Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.3/rdft/scalar/r2cb/hc2cbdft_16.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
9:c0fb53affa76 | 10:37bf6b4a2645 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-11 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Sun Nov 25 07:42:05 EST 2012 */ | |
23 | |
24 #include "codelet-rdft.h" | |
25 | |
26 #ifdef HAVE_FMA | |
27 | |
28 /* Generated by: ../../../genfft/gen_hc2cdft.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -n 16 -dif -name hc2cbdft_16 -include hc2cb.h */ | |
29 | |
30 /* | |
31 * This function contains 206 FP additions, 100 FP multiplications, | |
32 * (or, 136 additions, 30 multiplications, 70 fused multiply/add), | |
33 * 97 stack variables, 3 constants, and 64 memory accesses | |
34 */ | |
35 #include "hc2cb.h" | |
36 | |
37 static void hc2cbdft_16(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) | |
38 { | |
39 DK(KP923879532, +0.923879532511286756128183189396788286822416626); | |
40 DK(KP414213562, +0.414213562373095048801688724209698078569671875); | |
41 DK(KP707106781, +0.707106781186547524400844362104849039284835938); | |
42 { | |
43 INT m; | |
44 for (m = mb, W = W + ((mb - 1) * 30); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 30, MAKE_VOLATILE_STRIDE(64, rs)) { | |
45 E T3w, T3z, T2Y, T3D, T3x, T3m, T3u, T3C, T3y, T3o, T3k, T3E, T3A; | |
46 { | |
47 E T20, Tf, T3Q, T32, T3V, T3f, T2a, TN, T2f, T1m, T3G, T2G, T3L, T2T, T26; | |
48 E T1F, T3M, T2N, T3H, T2W, T25, Tu, T1n, T1o, T3R, T3i, T2g, T1a, T21, T1y; | |
49 E T3W, T39; | |
50 { | |
51 E T2R, T1B, T2S, T1E; | |
52 { | |
53 E T1e, T3, T1C, TA, Tx, T6, T1D, T1h, Td, T1A, TL, T1k, Ta, TC, TF; | |
54 E T1z; | |
55 { | |
56 E T4, T5, T1f, T1g; | |
57 { | |
58 E T1, T2, Ty, Tz; | |
59 T1 = Rp[0]; | |
60 T2 = Rm[WS(rs, 7)]; | |
61 Ty = Ip[0]; | |
62 Tz = Im[WS(rs, 7)]; | |
63 T4 = Rp[WS(rs, 4)]; | |
64 T1e = T1 - T2; | |
65 T3 = T1 + T2; | |
66 T1C = Ty - Tz; | |
67 TA = Ty + Tz; | |
68 T5 = Rm[WS(rs, 3)]; | |
69 } | |
70 T1f = Ip[WS(rs, 4)]; | |
71 T1g = Im[WS(rs, 3)]; | |
72 { | |
73 E Tb, Tc, TI, TJ; | |
74 Tb = Rm[WS(rs, 1)]; | |
75 Tx = T4 - T5; | |
76 T6 = T4 + T5; | |
77 T1D = T1f - T1g; | |
78 T1h = T1f + T1g; | |
79 Tc = Rp[WS(rs, 6)]; | |
80 TI = Im[WS(rs, 1)]; | |
81 TJ = Ip[WS(rs, 6)]; | |
82 { | |
83 E T8, TH, TK, T9, TD, TE; | |
84 T8 = Rp[WS(rs, 2)]; | |
85 Td = Tb + Tc; | |
86 TH = Tb - Tc; | |
87 T1A = TJ - TI; | |
88 TK = TI + TJ; | |
89 T9 = Rm[WS(rs, 5)]; | |
90 TD = Ip[WS(rs, 2)]; | |
91 TE = Im[WS(rs, 5)]; | |
92 TL = TH + TK; | |
93 T1k = TH - TK; | |
94 Ta = T8 + T9; | |
95 TC = T8 - T9; | |
96 TF = TD + TE; | |
97 T1z = TD - TE; | |
98 } | |
99 } | |
100 } | |
101 { | |
102 E T2E, TB, T1l, T1i, T3d, T3e, TM, T2F; | |
103 { | |
104 E T7, TG, Te, T30, T31, T1j; | |
105 T2E = T3 - T6; | |
106 T7 = T3 + T6; | |
107 T1j = TC - TF; | |
108 TG = TC + TF; | |
109 Te = Ta + Td; | |
110 T2R = Ta - Td; | |
111 TB = Tx + TA; | |
