Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.3/rdft/scalar/r2cb/hc2cb2_20.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
9:c0fb53affa76 | 10:37bf6b4a2645 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-11 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Sun Nov 25 07:42:02 EST 2012 */ | |
23 | |
24 #include "codelet-rdft.h" | |
25 | |
26 #ifdef HAVE_FMA | |
27 | |
28 /* Generated by: ../../../genfft/gen_hc2c.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -twiddle-log3 -precompute-twiddles -n 20 -dif -name hc2cb2_20 -include hc2cb.h */ | |
29 | |
30 /* | |
31 * This function contains 276 FP additions, 198 FP multiplications, | |
32 * (or, 136 additions, 58 multiplications, 140 fused multiply/add), | |
33 * 160 stack variables, 4 constants, and 80 memory accesses | |
34 */ | |
35 #include "hc2cb.h" | |
36 | |
37 static void hc2cb2_20(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) | |
38 { | |
39 DK(KP951056516, +0.951056516295153572116439333379382143405698634); | |
40 DK(KP559016994, +0.559016994374947424102293417182819058860154590); | |
41 DK(KP618033988, +0.618033988749894848204586834365638117720309180); | |
42 DK(KP250000000, +0.250000000000000000000000000000000000000000000); | |
43 { | |
44 INT m; | |
45 for (m = mb, W = W + ((mb - 1) * 8); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 8, MAKE_VOLATILE_STRIDE(80, rs)) { | |
46 E T1S, T1O, T1s, TI, T24, T1Y, T2g, T2k, TS, TR, T1I, T26, T1o, T20, T1F; | |
47 E T25, TT, T1Z; | |
48 { | |
49 E TD, TH, TE, T1L, T1N, T1X, TG, T1V, T2Y, T2b, T29, T2s, T36, T3e, T31; | |
50 E T2o, T3b, T5b, T2c, T2U, T4y, T4u, T2f, T5g, T47, T5p, T4b, T5l; | |
51 { | |
52 E T1r, TF, T2T, T1M, T1R, T2X, T2r, T4x; | |
53 TD = W[0]; | |
54 TH = W[3]; | |
55 TE = W[2]; | |
56 T1L = W[6]; | |
57 T1N = W[7]; | |
58 T1r = TD * TH; | |
59 TF = TD * TE; | |
60 T2T = TE * T1L; | |
61 T1M = TD * T1L; | |
62 T1R = TD * T1N; | |
63 T2X = TE * T1N; | |
64 T1X = W[5]; | |
65 TG = W[1]; | |
66 T1V = W[4]; | |
67 T2Y = FNMS(TH, T1L, T2X); | |
68 T2r = TD * T1X; | |
69 { | |
70 E T23, T2n, T1W, T2a; | |
71 T23 = TE * T1X; | |
72 T1S = FNMS(TG, T1L, T1R); | |
73 T1O = FMA(TG, T1N, T1M); | |
74 T2b = FMA(TG, TE, T1r); | |
75 T1s = FNMS(TG, TE, T1r); | |
76 T29 = FNMS(TG, TH, TF); | |
