T2x, T2v);
413 T36 = FNMS(T32, T35, T31);
414 T2W = FNMS(T2O, T2M, T2V);
415 T2S = FMA(T2O, T2R, T2N);
416 Im[WS(rs, 4)] = T2C - T2A;
417 Ip[WS(rs, 4)] = T2A + T2C;
418 Rm[WS(rs, 4)] = T2s + T2y;
419 Rp[WS(rs, 4)] = T2s - T2y;
420 Im[WS(rs, 6)] = T2W - T2U;
421 Ip[WS(rs, 6)] = T2U + T2W;
422 Rm[WS(rs, 6)] = T2I + T2S;
423 Rp[WS(rs, 6)] = T2I - T2S;
424 T3e = FMA(T2X, T35, T3d);
425 T3a = W[33];
426 }
427 }
428 }
429 }
430 {
431 E T55, T51, T54, T53, T5h, T5P, T5J, T3x, T4P, T5F, T5p, T43, T3R, T3S, T5l;
432 E T5o, T4D, T5n, T5x, T4H, T4M, T5B, T5E, T4L, T4X, T5D, T5N, T4S, T4o, T4V;
433 E T4B, T4T, T4p, T4Z, T4F, T57, T5a, T5f, T5b, T5j;
434 {
435 E T3X, T4O, T42, T3g, T3c, T5H;
436 T55 = T3W + T3T;
437 T3X = FNMS(KP250000000, T3W, T3T);
438 T51 = W[18];
439 T3g = FNMS(T3a, T38, T3f);
440 T3c = FMA(T3a, T3b, T39);
441 T54 = W[19];
442 T53 = T51 * T52;
443 Im[WS(rs, 8)] = T3g - T3e;
444 Ip[WS(rs, 8)] = T3e + T3g;
445 Rm[WS(rs, 8)] = T36 + T3c;
446 Rp[WS(rs, 8)] = T36 - T3c;
447 T5h = T54 * T52;
448 T5H = W[28];
449 T4O = FMA(KP618033988, T40, T41);
450 T42 = FNMS(KP618033988, T41, T40);
451 T5P = T5H * T5L;
452 T5J = T5H * T5I;
453 {
454 E T4I, T5m, T3Q, T3I, T3Z, T4N, T4K, T5C;
455 T3I = FNMS(KP559016994, T3H, T3G);
456 T4I = FMA(KP559016994, T3H, T3G);
457 T3Z = FNMS(KP559016994, T3Y, T3X);
458 T4N = FMA(KP559016994, T3Y, T3X);
459 T3x = W[2];
460 T5m = FNMS(KP951056516, T3P, T3I);
461 T3Q = FMA(KP951056516, T3P, T3I);
462 T4P = FMA(KP951056516, T4O, T4N);
463 T5F = FNMS(KP951056516, T4O, T4N);
464 T5p = FMA(KP951056516, T42, T3Z);
465 T43 = FNMS(KP951056516, T42, T3Z);
466 T3R = T3x * T3Q;
467 T3S = W[3];
468 T5l = W[34];
469 T5o = W[35];
470 T4D = T3S * T3Q;
471 T5n = T5l * T5m;
472 T5x = T5o * T5m;
473 T4K = FNMS(KP951056516, T4J, T4I);
474 T5C = FMA(KP951056516, T4J, T4I);
475 T4H = W[10];
476 T4M = W[11];
477 T5B = W[26];
478 T5E = W[27];
479 T4L = T4H * T4K;
480 T4X = T4M * T4K;
481 T5D = T5B * T5C;
482 T5N = T5E * T5C;
483 }
484 {
485 E T58, T5d, T45, T4g, T4x, T4R, T5r;
486 T4g = FNMS(KP559016994, T4f, T4e);
487 T58 = FMA(KP559016994, T4f, T4e);
488 T5d = FMA(KP559016994, T4w, T4v);
489 T4x = FNMS(KP559016994, T4w, T4v);
490 T45 = W[4];
491 T4R = W[12];