112 T30 = TA - Tx; | |
113 T31 = T1j - T1k; | |
114 T1l = T1j + T1k; | |
115 T1i = T1e - T1h; | |
116 T3d = T1e + T1h; | |
117 T20 = T7 - Te; | |
118 Tf = T7 + Te; | |
119 T3Q = FNMS(KP707106781, T31, T30); | |
120 T32 = FMA(KP707106781, T31, T30); | |
121 T3e = TG + TL; | |
122 TM = TG - TL; | |
123 } | |
124 T3V = FMA(KP707106781, T3e, T3d); | |
125 T3f = FNMS(KP707106781, T3e, T3d); | |
126 T2a = FNMS(KP707106781, TM, TB); | |
127 TN = FMA(KP707106781, TM, TB); | |
128 T2F = T1A - T1z; | |
129 T1B = T1z + T1A; | |
130 T2f = FNMS(KP707106781, T1l, T1i); | |
131 T1m = FMA(KP707106781, T1l, T1i); | |
132 T3G = T2E - T2F; | |
133 T2G = T2E + T2F; | |
134 T2S = T1C - T1D; | |
135 T1E = T1C + T1D; | |
136 } | |
137 } | |
138 { | |
139 E T34, TS, T2H, Tm, T1u, T2I, T33, TX, Tq, T14, Tp, T1v, T12, Tr, T15; | |
140 E T16; | |
141 { | |
142 E Tj, TT, Ti, T1s, TR, Tk, TU, TV; | |
143 { | |
144 E Tg, Th, TP, TQ; | |
145 Tg = Rp[WS(rs, 1)]; | |
146 T3L = T2S - T2R; | |
147 T2T = T2R + T2S; | |
148 T26 = T1E - T1B; | |
149 T1F = T1B + T1E; | |
150 Th = Rm[WS(rs, 6)]; | |
151 TP = Ip[WS(rs, 1)]; | |
152 TQ = Im[WS(rs, 6)]; | |
153 Tj = Rp[WS(rs, 5)]; | |
154 TT = Tg - Th; | |
155 Ti = Tg + Th; | |
156 T1s = TP - TQ; | |
157 TR = TP + TQ; | |
158 Tk = Rm[WS(rs, 2)]; | |
159 TU = Ip[WS(rs, 5)]; | |
160 TV = Im[WS(rs, 2)]; | |
161 } | |
162 { | |
163 E Tn, To, T10, T11; | |
164 Tn = Rm[0]; | |
165 { | |
166 E TO, Tl, T1t, TW; | |
167 TO = Tj - Tk; | |
168 Tl = Tj + Tk; | |
169 T1t = TU - TV; | |
170 TW = TU + TV; | |
171 T34 = TR - TO; | |
172 TS = TO + TR; | |
173 T2H = Ti - Tl; | |
174 Tm = Ti + Tl; | |
175 T1u = T1s + T1t; | |
176 T2I = T1s - T1t; | |
177 T33 = TT + TW; | |
178 TX = TT - TW; | |
179 To = Rp[WS(rs, 7)]; | |
180 } | |
181 T10 = Im[0]; | |
182 T11 = Ip[WS(rs, 7)]; | |
183 Tq = Rp[WS(rs, 3)]; | |
184 T14 = Tn - To; | |
185 Tp = Tn + To; | |
186 T1v = T11 - T10; | |
187 T12 = T10 + T11; | |
188 Tr = Rm[WS(rs, 4)]; | |
189 T15 = Ip[WS(rs, 3)]; | |
190 T16 = Im[WS(rs, 4)]; | |
191 } | |
192 } | |
193 { | |
194 E T13, T1x, T18, T35, T3g, T3h, T38, TY, T19; | |
195 { | |
196 E T2U, T2J, T37, Tt, T36, T2V, T2M, T2K, T2L; | |
197 T2U = T2H + T2I; | |
198 T2J = T2H - T2I; | |
199 { | |
200 E TZ, Ts, T1w, T17; | |
201 TZ = Tq - Tr; | |
202 Ts = Tq + Tr; | |
203 T1w = T15 - T16; | |
204 T17 = T15 + T16; | |
205 T37 = TZ + T12; | |
206 T13 = TZ - T12; | |
207 T2K = Tp - Ts; | |
208 Tt = Tp + Ts; | |
209 T1x = T1v + T1w; | |
210 T2L = T1v - T1w; | |
211 T36 = T14 + T17; | |
212 T18 = T14 - T17; | |
213 } | |
214 T2V = T2L - T2K; | |
215 T2M = T2K + T2L; | |
216 T3M = T2J - T2M; | |
217 T2N = T2J + T2M; | |
218 T3H = T2V - T2U; | |
219 T2W = T2U + T2V; | |
220 T35 = FMA(KP414213562, T34, T33); | |
221 T3g = FNMS(KP414213562, T33, T34); | |
222 T25 = Tm - Tt; | |
223 Tu = Tm + Tt; | |
224 T3h = FNMS(KP414213562, T36, T37); | |
225 T38 = FMA(KP414213562, T37, T36); | |
226 } | |
227 T1n = FNMS(KP414213562, TS, TX); | |