77 TI = FMA(TG, TH, TF); | |
78 T2n = TD * T1V; | |
79 T1W = TE * T1V; | |
80 T2s = FMA(TG, T1V, T2r); | |
81 T36 = FNMS(TG, T1V, T2r); | |
82 T3e = FMA(TH, T1V, T23); | |
83 T24 = FNMS(TH, T1V, T23); | |
84 T2a = T29 * T1V; | |
85 T31 = FMA(TG, T1X, T2n); | |
86 T2o = FNMS(TG, T1X, T2n); | |
87 T3b = FNMS(TH, T1X, T1W); | |
88 T1Y = FMA(TH, T1X, T1W); | |
89 T5b = FNMS(T2b, T1X, T2a); | |
90 T2c = FMA(T2b, T1X, T2a); | |
91 T2U = FMA(TH, T1N, T2T); | |
92 } | |
93 T4x = T29 * T1N; | |
94 { | |
95 E T4t, T2d, T2j, T2e; | |
96 T4t = T29 * T1L; | |
97 T2e = T29 * T1X; | |
98 T4y = FNMS(T2b, T1L, T4x); | |
99 T4u = FMA(T2b, T1N, T4t); | |
100 T2f = FNMS(T2b, T1V, T2e); | |
101 T5g = FMA(T2b, T1V, T2e); | |
102 T2d = T2c * T1L; | |
103 T2j = T2c * T1N; | |
104 T47 = TI * T1V; | |
105 T2g = FMA(T2f, T1N, T2d); | |
106 T2k = FNMS(T2f, T1L, T2j); | |
107 T5p = TI * T1N; | |
108 T4b = TI * T1X; | |
109 T5l = TI * T1L; | |
110 } | |
111 } | |
112 { | |
113 E T4f, T48, T4c, T4k, T5m, T5q, T3V, T4V, TJ, T7, T3j, T4B, T2H, T1z, T3q; | |
114 E T43, T1n, T52, T42, T3x, T53, T2D, T18, T2A, T1H, T4R, T4X, T4W, T4O, T1G; | |
115 E T2O, T3I, T2P, T3P, T2K, T2M, T1C, T1E, TC, T2w, T40, T3Y, T4K, T4I, TQ; | |
116 { | |
117 E T3h, T3, T1w, T3T, T1v, T3U, T6, T1x; | |
118 { | |
119 E T1t, T1u, T1, T2, T4, T5; | |
120 T1 = Rp[0]; | |
121 T2 = Rm[WS(rs, 9)]; | |
122 T1t = Ip[0]; | |
123 T4f = FNMS(T1s, T1X, T47); | |
124 T48 = FMA(T1s, T1X, T47); | |
125 T4c = FNMS(T1s, T1V, T4b); | |
126 T4k = FMA(T1s, T1V, T4b); | |
127 T5m = FMA(T1s, T1N, T5l); | |
128 T5q = FNMS(T1s, T1L, T5p); | |
129 T3h = T1 - T2; | |
130 T3 = T1 + T2; | |
131 T1u = Im[WS(rs, 9)]; | |
132 T4 = Rp[WS(rs, 5)]; | |
133 T5 = Rm[WS(rs, 4)]; | |
134 T1w = Ip[WS(rs, 5)]; | |
135 T3T = T1t + T1u; | |
136 T1v = T1t - T1u; | |
137 T3U = T4 - T5; | |
138 T6 = T4 + T5; | |
139 T1x = Im[WS(rs, 4)]; | |
140 } | |
141 { | |
142 E T3L, T4M, TK, Te, T3m, T4C, T2y, T1f, T3H, T4Q, TO, TA, T3w, T4G, T2C; | |
143 E T17, T3O, T4N, TL, Tl, T3p, T4D, T2z, T1m, T3r, Tp, TX, T3C, TW, T3D; | |
144 E Ts, TY; | |
145 { | |
146 E T3u, Tw, T14, T3G, T13, T3F, Tz, T15; | |
147 { | |
148 E T3k, Ta, T1c, T3J, T1b, T3K, Td, T1d; | |
149 { | |
150 E T19, T1a, Tb, Tc; | |
151 { | |
152 E T8, T3i, T1y, T9; | |
153 T8 = Rp[WS(rs, 4)]; | |