492 T4S = FNMS(KP951056516, T4n, T4g);
493 T4o = FMA(KP951056516, T4n, T4g);
494 T4V = FMA(KP951056516, T4A, T4x);
495 T4B = FNMS(KP951056516, T4A, T4x);
496 T4T = T4R * T4S;
497 T4p = T45 * T4o;
498 T4Z = T4R * T4V;
499 T4F = T45 * T4B;
500 T57 = W[20];
501 T5r = W[36];
502 T5s = FNMS(KP951056516, T59, T58);
503 T5a = FMA(KP951056516, T59, T58);
504 T5v = FMA(KP951056516, T5e, T5d);
505 T5f = FNMS(KP951056516, T5e, T5d);
506 T5t = T5r * T5s;
507 T5b = T57 * T5a;
508 T5z = T5r * T5v;
509 }
510 }
511 T5j = T57 * T5f;
512 {
513 E T44, T4E, T5G, T5O, T5K, T4G, T4C, T4q;
514 T44 = FNMS(T3S, T43, T3R);
515 T4E = FMA(T3x, T43, T4D);
516 T4q = W[5];
517 T5G = FNMS(T5E, T5F, T5D);
518 T5O = FMA(T5B, T5F, T5N);
519 T5K = W[29];
520 T4G = FNMS(T4q, T4o, T4F);
521 T4C = FMA(T4q, T4B, T4p);
522 {
523 E T4Q, T4Y, T4U, T5Q, T5M;
524 T4Q = FNMS(T4M, T4P, T4L);
525 T5Q = FNMS(T5K, T5I, T5P);
526 T5M = FMA(T5K, T5L, T5J);
527 Im[WS(rs, 1)] = T4G - T4E;
528 Ip[WS(rs, 1)] = T4E + T4G;
529 Rm[WS(rs, 1)] = T44 + T4C;
530 Rp[WS(rs, 1)] = T44 - T4C;
531 Im[WS(rs, 7)] = T5Q - T5O;
532 Ip[WS(rs, 7)] = T5O + T5Q;
533 Rm[WS(rs, 7)] = T5G + T5M;
534 Rp[WS(rs, 7)] = T5G - T5M;
535 T4Y = FMA(T4H, T4P, T4X);
536 T4U = W[13];
537 {
538 E T56, T5i, T5c, T50, T4W, T5k, T5g;
539 T56 = FNMS(T54, T55, T53);
540 T5i = FMA(T51, T55, T5h);
541 T5c = W[21];
542 T50 = FNMS(T4U, T4S, T4Z);
543 T4W = FMA(T4U, T4V, T4T);
544 T5q = FNMS(T5o, T5p, T5n);
545 T5k = FNMS(T5c, T5a, T5j);
546 T5g = FMA(T5c, T5f, T5b);
547 Im[WS(rs, 3)] = T50 - T4Y;
548 Ip[WS(rs, 3)] = T4Y + T50;
549 Rm[WS(rs, 3)] = T4Q + T4W;
550 Rp[WS(rs, 3)] = T4Q - T4W;
551 Im[WS(rs, 5)] = T5k - T5i;
552 Ip[WS(rs, 5)] = T5i + T5k;
553 Rm[WS(rs, 5)] = T56 + T5g;
554 Rp[WS(rs, 5)] = T56 - T5g;
555 T5y = FMA(T5l, T5p, T5x);
556 T5u = W[37];
557 }
558 }
559 }
560 }
561 }
562 }
563 T5A = FNMS(T5u, T5s, T5z);
564 T5w = FMA(T5u, T5v, T5t);
565 Im[WS(rs, 9)] = T5A - T5y;
566 Ip[WS(rs, 9)] = T5y + T5A;
567 Rm[WS(rs, 9)] = T5q + T5w;
568 Rp[WS(rs, 9)] = T5q - T5w;
569 }
570 }
571 }
572
573 static const tw_instr twinstr[] = {
574 {TW_FULL, 1, 20},
575 {TW_NEXT, 1, 0}
576 };
577
578 static const hc2c_desc desc = { 20, "hc2cbdft_20", twinstr, &GENUS, {176, 38, 110, 0} };