228 TY = FMA(KP414213562, TX, TS); | |
229 T19 = FNMS(KP414213562, T18, T13); | |
230 T1o = FMA(KP414213562, T13, T18); | |
231 T3R = T3h - T3g; | |
232 T3i = T3g + T3h; | |
233 T2g = T19 - TY; | |
234 T1a = TY + T19; | |
235 T21 = T1x - T1u; | |
236 T1y = T1u + T1x; | |
237 T3W = T35 + T38; | |
238 T39 = T35 - T38; | |
239 } | |
240 } | |
241 } | |
242 { | |
243 E T27, T22, T2c, T2u, T2x, T2h, T2s, T2A, T2w, T2B, T2v; | |
244 { | |
245 E T1K, Tv, T1G, T1N, T1Q, T1b, T2b, T1p, Tw, T1d; | |
246 T1K = Tf - Tu; | |
247 Tv = Tf + Tu; | |
248 T1G = T1y + T1F; | |
249 T1N = T1F - T1y; | |
250 T1Q = FNMS(KP923879532, T1a, TN); | |
251 T1b = FMA(KP923879532, T1a, TN); | |
252 T2b = T1n - T1o; | |
253 T1p = T1n + T1o; | |
254 Tw = W[0]; | |
255 T1d = W[1]; | |
256 { | |
257 E T1T, T1O, T1W, T1S, T1X, T1R; | |
258 { | |
259 E T1J, T1M, T1L, T1V, T1P, T1q; | |
260 T1T = FNMS(KP923879532, T1p, T1m); | |
261 T1q = FMA(KP923879532, T1p, T1m); | |
262 { | |
263 E T1c, T1I, T1H, T1r; | |
264 T1c = Tw * T1b; | |
265 T1J = W[14]; | |
266 T1H = Tw * T1q; | |
267 T1r = FMA(T1d, T1q, T1c); | |
268 T1M = W[15]; | |
269 T1L = T1J * T1K; | |
270 T1I = FNMS(T1d, T1b, T1H); | |
271 Rm[0] = Tv + T1r; | |
272 Rp[0] = Tv - T1r; | |
273 T1V = T1M * T1K; | |
274 Im[0] = T1I - T1G; | |
275 Ip[0] = T1G + T1I; | |
276 T1P = W[16]; | |
277 } | |
278 T1O = FNMS(T1M, T1N, T1L); | |
279 T1W = FMA(T1J, T1N, T1V); | |
280 T1S = W[17]; | |
281 T1X = T1P * T1T; | |
282 T1R = T1P * T1Q; | |
283 } | |
284 { | |
285 E T2r, T2n, T2q, T2p, T2z, T2t, T2o, T1Y, T1U; | |
286 T27 = T25 + T26; | |
287 T2r = T26 - T25; | |
288 T2o = T20 - T21; | |
289 T22 = T20 + T21; | |
290 T1Y = FNMS(T1S, T1Q, T1X); | |
291 T1U = FMA(T1S, T1T, T1R); | |
292 T2n = W[22]; | |
293 T2q = W[23]; | |
294 Im[WS(rs, 4)] = T1Y - T1W; | |
295 Ip[WS(rs, 4)] = T1W + T1Y; | |
296 Rm[WS(rs, 4)] = T1O + T1U; | |
297 Rp[WS(rs, 4)] = T1O - T1U; | |
298 T2p = T2n * T2o; | |
299 T2z = T2q * T2o; | |
300 T2c = FMA(KP923879532, T2b, T2a); | |
301 T2u = FNMS(KP923879532, T2b, T2a); | |
302 T2x = FNMS(KP923879532, T2g, T2f); | |
303 T2h = FMA(KP923879532, T2g, T2f); | |
304 T2t = W[24]; | |
305 T2s = FNMS(T2q, T2r, T2p); | |
306 T2A = FMA(T2n, T2r, T2z); | |
307 T2w = W[25]; | |
308 T2B = T2t * T2x; | |
309 T2v = T2t * T2u; | |
310 } | |
311 } | |
312 } | |
313 { | |
314 E T28, T2k, T2e, T2l, T2d; | |
315 { | |
316 E T1Z, T24, T23, T2j, T29, T2C, T2y; | |
317 T2C = FNMS(T2w, T2u, T2B); | |
318 T2y = FMA(T2w, T2x, T2v); | |
319 T1Z = W[6]; | |
320 T24 = W[7]; | |
321 Im[WS(rs, 6)] = T2C - T2A; | |
322 Ip[WS(rs, 6)] = T2A + T2C; | |
323 Rm[WS(rs, 6)] = T2s + T2y; | |
324 Rp[WS(rs, 6)] = T2s - T2y; | |
325 T23 = T1Z * T22; | |
326 T2j = T24 * T22; | |
327 T29 = W[8]; | |
328 T28 = FNMS(T24, T27, T23); | |
329 T2k = FMA(T1Z, T27, T2j); | |
330 T2e = W[9]; | |
331 T2l = T29 * T2h; | |
332 T2d = T29 * T2c; | |
333 } | |
334 { | |
335 E T4a, T4d, T3O, T4h, T4b, T40, T48, T4g, T4c, T42, T3Y; | |
336 { | |