154 T3V = T3T - T3U; | |
155 T4V = T3U + T3T; | |
156 TJ = T3 - T6; | |
157 T7 = T3 + T6; | |
158 T3i = T1w + T1x; | |
159 T1y = T1w - T1x; | |
160 T9 = Rm[WS(rs, 5)]; | |
161 T19 = Ip[WS(rs, 4)]; | |
162 T3j = T3h + T3i; | |
163 T4B = T3h - T3i; | |
164 T2H = T1v + T1y; | |
165 T1z = T1v - T1y; | |
166 T3k = T8 - T9; | |
167 Ta = T8 + T9; | |
168 T1a = Im[WS(rs, 5)]; | |
169 } | |
170 Tb = Rp[WS(rs, 9)]; | |
171 Tc = Rm[0]; | |
172 T1c = Ip[WS(rs, 9)]; | |
173 T3J = T19 + T1a; | |
174 T1b = T19 - T1a; | |
175 T3K = Tb - Tc; | |
176 Td = Tb + Tc; | |
177 T1d = Im[0]; | |
178 } | |
179 { | |
180 E T11, T12, Tx, Ty; | |
181 { | |
182 E Tu, T3l, T1e, Tv; | |
183 Tu = Rm[WS(rs, 7)]; | |
184 T3L = T3J - T3K; | |
185 T4M = T3K + T3J; | |
186 TK = Ta - Td; | |
187 Te = Ta + Td; | |
188 T3l = T1c + T1d; | |
189 T1e = T1c - T1d; | |
190 Tv = Rp[WS(rs, 2)]; | |
191 T11 = Ip[WS(rs, 2)]; | |
192 T3m = T3k + T3l; | |
193 T4C = T3k - T3l; | |
194 T2y = T1b + T1e; | |
195 T1f = T1b - T1e; | |
196 T3u = Tu - Tv; | |
197 Tw = Tu + Tv; | |
198 T12 = Im[WS(rs, 7)]; | |
199 } | |
200 Tx = Rm[WS(rs, 2)]; | |
201 Ty = Rp[WS(rs, 7)]; | |
202 T14 = Ip[WS(rs, 7)]; | |
203 T3G = T11 + T12; | |
204 T13 = T11 - T12; | |
205 T3F = Tx - Ty; | |
206 Tz = Tx + Ty; | |
207 T15 = Im[WS(rs, 2)]; | |
208 } | |
209 } | |
210 { | |
211 E T3n, Th, T1j, T3N, T1i, T3M, Tk, T1k; | |
212 { | |
213 E T1g, T1h, Ti, Tj; | |
214 { | |
215 E Tf, T3v, T16, Tg; | |
216 Tf = Rm[WS(rs, 3)]; | |
217 T3H = T3F + T3G; | |
218 T4Q = T3F - T3G; | |
219 TO = Tw - Tz; | |
220 TA = Tw + Tz; | |
221 T3v = T14 + T15; | |
222 T16 = T14 - T15; | |
223 Tg = Rp[WS(rs, 6)]; | |
224 T1g = Ip[WS(rs, 6)]; | |
225 T3w = T3u - T3v; | |
226 T4G = T3u + T3v; | |
227 T2C = T13 + T16; | |
228 T17 = T13 - T16; | |
229 T3n = Tf - Tg; | |
230 Th = Tf + Tg; | |
231 T1h = Im[WS(rs, 3)]; | |
232 } | |
233 Ti = Rp[WS(rs, 1)]; | |
234 Tj = Rm[WS(rs, 8)]; | |
235 T1j = Ip[WS(rs, 1)]; | |
236 T3N = T1g + T1h; | |
237 T1i = T1g - T1h; | |
238 T3M = Ti - Tj; | |
239 Tk = Ti + Tj; | |
240 T1k = Im[WS(rs, 8)]; | |
241 } | |
242 { | |
243 E TU, TV, Tq, Tr; | |
244 { | |
245 E Tn, T3o, T1l, To; | |
246 Tn = Rp[WS(rs, 8)]; | |
247 T3O = T3M + T3N; | |
248 T4N = T3M - T3N; | |
249 TL = Th - Tk; | |
250 Tl = Th + Tk; | |
251 T3o = T1j + T1k; | |