579
580 void X(codelet_hc2cbdft_20) (planner *p) {
581 X(khc2c_register) (p, hc2cbdft_20, &desc, HC2C_VIA_DFT);
582 }
583 #else /* HAVE_FMA */
584
585 /* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 20 -dif -name hc2cbdft_20 -include hc2cb.h */
586
587 /*
588 * This function contains 286 FP additions, 124 FP multiplications,
589 * (or, 224 additions, 62 multiplications, 62 fused multiply/add),
590 * 89 stack variables, 4 constants, and 80 memory accesses
591 */
592 #include "hc2cb.h"
593
594 static void hc2cbdft_20(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
595 {
596 DK(KP250000000, +0.250000000000000000000000000000000000000000000);
597 DK(KP951056516, +0.951056516295153572116439333379382143405698634);
598 DK(KP587785252, +0.587785252292473129168705954639072768597652438);
599 DK(KP559016994, +0.559016994374947424102293417182819058860154590);
600 {
601 INT m;
602 for (m = mb, W = W + ((mb - 1) * 38); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 38, MAKE_VOLATILE_STRIDE(80, rs)) {
603 E T7, T3N, T4a, T16, T1G, T3g, T3D, T26, T1k, T3A, T3B, T1v, T2e, T48, T47;
604 E T2d, T1L, T43, T40, T1K, T2l, T3t, T2m, T3w, T3n, T3p, TC, T2b, T4d, T4f;
605 E T23, T2j, T1B, T1H, T3U, T3W, T3G, T3I, T11, T17;
606 {
607 E T3, T1C, T15, T24, T6, T12, T1F, T25;
608 {
609 E T1, T2, T13, T14;
610 T1 = Rp[0];
611 T2 = Rm[WS(rs, 9)];
612 T3 = T1 + T2;
613 T1C = T1 - T2;
614 T13 = Ip[0];
615 T14 = Im[WS(rs, 9)];
616 T15 = T13 + T14;
617 T24 = T13 - T14;
618 }
619 {
620 E T4, T5, T1D, T1E;
621 T4 = Rp[WS(rs, 5)];
622 T5 = Rm[WS(rs, 4)];
623 T6 = T4 + T5;
624 T12 = T4 - T5;
625 T1D = Ip[WS(rs, 5)];
626 T1E = Im[WS(rs, 4)];
627 T1F = T1D + T1E;
628 T25 = T1D - T1E;
629 }
630 T7 = T3 + T6;
631 T3N = T15 - T12;
632 T4a = T1C + T1F;
633 T16 = T12 + T15;
634 T1G = T1C - T1F;
635 T3g = T3 - T6;
636 T3D = T24 - T25;
637 T26 = T24 + T25;
638 }
639 {
640 E Te, T3O, T3Y, TJ, T1e, T3h, T3r, T1R, TA, T3S, T42, TZ, T1u, T3l, T3v;
641 E T21, Tl, T3P, T3Z, TO, T1j, T3i, T3s, T1U, Tt, T3R, T41, TU, T1p, T3k;
642 E T3u, T1Y;
643 {
644 E Ta, T1a, TI, T1P, Td, TF, T1d, T1Q;
645 {
646 E T8, T9, TG, TH;
647 T8 = Rp[WS(rs, 4)];
648 T9 = Rm[WS(rs, 5)];