337 E T3N, T47, T43, T46, T3F, T45, T4f, T3K, T3J, T3S, T3X, T3Z, T49, T41, T3T; | |
338 E T3U; | |
339 { | |
340 E T44, T3I, T2m, T2i, T3P; | |
341 T44 = FNMS(KP707106781, T3H, T3G); | |
342 T3I = FMA(KP707106781, T3H, T3G); | |
343 T2m = FNMS(T2e, T2c, T2l); | |
344 T2i = FMA(T2e, T2h, T2d); | |
345 T3N = FMA(KP707106781, T3M, T3L); | |
346 T47 = FNMS(KP707106781, T3M, T3L); | |
347 Im[WS(rs, 2)] = T2m - T2k; | |
348 Ip[WS(rs, 2)] = T2k + T2m; | |
349 Rm[WS(rs, 2)] = T28 + T2i; | |
350 Rp[WS(rs, 2)] = T28 - T2i; | |
351 T43 = W[26]; | |
352 T46 = W[27]; | |
353 T3F = W[10]; | |
354 T45 = T43 * T44; | |
355 T4f = T46 * T44; | |
356 T3K = W[11]; | |
357 T3J = T3F * T3I; | |
358 T4a = FNMS(KP923879532, T3R, T3Q); | |
359 T3S = FMA(KP923879532, T3R, T3Q); | |
360 T3X = FNMS(KP923879532, T3W, T3V); | |
361 T4d = FMA(KP923879532, T3W, T3V); | |
362 T3Z = T3K * T3I; | |
363 T3P = W[12]; | |
364 T49 = W[28]; | |
365 T41 = T3P * T3X; | |
366 T3T = T3P * T3S; | |
367 } | |
368 T3O = FNMS(T3K, T3N, T3J); | |
369 T4h = T49 * T4d; | |
370 T4b = T49 * T4a; | |
371 T40 = FMA(T3F, T3N, T3Z); | |
372 T3U = W[13]; | |
373 T48 = FNMS(T46, T47, T45); | |
374 T4g = FMA(T43, T47, T4f); | |
375 T4c = W[29]; | |
376 T42 = FNMS(T3U, T3S, T41); | |
377 T3Y = FMA(T3U, T3X, T3T); | |
378 } | |
379 { | |
380 E T3t, T2X, T3p, T3s, T2D, T3r, T3B, T2Q, T2P, T3a, T3j, T3l, T3v, T3n, T3b; | |
381 E T3c; | |
382 { | |
383 E T2O, T3q, T4i, T4e, T2Z; | |
384 T4i = FNMS(T4c, T4a, T4h); | |
385 T4e = FMA(T4c, T4d, T4b); | |
386 Im[WS(rs, 3)] = T42 - T40; | |
387 Ip[WS(rs, 3)] = T40 + T42; | |
388 Rm[WS(rs, 3)] = T3O + T3Y; | |
389 Rp[WS(rs, 3)] = T3O - T3Y; | |
390 Im[WS(rs, 7)] = T4i - T4g; | |
391 Ip[WS(rs, 7)] = T4g + T4i; | |
392 Rm[WS(rs, 7)] = T48 + T4e; | |
393 Rp[WS(rs, 7)] = T48 - T4e; | |
394 T3t = FNMS(KP707106781, T2W, T2T); | |
395 T2X = FMA(KP707106781, T2W, T2T); | |
396 T2O = FMA(KP707106781, T2N, T2G); | |
397 T3q = FNMS(KP707106781, T2N, T2G); | |
398 T3p = W[18]; | |
399 T3s = W[19]; | |
400 T2D = W[2]; | |
401 T3r = T3p * T3q; | |
402 T3B = T3s * T3q; | |
403 T2Q = W[3]; | |
404 T2P = T2D * T2O; | |
405 T3a = FMA(KP923879532, T39, T32); | |
406 T3w = FNMS(KP923879532, T39, T32); | |
407 T3z = FMA(KP923879532, T3i, T3f); | |
408 T3j = FNMS(KP923879532, T3i, T3f); | |
409 T3l = T2Q * T2O; | |
410 T2Z = W[4]; | |
411 T3v = W[20]; | |
412 T3n = T2Z * T3j; | |
413 T3b = T2Z * T3a; | |
414 } | |
415 T2Y = FNMS(T2Q, T2X, T2P); | |
416 T3D = T3v * T3z; | |
417 T3x = T3v * T3w; | |
418 T3m = FMA(T2D, T2X, T3l); | |
419 T3c = W[5]; | |
420 T3u = FNMS(T3s, T3t, T3r); | |
421 T3C = FMA(T3p, T3t, T3B); | |
422 T3y = W[21]; | |
423 T3o = FNMS(T3c, T3a, T3n); | |
424 T3k = FMA(T3c, T3j, T3b); | |
425 } | |
426 } | |
427 } | |
428 } | |
429 } | |
430 T3E = FNMS(T3y, T3w, T3D); | |
431 T3A = FMA(T3y, T3z, T3x); | |
432 Im[WS(rs, 1)] = T3o - T3m; | |
433 Ip[WS(rs, 1)] = T3m + T3o; | |
434 Rm[WS(rs, 1)] = T2Y + T3k; | |
435 Rp[WS(rs, 1)] = T2Y - T3k; | |