252 T1l = T1j - T1k; | |
253 To = Rm[WS(rs, 1)]; | |
254 TU = Ip[WS(rs, 8)]; | |
255 T3p = T3n + T3o; | |
256 T4D = T3n - T3o; | |
257 T2z = T1i + T1l; | |
258 T1m = T1i - T1l; | |
259 T3r = Tn - To; | |
260 Tp = Tn + To; | |
261 TV = Im[WS(rs, 1)]; | |
262 } | |
263 Tq = Rm[WS(rs, 6)]; | |
264 Tr = Rp[WS(rs, 3)]; | |
265 TX = Ip[WS(rs, 3)]; | |
266 T3C = TU + TV; | |
267 TW = TU - TV; | |
268 T3D = Tq - Tr; | |
269 Ts = Tq + Tr; | |
270 TY = Im[WS(rs, 6)]; | |
271 } | |
272 } | |
273 } | |
274 { | |
275 E T3E, Tt, T1A, T4E, T4H, T2J, T1B, T2I, TM, TP; | |
276 { | |
277 E T4P, TN, T3s, TZ; | |
278 T3q = T3m + T3p; | |
279 T43 = T3m - T3p; | |
280 T3E = T3C - T3D; | |
281 T4P = T3D + T3C; | |
282 TN = Tp - Ts; | |
283 Tt = Tp + Ts; | |
284 T3s = TX + TY; | |
285 TZ = TX - TY; | |
286 T1n = T1f - T1m; | |
287 T1A = T1f + T1m; | |
288 T4E = T4C + T4D; | |
289 T52 = T4C - T4D; | |
290 { | |
291 E T3t, T4F, T2B, T10; | |
292 T3t = T3r - T3s; | |
293 T4F = T3r + T3s; | |
294 T2B = TW + TZ; | |
295 T10 = TW - TZ; | |
296 T42 = T3t - T3w; | |
297 T3x = T3t + T3w; | |
298 T4H = T4F + T4G; | |
299 T53 = T4F - T4G; | |
300 T2D = T2B - T2C; | |
301 T2J = T2B + T2C; | |
302 T1B = T10 + T17; | |
303 T18 = T10 - T17; | |
304 T2A = T2y - T2z; | |
305 T2I = T2y + T2z; | |
306 TM = TK + TL; | |
307 T1H = TK - TL; | |
308 } | |
309 T4R = T4P - T4Q; | |
310 T4X = T4P + T4Q; | |
311 T4W = T4M + T4N; | |
312 T4O = T4M - T4N; | |
313 T1G = TN - TO; | |
314 TP = TN + TO; | |
315 } | |
316 { | |
317 E Tm, T3X, TB, T3W; | |
318 Tm = Te + Tl; | |
319 T2O = Te - Tl; | |
320 T3I = T3E + T3H; | |
321 T3X = T3E - T3H; | |
322 TB = Tt + TA; | |
323 T2P = Tt - TA; | |
324 T3P = T3L + T3O; | |
325 T3W = T3L - T3O; | |
326 T2K = T2I + T2J; | |
327 T2M = T2I - T2J; | |
328 T1C = T1A + T1B; | |
329 T1E = T1A - T1B; | |
330 TC = Tm + TB; | |
331 T2w = Tm - TB; | |
332 T40 = T3W - T3X; | |
333 T3Y = T3W + T3X; | |
334 T4K = T4E - T4H; | |
335 T4I = T4E + T4H; | |
336 TS = TM - TP; | |
337 TQ = TM + TP; | |
338 } | |
339 } | |
340 } | |
341 } | |
342 { | |
343 E T3A, T3y, T50, T1D, T2t, T2p, T4J, T5t, T5v, T4Z, T4Y; | |
344 Rp[0] = T7 + TC; | |
345 T3A = T3q - T3x; | |
346 T3y = T3q + T3x; | |
347 T50 = T4W - T4X; | |
348 T4Y = T4W + T4X; | |
349 Rm[0] = T2H + T2K; | |
350 T1D = FNMS(KP250000000, T1C, T1z); | |