649 Ta = T8 + T9;
650 T1a = T8 - T9;
651 TG = Ip[WS(rs, 4)];
652 TH = Im[WS(rs, 5)];
653 TI = TG + TH;
654 T1P = TG - TH;
655 }
656 {
657 E Tb, Tc, T1b, T1c;
658 Tb = Rp[WS(rs, 9)];
659 Tc = Rm[0];
660 Td = Tb + Tc;
661 TF = Tb - Tc;
662 T1b = Ip[WS(rs, 9)];
663 T1c = Im[0];
664 T1d = T1b + T1c;
665 T1Q = T1b - T1c;
666 }
667 Te = Ta + Td;
668 T3O = TI - TF;
669 T3Y = T1a + T1d;
670 TJ = TF + TI;
671 T1e = T1a - T1d;
672 T3h = Ta - Td;
673 T3r = T1P - T1Q;
674 T1R = T1P + T1Q;
675 }
676 {
677 E Tw, T1q, TY, T1Z, Tz, TV, T1t, T20;
678 {
679 E Tu, Tv, TW, TX;
680 Tu = Rm[WS(rs, 7)];
681 Tv = Rp[WS(rs, 2)];
682 Tw = Tu + Tv;
683 T1q = Tu - Tv;
684 TW = Im[WS(rs, 7)];
685 TX = Ip[WS(rs, 2)];
686 TY = TW + TX;
687 T1Z = TX - TW;
688 }
689 {
690 E Tx, Ty, T1r, T1s;
691 Tx = Rm[WS(rs, 2)];
692 Ty = Rp[WS(rs, 7)];
693 Tz = Tx + Ty;
694 TV = Tx - Ty;
695 T1r = Im[WS(rs, 2)];
696 T1s = Ip[WS(rs, 7)];
697 T1t = T1r + T1s;
698 T20 = T1s - T1r;
699 }
700 TA = Tw + Tz;
701 T3S = TV + TY;
702 T42 = T1q - T1t;
703 TZ = TV - TY;
704 T1u = T1q + T1t;
705 T3l = Tw - Tz;
706 T3v = T1Z - T20;
707 T21 = T1Z + T20;
708 }
709 {
710 E Th, T1f, TN, T1S, Tk, TK, T1i, T1T;
711 {
712 E Tf, Tg, TL, TM;
713 Tf = Rm[WS(rs, 3)];
714 Tg = Rp[WS(rs, 6)];
715 Th = Tf + Tg;
716 T1f = Tf - Tg;
717 TL = Im[WS(rs, 3)];
718 TM = Ip[WS(rs, 6)];
719 TN = TL + TM;
720 T1S = TM - TL;
721 }
722 {
723 E Ti, Tj, T1g, T1h;
724 Ti = Rp[WS(rs, 1)];
725 Tj = Rm[WS(rs, 8)];
726 Tk = Ti + Tj;
727 TK = Ti - Tj;
728 T1g = Ip[WS(rs, 1)];
729 T1h = Im[WS(rs, 8)];
730 T1i = T1g + T1h;
731 T1T = T1g - T1h;
732 }
733 Tl = Th + Tk;
734 T3P = TK + TN;
735 T3Z = T1f + T1i;
736 TO = TK - TN;
737 T1j = T1f - T1i;
738 T3i = Th - Tk;
739 T3s = T1S - T1T;
740 T1U = T1S + T1T;
741 }
742 {
743 E Tp, T1l, TT, T1W, Ts, TQ, T1o, T1X;
744 {
745 E Tn, To, TR, TS;
746 Tn = Rp[WS(rs, 8)];
747 To = Rm[WS(rs, 1)];
748 Tp = Tn + To;
749 T1l = Tn - To;
750 TR = Ip[WS(rs, 8)];
751 TS = Im[WS(rs, 1)];
752 TT = TR + TS;
753 T1W = TR - TS;
754 }
755 {
756 E Tq, Tr, T1m, T1n;
757 Tq = Rm[WS(rs, 6)];
758 Tr = Rp[WS(rs, 3)];
759 Ts = Tq + Tr;
760 TQ = Tq - Tr;
761 T1m = Im[WS(rs, 6)];
762 T1n = Ip[WS(rs, 3)];
763 T1o = T1m + T1n;
764 T1X = T1n - T1m;