436 Im[WS(rs, 5)] = T3E - T3C; | |
437 Ip[WS(rs, 5)] = T3C + T3E; | |
438 Rm[WS(rs, 5)] = T3u + T3A; | |
439 Rp[WS(rs, 5)] = T3u - T3A; | |
440 } | |
441 } | |
442 } | |
443 | |
444 static const tw_instr twinstr[] = { | |
445 {TW_FULL, 1, 16}, | |
446 {TW_NEXT, 1, 0} | |
447 }; | |
448 | |
449 static const hc2c_desc desc = { 16, "hc2cbdft_16", twinstr, &GENUS, {136, 30, 70, 0} }; | |
450 | |
451 void X(codelet_hc2cbdft_16) (planner *p) { | |
452 X(khc2c_register) (p, hc2cbdft_16, &desc, HC2C_VIA_DFT); | |
453 } | |
454 #else /* HAVE_FMA */ | |
455 | |
456 /* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 16 -dif -name hc2cbdft_16 -include hc2cb.h */ | |
457 | |
458 /* | |
459 * This function contains 206 FP additions, 84 FP multiplications, | |
460 * (or, 168 additions, 46 multiplications, 38 fused multiply/add), | |
461 * 60 stack variables, 3 constants, and 64 memory accesses | |
462 */ | |
463 #include "hc2cb.h" | |
464 | |
465 static void hc2cbdft_16(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) | |
466 { | |
467 DK(KP923879532, +0.923879532511286756128183189396788286822416626); | |
468 DK(KP382683432, +0.382683432365089771728459984030398866761344562); | |
469 DK(KP707106781, +0.707106781186547524400844362104849039284835938); | |
470 { | |
471 INT m; | |
472 for (m = mb, W = W + ((mb - 1) * 30); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 30, MAKE_VOLATILE_STRIDE(64, rs)) { | |
473 E TB, T2L, T30, T1n, Tf, T1U, T2H, T3p, T1E, T1Z, TM, T31, T2s, T3k, T1i; | |
474 E T2M, Tu, T1Y, T2Q, T2X, T2T, T2Y, TY, T1d, T19, T1e, T2v, T2C, T2y, T2D; | |
475 E T1x, T1V; | |
476 { | |
477 E T3, T1j, TA, T1B, T6, Tx, T1m, T1C, Ta, TC, TF, T1y, Td, TH, TK; | |
478 E T1z; | |
479 { | |
480 E T1, T2, Ty, Tz; | |
481 T1 = Rp[0]; | |
482 T2 = Rm[WS(rs, 7)]; | |
483 T3 = T1 + T2; | |
484 T1j = T1 - T2; | |
485 Ty = Ip[0]; | |
486 Tz = Im[WS(rs, 7)]; | |
487 TA = Ty + Tz; | |
488 T1B = Ty - Tz; | |
489 } | |
490 { | |
491 E T4, T5, T1k, T1l; | |
492 T4 = Rp[WS(rs, 4)]; | |
493 T5 = Rm[WS(rs, 3)]; | |
494 T6 = T4 + T5; | |
495 Tx = T4 - T5; | |
496 T1k = Ip[WS(rs, 4)]; | |
497 T1l = Im[WS(rs, 3)]; | |
498 T1m = T1k + T1l; | |
499 T1C = T1k - T1l; | |
500 } | |
501 { | |
502 E T8, T9, TD, TE; | |
503 T8 = Rp[WS(rs, 2)]; | |
504 T9 = Rm[WS(rs, 5)]; | |
505 Ta = T8 + T9; | |
506 TC = T8 - T9; | |
507 TD = Ip[WS(rs, 2)]; | |
508 TE = Im[WS(rs, 5)]; | |
509 TF = TD + TE; | |
510 T1y = TD - TE; | |
511 } | |
512 { | |
513 E Tb, Tc, TI, TJ; | |
514 Tb = Rm[WS(rs, 1)]; | |
515 Tc = Rp[WS(rs, 6)]; | |
516 Td = Tb + Tc; | |
517 TH = Tb - Tc; | |
518 TI = Im[WS(rs, 1)]; | |
519 TJ = Ip[WS(rs, 6)]; | |
520 TK = TI + TJ; | |
521 T1z = TJ - TI; | |
522 } | |
523 { | |
524 E T7, Te, TG, TL; | |
525 TB = Tx + TA; | |
526 T2L = TA - Tx; | |
527 T30 = T1j + T1m; | |
528 T1n = T1j - T1m; | |
529 T7 = T3 + T6; | |
530 Te = Ta + Td; | |
531 Tf = T7 + Te; | |
532 T1U = T7 - Te; | |
533 { | |
534 E T2F, T2G, T1A, T1D; | |