351 T2t = T1z + T1C; | |
352 T2p = TJ + TQ; | |
353 TR = FNMS(KP250000000, TQ, TJ); | |
354 T4J = FNMS(KP250000000, T4I, T4B); | |
355 T5t = T4B + T4I; | |
356 T5v = T4V + T4Y; | |
357 T4Z = FNMS(KP250000000, T4Y, T4V); | |
358 { | |
359 E T4m, T44, T4i, T4p, T49, T3R, T4j, T4a, T3S, T4l, T41, T4q; | |
360 { | |
361 E T3z, T4v, T4w, T3Z, T4z; | |
362 T3z = FNMS(KP250000000, T3y, T3j); | |
363 T4v = T3j + T3y; | |
364 { | |
365 E T2u, T2q, T5u, T5w; | |
366 T2u = T2s * T2p; | |
367 T2q = T2o * T2p; | |
368 T5u = T2c * T5t; | |
369 T5w = T2c * T5v; | |
370 Rm[WS(rs, 5)] = FMA(T2o, T2t, T2u); | |
371 Rp[WS(rs, 5)] = FNMS(T2s, T2t, T2q); | |
372 Ip[WS(rs, 2)] = FNMS(T2f, T5v, T5u); | |
373 Im[WS(rs, 2)] = FMA(T2f, T5t, T5w); | |
374 T4w = T4u * T4v; | |
375 } | |
376 T3Z = FNMS(KP250000000, T3Y, T3V); | |
377 T4z = T3V + T3Y; | |
378 { | |
379 E T3Q, T4h, T4A, T4g, T3B; | |
380 T3Q = FNMS(KP618033988, T3P, T3I); | |
381 T4h = FMA(KP618033988, T3I, T3P); | |
382 Ip[WS(rs, 7)] = FNMS(T4y, T4z, T4w); | |
383 T4A = T4u * T4z; | |
384 T4m = FMA(KP618033988, T42, T43); | |
385 T44 = FNMS(KP618033988, T43, T42); | |
386 T4g = FMA(KP559016994, T3A, T3z); | |
387 T3B = FNMS(KP559016994, T3A, T3z); | |
388 Im[WS(rs, 7)] = FMA(T4y, T4v, T4A); | |
389 T4i = FNMS(KP951056516, T4h, T4g); | |
390 T4p = FMA(KP951056516, T4h, T4g); | |
391 T49 = FMA(KP951056516, T3Q, T3B); | |
392 T3R = FNMS(KP951056516, T3Q, T3B); | |
393 } | |
394 T4j = T4f * T4i; | |
395 T4a = T48 * T49; | |
396 T3S = TE * T3R; | |
397 T4l = FMA(KP559016994, T40, T3Z); | |
398 T41 = FNMS(KP559016994, T40, T3Z); | |
399 T4q = T1L * T4p; | |
400 } | |
401 { | |
402 E T5d, T4S, T54, T5i, T4L, T5c; | |
403 T5d = FNMS(KP618033988, T4O, T4R); | |
404 T4S = FMA(KP618033988, T4R, T4O); | |
405 { | |
406 E T4n, T4r, T4d, T45; | |
407 T4n = FMA(KP951056516, T4m, T4l); | |
408 T4r = FNMS(KP951056516, T4m, T4l); | |
409 T4d = FNMS(KP951056516, T44, T41); | |
410 T45 = FMA(KP951056516, T44, T41); | |
411 { | |
412 E T4o, T4s, T4e, T46; | |
413 T4o = T4f * T4n; | |
414 Ip[WS(rs, 5)] = FNMS(T4k, T4n, T4j); | |
415 T4s = T1L * T4r; | |
416 Ip[WS(rs, 9)] = FNMS(T1N, T4r, T4q); | |
417 T4e = T48 * T4d; | |
418 Ip[WS(rs, 3)] = FNMS(T4c, T4d, T4a); | |
419 T46 = TE * T45; | |
420 Ip[WS(rs, 1)] = FNMS(TH, T45, T3S); | |