765 }
766 Tt = Tp + Ts;
767 T3R = TT - TQ;
768 T41 = T1l - T1o;
769 TU = TQ + TT;
770 T1p = T1l + T1o;
771 T3k = Tp - Ts;
772 T3u = T1W - T1X;
773 T1Y = T1W + T1X;
774 }
775 T1k = T1e - T1j;
776 T3A = T3h - T3i;
777 T3B = T3k - T3l;
778 T1v = T1p - T1u;
779 T2e = T1Y - T21;
780 T48 = T3R + T3S;
781 T47 = T3O + T3P;
782 T2d = T1R - T1U;
783 T1L = TU - TZ;
784 T43 = T41 - T42;
785 T40 = T3Y - T3Z;
786 T1K = TJ - TO;
787 T2l = Te - Tl;
788 T3t = T3r - T3s;
789 T2m = Tt - TA;
790 T3w = T3u - T3v;
791 {
792 E T3j, T3m, Tm, TB;
793 T3j = T3h + T3i;
794 T3m = T3k + T3l;
795 T3n = T3j + T3m;
796 T3p = KP559016994 * (T3j - T3m);
797 Tm = Te + Tl;
798 TB = Tt + TA;
799 TC = Tm + TB;
800 T2b = KP559016994 * (Tm - TB);
801 }
802 {
803 E T4b, T4c, T3Q, T3T;
804 T4b = T3Y + T3Z;
805 T4c = T41 + T42;
806 T4d = T4b + T4c;
807 T4f = KP559016994 * (T4b - T4c);
808 {
809 E T1V, T22, T1z, T1A;
810 T1V = T1R + T1U;
811 T22 = T1Y + T21;
812 T23 = T1V + T22;
813 T2j = KP559016994 * (T1V - T22);
814 T1z = T1e + T1j;
815 T1A = T1p + T1u;
816 T1B = KP559016994 * (T1z - T1A);
817 T1H = T1z + T1A;
818 }
819 T3Q = T3O - T3P;
820 T3T = T3R - T3S;
821 T3U = T3Q + T3T;
822 T3W = KP559016994 * (T3Q - T3T);
823 {
824 E T3E, T3F, TP, T10;
825 T3E = T3r + T3s;
826 T3F = T3u + T3v;
827 T3G = T3E + T3F;
828 T3I = KP559016994 * (T3E - T3F);
829 TP = TJ + TO;
830 T10 = TU + TZ;
831 T11 = KP559016994 * (TP - T10);
832 T17 = TP + T10;
833 }
834 }
835 }
836 {
837 E TD, T27, T3c, T3e, T2o, T36, T2A, T2U, T1N, T2Z, T2t, T2J, T1x, T2X, T2r;
838 E T2F, T2g, T34, T2y, T2Q;
839 TD = T7 + TC;
840 T27 = T23 + T26;
841 {
842 E T39, T3b, T38, T3a;
843 T39 = T16 + T17;
844 T3b = T1H + T1G;
845 T38 = W[8];
846 T3a = W[9];
847 T3c = FMA(T38, T39, T3a * T3b);
848 T3e = FNMS(T3a, T39, T38 * T3b);
849 }
850 {
851 E T2n, T2S, T2k, T2T, T2i;
852 T2n = FNMS(KP951056516, T2m, KP587785252 * T2l);
853 T2S = FMA(KP951056516, T2l, KP587785252 * T2m);
854 T2i = FNMS(KP250000000, T23, T26);
855 T2k = T2i - T2j;
856 T2T = T2j + T2i;
857 T2o = T2k - T2n;
858 T36 = T2T - T2S;
859 T2A = T2n + T2k;
860 T2U = T2S + T2T;
861 }
862 {
863 E T1M, T2H, T1J, T2I, T1I;
864 T1M = FMA(KP951056516, T1K, KP587785252 * T1L);