535 T2F = Ta - Td; | |
536 T2G = T1B - T1C; | |
537 T2H = T2F + T2G; | |
538 T3p = T2G - T2F; | |
539 T1A = T1y + T1z; | |
540 T1D = T1B + T1C; | |
541 T1E = T1A + T1D; | |
542 T1Z = T1D - T1A; | |
543 } | |
544 TG = TC + TF; | |
545 TL = TH + TK; | |
546 TM = KP707106781 * (TG - TL); | |
547 T31 = KP707106781 * (TG + TL); | |
548 { | |
549 E T2q, T2r, T1g, T1h; | |
550 T2q = T3 - T6; | |
551 T2r = T1z - T1y; | |
552 T2s = T2q + T2r; | |
553 T3k = T2q - T2r; | |
554 T1g = TC - TF; | |
555 T1h = TH - TK; | |
556 T1i = KP707106781 * (T1g + T1h); | |
557 T2M = KP707106781 * (T1g - T1h); | |
558 } | |
559 } | |
560 } | |
561 { | |
562 E Ti, TT, TR, T1r, Tl, TO, TW, T1s, Tp, T14, T12, T1u, Ts, TZ, T17; | |
563 E T1v; | |
564 { | |
565 E Tg, Th, TP, TQ; | |
566 Tg = Rp[WS(rs, 1)]; | |
567 Th = Rm[WS(rs, 6)]; | |
568 Ti = Tg + Th; | |
569 TT = Tg - Th; | |
570 TP = Ip[WS(rs, 1)]; | |
571 TQ = Im[WS(rs, 6)]; | |
572 TR = TP + TQ; | |
573 T1r = TP - TQ; | |
574 } | |
575 { | |
576 E Tj, Tk, TU, TV; | |
577 Tj = Rp[WS(rs, 5)]; | |
578 Tk = Rm[WS(rs, 2)]; | |
579 Tl = Tj + Tk; | |
580 TO = Tj - Tk; | |
581 TU = Ip[WS(rs, 5)]; | |
582 TV = Im[WS(rs, 2)]; | |
583 TW = TU + TV; | |
584 T1s = TU - TV; | |
585 } | |
586 { | |
587 E Tn, To, T10, T11; | |
588 Tn = Rm[0]; | |
589 To = Rp[WS(rs, 7)]; | |
590 Tp = Tn + To; | |
591 T14 = Tn - To; | |
592 T10 = Im[0]; | |
593 T11 = Ip[WS(rs, 7)]; | |
594 T12 = T10 + T11; | |
595 T1u = T11 - T10; | |
596 } | |
597 { | |
598 E Tq, Tr, T15, T16; | |
599 Tq = Rp[WS(rs, 3)]; | |
600 Tr = Rm[WS(rs, 4)]; | |
601 Ts = Tq + Tr; | |
602 TZ = Tq - Tr; | |
603 T15 = Ip[WS(rs, 3)]; | |
604 T16 = Im[WS(rs, 4)]; | |
605 T17 = T15 + T16; | |
606 T1v = T15 - T16; | |
607 } | |
608 { | |
609 E Tm, Tt, T2O, T2P; | |
610 Tm = Ti + Tl; | |
611 Tt = Tp + Ts; | |
612 Tu = Tm + Tt; | |
613 T1Y = Tm - Tt; | |
614 T2O = TR - TO; | |
615 T2P = TT + TW; | |
616 T2Q = FMA(KP382683432, T2O, KP923879532 * T2P); | |
617 T2X = FNMS(KP923879532, T2O, KP382683432 * T2P); | |
618 } | |
619 { | |
620 E T2R, T2S, TS, TX; | |
621 T2R = TZ + T12; | |
622 T2S = T14 + T17; | |
623 T2T = FMA(KP382683432, T2R, KP923879532 * T2S); | |
624 T2Y = FNMS(KP923879532, T2R, KP382683432 * T2S); | |
625 TS = TO + TR; | |
626 TX = TT - TW; | |
627 TY = FMA(KP923879532, TS, KP382683432 * TX); | |
628 T1d = FNMS(KP382683432, TS, KP923879532 * TX); | |
629 } | |
630 { | |
631 E T13, T18, T2t, T2u; | |
632 T13 = TZ - T12; | |
633 T18 = T14 - T17; | |
634 T19 = FNMS(KP382683432, T18, KP923879532 * T13); | |
635 T1e = FMA(KP382683432, T13, KP923879532 * T18); | |
636 T2t = Ti - Tl; | |
637 T2u = T1r - T1s; | |
638 T2v = T2t - T2u; | |
639 T2C = T2t + T2u; | |
640 } | |
641 { | |
642 E T2w, T2x, T1t, T1w; | |
643 T2w = Tp - Ts; | |
644 T2x = T1u - T1v; | |
645 T2y = T2w + T2x; | |
646 T2D = T2x - T2w; | |
647 T1t = T1r + T1s; | |
648 T1w = T1u + T1v; | |
649 T1x = T1t + T1w; | |
650 T1V = T1w - T1t; | |
651 } | |
652 } | |
653 { | |