421 Im[WS(rs, 5)] = FMA(T4k, T4i, T4o); | |
422 Im[WS(rs, 9)] = FMA(T1N, T4p, T4s); | |
423 Im[WS(rs, 3)] = FMA(T4c, T49, T4e); | |
424 Im[WS(rs, 1)] = FMA(TH, T3R, T46); | |
425 } | |
426 } | |
427 T54 = FMA(KP618033988, T53, T52); | |
428 T5i = FNMS(KP618033988, T52, T53); | |
429 T4L = FMA(KP559016994, T4K, T4J); | |
430 T5c = FNMS(KP559016994, T4K, T4J); | |
431 { | |
432 E T38, T2Q, T33, T2E, T2v, T37, T2N, T5h, T51, T2L, T2x, T32; | |
433 T38 = FNMS(KP618033988, T2O, T2P); | |
434 T2Q = FMA(KP618033988, T2P, T2O); | |
435 T5h = FNMS(KP559016994, T50, T4Z); | |
436 T51 = FMA(KP559016994, T50, T4Z); | |
437 { | |
438 E T5e, T5n, T57, T4T; | |
439 T5e = FNMS(KP951056516, T5d, T5c); | |
440 T5n = FMA(KP951056516, T5d, T5c); | |
441 T57 = FMA(KP951056516, T4S, T4L); | |
442 T4T = FNMS(KP951056516, T4S, T4L); | |
443 { | |
444 E T5j, T5r, T59, T55; | |
445 T5j = FMA(KP951056516, T5i, T5h); | |
446 T5r = FNMS(KP951056516, T5i, T5h); | |
447 T59 = FNMS(KP951056516, T54, T51); | |
448 T55 = FMA(KP951056516, T54, T51); | |
449 { | |
450 E T5f, T5o, T58, T4U; | |
451 T5f = T5b * T5e; | |
452 T5o = T5m * T5n; | |
453 T58 = T1V * T57; | |
454 T4U = TD * T4T; | |
455 { | |
456 E T5k, T5s, T5a, T56; | |
457 T5k = T5b * T5j; | |
458 T5s = T5m * T5r; | |
459 T5a = T1V * T59; | |
460 T56 = TD * T55; | |
461 Ip[WS(rs, 6)] = FNMS(T5g, T5j, T5f); | |
462 Ip[WS(rs, 8)] = FNMS(T5q, T5r, T5o); | |
463 Ip[WS(rs, 4)] = FNMS(T1X, T59, T58); | |
464 Ip[0] = FNMS(TG, T55, T4U); | |
465 Im[WS(rs, 6)] = FMA(T5g, T5e, T5k); | |
466 Im[WS(rs, 8)] = FMA(T5q, T5n, T5s); | |
467 Im[WS(rs, 4)] = FMA(T1X, T57, T5a); | |
468 Im[0] = FMA(TG, T4T, T56); | |
469 } | |
470 } | |
471 } | |
472 } | |
473 T2L = FNMS(KP250000000, T2K, T2H); | |
474 T33 = FNMS(KP618033988, T2A, T2D); | |
475 T2E = FMA(KP618033988, T2D, T2A); | |
476 T2v = FNMS(KP250000000, TC, T7); | |
477 T37 = FNMS(KP559016994, T2M, T2L); | |
478 T2N = FMA(KP559016994, T2M, T2L); | |
479 T1I = FNMS(KP618033988, T1H, T1G); | |
480 T26 = FMA(KP618033988, T1G, T1H); | |
481 T2x = FMA(KP559016994, T2w, T2v); | |
482 T32 = FNMS(KP559016994, T2w, T2v); | |
483 { | |
484 E T3f, T39, T2R, T2Z; | |
485 T3f = FNMS(KP951056516, T38, T37); | |
486 T39 = FMA(KP951056516, T38, T37); | |
487 T2R = FNMS(KP951056516, T2Q, T2N); | |