865 T2H = FNMS(KP951056516, T1L, KP587785252 * T1K);
866 T1I = FNMS(KP250000000, T1H, T1G);
867 T1J = T1B + T1I;
868 T2I = T1I - T1B;
869 T1N = T1J - T1M;
870 T2Z = T2I - T2H;
871 T2t = T1M + T1J;
872 T2J = T2H + T2I;
873 }
874 {
875 E T1w, T2E, T19, T2D, T18;
876 T1w = FMA(KP951056516, T1k, KP587785252 * T1v);
877 T2E = FNMS(KP951056516, T1v, KP587785252 * T1k);
878 T18 = FNMS(KP250000000, T17, T16);
879 T19 = T11 + T18;
880 T2D = T18 - T11;
881 T1x = T19 + T1w;
882 T2X = T2D + T2E;
883 T2r = T19 - T1w;
884 T2F = T2D - T2E;
885 }
886 {
887 E T2f, T2P, T2c, T2O, T2a;
888 T2f = FNMS(KP951056516, T2e, KP587785252 * T2d);
889 T2P = FMA(KP951056516, T2d, KP587785252 * T2e);
890 T2a = FNMS(KP250000000, TC, T7);
891 T2c = T2a - T2b;
892 T2O = T2b + T2a;
893 T2g = T2c + T2f;
894 T34 = T2O + T2P;
895 T2y = T2c - T2f;
896 T2Q = T2O - T2P;
897 }
898 {
899 E T1O, T28, TE, T1y;
900 TE = W[0];
901 T1y = W[1];
902 T1O = FMA(TE, T1x, T1y * T1N);
903 T28 = FNMS(T1y, T1x, TE * T1N);
904 Rp[0] = TD - T1O;
905 Ip[0] = T27 + T28;
906 Rm[0] = TD + T1O;
907 Im[0] = T28 - T27;
908 }
909 {
910 E T37, T3d, T33, T35;
911 T33 = W[6];
912 T35 = W[7];
913 T37 = FNMS(T35, T36, T33 * T34);
914 T3d = FMA(T35, T34, T33 * T36);
915 Rp[WS(rs, 2)] = T37 - T3c;
916 Ip[WS(rs, 2)] = T3d + T3e;
917 Rm[WS(rs, 2)] = T37 + T3c;
918 Im[WS(rs, 2)] = T3e - T3d;
919 }
920 {
921 E T2p, T2v, T2u, T2w;
922 {
923 E T29, T2h, T2q, T2s;
924 T29 = W[14];
925 T2h = W[15];
926 T2p = FNMS(T2h, T2o, T29 * T2g);
927 T2v = FMA(T2h, T2g, T29 * T2o);
928 T2q = W[16];
929 T2s = W[17];
930 T2u = FMA(T2q, T2r, T2s * T2t);
931 T2w = FNMS(T2s, T2r, T2q * T2t);
932 }
933 Rp[WS(rs, 4)] = T2p - T2u;
934 Ip[WS(rs, 4)] = T2v + T2w;
935 Rm[WS(rs, 4)] = T2p + T2u;
936 Im[WS(rs, 4)] = T2w - T2v;
937 }
938 {
939 E T2B, T2L, T2K, T2M;
940 {
941 E T2x, T2z, T2C, T2G;
942 T2x = W[22];
943 T2z = W[23];
944 T2B = FNMS(T2z, T2A, T2x * T2y);
945 T2L = FMA(T2z, T2y, T2x * T2A);
946 T2C = W[24];
947 T2G = W[25];
948 T2K = FMA(T2C, T2F, T2G * T2J);
949 T2M = FNMS(T2G, T2F, T2C * T2J);
950 }
951 Rp[WS(rs, 6)] = T2B - T2K;
952 Ip[WS(rs, 6)] = T2L + T2M;
953 Rm[WS(rs, 6)] = T2B + T2K;
954 Im[WS(rs, 6)] = T2M - T2L;
955 }
956 {
957 E T2V, T31, T30, T32;
958 {