654 E Tv, T1F, T1b, T1N, T1p, T1P, T1L, T1R; | |
655 Tv = Tf + Tu; | |
656 T1F = T1x + T1E; | |
657 { | |
658 E TN, T1a, T1f, T1o; | |
659 TN = TB + TM; | |
660 T1a = TY + T19; | |
661 T1b = TN + T1a; | |
662 T1N = TN - T1a; | |
663 T1f = T1d + T1e; | |
664 T1o = T1i + T1n; | |
665 T1p = T1f + T1o; | |
666 T1P = T1o - T1f; | |
667 { | |
668 E T1I, T1K, T1H, T1J; | |
669 T1I = Tf - Tu; | |
670 T1K = T1E - T1x; | |
671 T1H = W[14]; | |
672 T1J = W[15]; | |
673 T1L = FNMS(T1J, T1K, T1H * T1I); | |
674 T1R = FMA(T1J, T1I, T1H * T1K); | |
675 } | |
676 } | |
677 { | |
678 E T1q, T1G, Tw, T1c; | |
679 Tw = W[0]; | |
680 T1c = W[1]; | |
681 T1q = FMA(Tw, T1b, T1c * T1p); | |
682 T1G = FNMS(T1c, T1b, Tw * T1p); | |
683 Rp[0] = Tv - T1q; | |
684 Ip[0] = T1F + T1G; | |
685 Rm[0] = Tv + T1q; | |
686 Im[0] = T1G - T1F; | |
687 } | |
688 { | |
689 E T1Q, T1S, T1M, T1O; | |
690 T1M = W[16]; | |
691 T1O = W[17]; | |
692 T1Q = FMA(T1M, T1N, T1O * T1P); | |
693 T1S = FNMS(T1O, T1N, T1M * T1P); | |
694 Rp[WS(rs, 4)] = T1L - T1Q; | |
695 Ip[WS(rs, 4)] = T1R + T1S; | |
696 Rm[WS(rs, 4)] = T1L + T1Q; | |
697 Im[WS(rs, 4)] = T1S - T1R; | |
698 } | |
699 } | |
700 { | |
701 E T25, T2j, T29, T2l, T21, T2b, T2h, T2n; | |
702 { | |
703 E T23, T24, T27, T28; | |
704 T23 = TB - TM; | |
705 T24 = T1d - T1e; | |
706 T25 = T23 + T24; | |
707 T2j = T23 - T24; | |
708 T27 = T19 - TY; | |
709 T28 = T1n - T1i; | |
710 T29 = T27 + T28; | |
711 T2l = T28 - T27; | |
712 } | |
713 { | |
714 E T1W, T20, T1T, T1X; | |
715 T1W = T1U + T1V; | |
716 T20 = T1Y + T1Z; | |
717 T1T = W[6]; | |
718 T1X = W[7]; | |
719 T21 = FNMS(T1X, T20, T1T * T1W); | |
720 T2b = FMA(T1X, T1W, T1T * T20); | |
721 } | |
722 { | |
723 E T2e, T2g, T2d, T2f; | |
724 T2e = T1U - T1V; | |
725 T2g = T1Z - T1Y; | |
726 T2d = W[22]; | |
727 T2f = W[23]; | |
728 T2h = FNMS(T2f, T2g, T2d * T2e); | |
729 T2n = FMA(T2f, T2e, T2d * T2g); | |
730 } | |
731 { | |
732 E T2a, T2c, T22, T26; | |
733 T22 = W[8]; | |
734 T26 = W[9]; | |
735 T2a = FMA(T22, T25, T26 * T29); | |
736 T2c = FNMS(T26, T25, T22 * T29); | |
737 Rp[WS(rs, 2)] = T21 - T2a; | |
738 Ip[WS(rs, 2)] = T2b + T2c; | |
739 Rm[WS(rs, 2)] = T21 + T2a; | |
740 Im[WS(rs, 2)] = T2c - T2b; | |
741 } | |
742 { | |
743 E T2m, T2o, T2i, T2k; | |
744 T2i = W[24]; | |
745 T2k = W[25]; | |
746 T2m = FMA(T2i, T2j, T2k * T2l); | |
747 T2o = FNMS(T2k, T2j, T2i * T2l); | |
748 Rp[WS(rs, 6)] = T2h - T2m; | |
749 Ip[WS(rs, 6)] = T2n + T2o; | |
750 Rm[WS(rs, 6)] = T2h + T2m; | |
751 Im[WS(rs, 6)] = T2o - T2n; | |
752 } | |
753 } | |
754 { | |
755 E T2A, T38, T2I, T3a, T2V, T3d, T33, T3f, T2z, T2E; | |
756 T2z = KP707106781 * (T2v + T2y); | |
757 T2A = T2s + T2z; | |
758 T38 = T2s - T2z; | |
759 T2E = KP707106781 * (T2C + T2D); | |
760 T2I = T2E + T2H; | |
761 T3a = T2H - T2E; | |
762 { | |
763 E T2N, T2U, T2Z, T32; | |
764 T2N = T2L + T2M; | |
765 T2U = T2Q - T2T; | |
766 T2V = T2N + T2U; | |
767 T3d = T2N - T2U; | |
768 T2Z = T2X + T2Y; | |
769 T32 = T30 - T31; | |
770 T33 = T2Z + T32; | |
771 T3f = T32 - T2Z; | |
772 } | |
773 { | |
774 E T2J, T35, T34, T36; | |
775 { | |
776 E T2p, T2B, T2K, T2W; | |
777 T2p = W[2]; | |
778 T2B = W[3]; | |
779 T2J = FNMS(T2B, T2I, T2p * T2A); | |
780 T35 = FMA(T2B, T2A, T2p * T2I); | |
781 T2K = W[4]; | |
782 T2W = W[5]; | |
783 T34 = FMA(T2K, T2V, T2W * T33); | |
784 T36 = FNMS(T2W, T2V, T2K * T33); | |
785 } | |
786 Rp[WS(rs, 1)] = T2J - T34; | |
787 Ip[WS(rs, 1)] = T35 + T36; | |
788 Rm[WS(rs, 1)] = T2J + T34; | |
789 Im[WS(rs, 1)] = T36 - T35; | |
790 } | |
791 { | |
792 E T3b, T3h, T3g, T3i; | |
793 { | |
794 E T37, T39, T3c, T3e; | |
795 T37 = W[18]; | |
796 T39 = W[19]; | |
797 T3b = FNMS(T39, T3a, T37 * T38); | |
798 T3h = FMA(T39, T38, T37 * T3a); | |
799 T3c = W[20]; | |
800 T3e = W[21]; | |
801 T3g = FMA(T3c, T3d, T3e * T3f); | |
802 T3i = FNMS(T3e, T3d, T3c * T3f); | |
803 } | |
804 Rp[WS(rs, 5)] = T3b - T3g; | |
805 Ip[WS(rs, 5)] = T3h + T3i; | |
806 Rm[WS(rs, 5)] = T3b + T3g; | |
807 Im[WS(rs, 5)] = T3i - T3h; | |
808 } | |
809 } | |
810 { | |
811 E T3m, T3E, T3q, T3G, T3v, T3J, T3z, T3L, T3l, T3o; | |
812 T3l = KP707106781 * (T2D - T2C); | |
813 T3m = T3k + T3l; | |
814 T3E = T3k - T3l; | |
815 T3o = KP707106781 * (T2v - T2y); | |
816 T3q = T3o + T3p; | |
817 T3G = T3p - T3o; | |
818 { | |
819 E T3t, T3u, T3x, T3y; | |
820 T3t = T2L - T2M; | |
821 T3u = T2X - T2Y; | |
822 T3v = T3t + T3u; | |
823 T3J = T3t - T3u; | |
824 T3x = T31 + T30; | |
825 T3y = T2Q + T2T; | |
826 T3z = T3x - T3y; | |
827 T3L = T3y + T3x; | |
828 } | |
829 { | |
830 E T3r, T3B, T3A, T3C; | |
831 { | |
832 E T3j, T3n, T3s, T3w; | |
833 T3j = W[10]; | |
834 T3n = W[11]; | |
835 T3r = FNMS(T3n, T3q, T3j * T3m); | |
836 T3B = FMA(T3n, T3m, T3j * T3q); | |
837 T3s = W[12]; | |
838 T3w = W[13]; | |
839 T3A = FMA(T3s, T3v, T3w * T3z); | |
840 T3C = FNMS(T3w, T3v, T3s * T3z); | |
841 } | |
842 Rp[WS(rs, 3)] = T3r - T3A; | |
843 Ip[WS(rs, 3)] = T3B + T3C; | |
844 Rm[WS(rs, 3)] = T3r + T3A; | |
845 Im[WS(rs, 3)] = T3C - T3B; | |
846 } | |
847 { | |
848 E T3H, T3N, T3M, T3O; | |
849 { | |
850 E T3D, T3F, T3I, T3K; | |
851 T3D = W[26]; | |
852 T3F = W[27]; | |
853 T3H = FNMS(T3F, T3G, T3D * T3E); | |
854 T3N = FMA(T3F, T3E, T3D * T3G); | |
855 T3I = W[28]; | |
856 T3K = W[29]; | |
857 T3M = FMA(T3I, T3J, T3K * T3L); | |
858 T3O = FNMS(T3K, T3J, T3I * T3L); | |
859 } | |
860 Rp[WS(rs, 7)] = T3H - T3M; | |
861 Ip[WS(rs, 7)] = T3N + T3O; | |
862 Rm[WS(rs, 7)] = T3H + T3M; | |
863 Im[WS(rs, 7)] = T3O - T3N; | |
864 } | |
865 } | |
866 } | |
867 } | |
868 } | |
869 | |
870 static const tw_instr twinstr[] = { | |
871 {TW_FULL, 1, 16}, | |
872 {TW_NEXT, 1, 0} | |
873 }; | |
874 | |
875 static const hc2c_desc desc = { 16, "hc2cbdft_16", twinstr, &GENUS, {168, 46, 38, 0} }; | |
876 | |
877 void X(codelet_hc2cbdft_16) (planner *p) { | |
878 X(khc2c_register) (p, hc2cbdft_16, &desc, HC2C_VIA_DFT); | |
879 } | |
880 #endif /* HAVE_FMA */ |