959 E T2N, T2R, T2W, T2Y;
960 T2N = W[30];
961 T2R = W[31];
962 T2V = FNMS(T2R, T2U, T2N * T2Q);
963 T31 = FMA(T2R, T2Q, T2N * T2U);
964 T2W = W[32];
965 T2Y = W[33];
966 T30 = FMA(T2W, T2X, T2Y * T2Z);
967 T32 = FNMS(T2Y, T2X, T2W * T2Z);
968 }
969 Rp[WS(rs, 8)] = T2V - T30;
970 Ip[WS(rs, 8)] = T31 + T32;
971 Rm[WS(rs, 8)] = T2V + T30;
972 Im[WS(rs, 8)] = T32 - T31;
973 }
974 }
975 {
976 E T4F, T4P, T5c, T5e, T3y, T54, T4o, T4S, T4h, T4Z, T4x, T4N, T45, T4X, T4v;
977 E T4J, T3K, T56, T4s, T4U;
978 {
979 E T4C, T4E, T4B, T4D;
980 T4C = T3g + T3n;
981 T4E = T3G + T3D;
982 T4B = W[18];
983 T4D = W[19];
984 T4F = FNMS(T4D, T4E, T4B * T4C);
985 T4P = FMA(T4D, T4C, T4B * T4E);
986 }
987 {
988 E T59, T5b, T58, T5a;
989 T59 = T3N + T3U;
990 T5b = T4d + T4a;
991 T58 = W[28];
992 T5a = W[29];
993 T5c = FMA(T58, T59, T5a * T5b);
994 T5e = FNMS(T5a, T59, T58 * T5b);
995 }
996 {
997 E T3x, T4n, T3q, T4m, T3o;
998 T3x = FNMS(KP951056516, T3w, KP587785252 * T3t);
999 T4n = FMA(KP951056516, T3t, KP587785252 * T3w);
1000 T3o = FNMS(KP250000000, T3n, T3g);
1001 T3q = T3o - T3p;
1002 T4m = T3p + T3o;
1003 T3y = T3q - T3x;
1004 T54 = T4m + T4n;
1005 T4o = T4m - T4n;
1006 T4S = T3q + T3x;
1007 }
1008 {
1009 E T49, T4M, T4g, T4L, T4e;
1010 T49 = FNMS(KP951056516, T48, KP587785252 * T47);
1011 T4M = FMA(KP951056516, T47, KP587785252 * T48);
1012 T4e = FNMS(KP250000000, T4d, T4a);
1013 T4g = T4e - T4f;
1014 T4L = T4f + T4e;
1015 T4h = T49 + T4g;
1016 T4Z = T4M + T4L;
1017 T4x = T4g - T49;
1018 T4N = T4L - T4M;
1019 }
1020 {
1021 E T44, T4I, T3X, T4H, T3V;
1022 T44 = FNMS(KP951056516, T43, KP587785252 * T40);
1023 T4I = FMA(KP951056516, T40, KP587785252 * T43);
1024 T3V = FNMS(KP250000000, T3U, T3N);
1025 T3X = T3V - T3W;
1026 T4H = T3W + T3V;
1027 T45 = T3X - T44;
1028 T4X = T4H - T4I;
1029 T4v = T3X + T44;
1030 T4J = T4H + T4I;
1031 }
1032 {
1033 E T3C, T4q, T3J, T4r, T3H;
1034 T3C = FNMS(KP951056516, T3B, KP587785252 * T3A);
1035 T4q = FMA(KP951056516, T3A, KP587785252 * T3B);
1036 T3H = FNMS(KP250000000, T3G, T3D);
1037 T3J = T3H - T3I;
1038 T4r = T3I + T3H;
1039 T3K = T3C + T3J;
1040 T56 = T4r - T4q;
1041 T4s = T4q + T4r;
1042 T4U = T3J - T3C;
1043 }
1044 {
1045 E T4O, T4Q, T4G, T4K;
1046 T4G = W[20];
1047 T4K = W[21];
1048 T4O = FMA(T4G, T4J, T4K * T4N);
1049 T4Q = FNMS(T4K, T4J, T4G * T4N);
1050 Rp[WS(rs, 5)] = T4F - T4O;
1051 Ip[WS(rs, 5)] = T4P + T4Q;
1052 Rm[WS(rs, 5)] = T4F + T4O;
1053 Im[WS(rs, 5)] = T4Q - T4P;
1054 }
1055 {
1056 E T57, T5d, T53, T55;
1057 T53 = W[26];
1058 T55 = W[27];
1059 T57 = FNMS(T55, T56, T53 * T54);
1060 T5d = FMA(T55, T54, T53 * T56);
1061 Rp[WS(rs, 7)] = T57 - T5c;
1062 Ip[WS(rs, 7)] = T5d + T5e;
1063 Rm[WS(rs, 7)] = T57 + T5c;
1064 Im[WS(rs, 7)] = T5e - T5d;
1065 }
1066 {
1067 E T3L, T4j, T4i, T4k;
1068 {
1069 E T3f, T3z, T3M, T46;
1070 T3f = W[2];
1071 T3z = W[3];
1072 T3L = FNMS(T3z, T3K, T3f * T3y);
1073 T4j = FMA(T3z, T3y, T3f * T3K);
1074 T3M = W[4];
1075 T46 = W[5];
1076 T4i = FMA(T3M, T45, T46 * T4h);
1077 T4k = FNMS(T46, T45, T3M * T4h);
1078 }
1079 Rp[WS(rs, 1)] = T3L - T4i;
1080 Ip[WS(rs, 1)] = T4j + T4k;
1081 Rm[WS(rs, 1)] = T3L + T4i;
1082 Im[WS(rs, 1)] = T4k - T4j;
1083 }
1084 {
1085 E T4t, T4z, T4y, T4A;
1086 {
1087 E T4l, T4p, T4u, T4w;
1088 T4l = W[10];
1089 T4p = W[11];
1090 T4t = FNMS(T4p, T4s, T4l * T4o);
1091 T4z = FMA(T4p, T4o, T4l * T4s);
1092 T4u = W[12];
1093 T4w = W[13];
1094 T4y = FMA(T4u, T4v, T4w * T4x);
1095 T4A = FNMS(T4w, T4v, T4u * T4x);
1096 }
1097 Rp[WS(rs, 3)] = T4t - T4y;
1098 Ip[WS(rs, 3)] = T4z + T4A;
1099 Rm[WS(rs, 3)] = T4t + T4y;
1100 Im[WS(rs, 3)] = T4A - T4z;
1101 }
1102 {
1103 E T4V, T51, T50, T52;
1104 {
1105 E T4R, T4T, T4W, T4Y;
1106 T4R = W[34];
1107 T4T = W[35];
1108 T4V = FNMS(T4T, T4U, T4R * T4S);
1109 T51 = FMA(T4T, T4S, T4R * T4U);
1110 T4W = W[36];
1111 T4Y = W[37];
1112 T50 = FMA(T4W, T4X, T4Y * T4Z);
1113 T52 = FNMS(T4Y, T4X, T4W * T4Z);
1114 }
1115 Rp[WS(rs, 9)] = T4V - T50;
1116 Ip[WS(rs, 9)] = T51 + T52;
1117 Rm[WS(rs, 9)] = T4V + T50;
1118 Im[WS(rs, 9)] = T52 - T51;
1119 }
1120 }
1121 }
1122 }
1123 }
1124
1125 static const tw_instr twinstr[] = {
1126 {TW_FULL, 1, 20},
1127 {TW_NEXT, 1, 0}
1128 };
1129
1130 static const hc2c_desc desc = { 20, "hc2cbdft_20", twinstr, &GENUS, {224, 62, 62, 0} };
1131
1132 void X(codelet_hc2cbdft_20) (planner *p) {
1133 X(khc2c_register) (p, hc2cbdft_20, &desc, HC2C_VIA_DFT);
1134 }
1135 #endif /* HAVE_FMA */