488 T2Z = FMA(KP951056516, T2Q, T2N); | |
489 { | |
490 E T3c, T34, T2F, T2V; | |
491 T3c = FMA(KP951056516, T33, T32); | |
492 T34 = FNMS(KP951056516, T33, T32); | |
493 T2F = FMA(KP951056516, T2E, T2x); | |
494 T2V = FNMS(KP951056516, T2E, T2x); | |
495 { | |
496 E T3a, T35, T3g, T3d; | |
497 T3a = T36 * T34; | |
498 T35 = T31 * T34; | |
499 T3g = T3e * T3c; | |
500 T3d = T3b * T3c; | |
501 { | |
502 E T30, T2W, T2S, T2G; | |
503 T30 = T2Y * T2V; | |
504 T2W = T2U * T2V; | |
505 T2S = T2b * T2F; | |
506 T2G = T29 * T2F; | |
507 Rm[WS(rs, 4)] = FMA(T31, T39, T3a); | |
508 Rp[WS(rs, 4)] = FNMS(T36, T39, T35); | |
509 Rm[WS(rs, 6)] = FMA(T3b, T3f, T3g); | |
510 Rp[WS(rs, 6)] = FNMS(T3e, T3f, T3d); | |
511 Rm[WS(rs, 8)] = FMA(T2U, T2Z, T30); | |
512 Rp[WS(rs, 8)] = FNMS(T2Y, T2Z, T2W); | |
513 Rm[WS(rs, 2)] = FMA(T29, T2R, T2S); | |
514 Rp[WS(rs, 2)] = FNMS(T2b, T2R, T2G); | |
515 } | |
516 } | |
517 } | |
518 } | |
519 T1o = FNMS(KP618033988, T1n, T18); | |
520 T20 = FMA(KP618033988, T18, T1n); | |
521 T1F = FNMS(KP559016994, T1E, T1D); | |
522 T25 = FMA(KP559016994, T1E, T1D); | |
523 } | |
524 } | |
525 } | |
526 } | |
527 } | |
528 } | |
529 TT = FNMS(KP559016994, TS, TR); | |
530 T1Z = FMA(KP559016994, TS, TR); | |
531 { | |
532 E T2l, T27, T1J, T1T; | |
533 T2l = FNMS(KP951056516, T26, T25); | |
534 T27 = FMA(KP951056516, T26, T25); | |
535 T1J = FNMS(KP951056516, T1I, T1F); | |
536 T1T = FMA(KP951056516, T1I, T1F); | |
537 { | |
538 E T2h, T21, T1p, T1P; | |
539 T2h = FMA(KP951056516, T20, T1Z); | |
540 T21 = FNMS(KP951056516, T20, T1Z); | |
541 T1p = FMA(KP951056516, T1o, TT); | |
542 T1P = FNMS(KP951056516, T1o, TT); | |
543 { | |
544 E T28, T22, T2m, T2i; | |
545 T28 = T24 * T21; | |
546 T22 = T1Y * T21; | |
547 T2m = T2k * T2h; | |
548 T2i = T2g * T2h; | |
549 { | |
550 E T1U, T1Q, T1K, T1q; | |
551 T1U = T1S * T1P; | |
552 T1Q = T1O * T1P; | |
553 T1K = T1s * T1p; | |
554 T1q = TI * T1p; | |
555 Rm[WS(rs, 3)] = FMA(T1Y, T27, T28); | |
556 Rp[WS(rs, 3)] = FNMS(T24, T27, T22); | |
557 Rm[WS(rs, 7)] = FMA(T2g, T2l, T2m); | |
558 Rp[WS(rs, 7)] = FNMS(T2k, T2l, T2i); | |
559 Rm[WS(rs, 9)] = FMA(T1O, T1T, T1U); | |
560 Rp[WS(rs, 9)] = FNMS(T1S, T1T, T1Q); | |
561 Rm[WS(rs, 1)] = FMA(TI, T1J, T1K); | |
562 Rp[WS(rs, 1)] = FNMS(T1s, T1J, T1q); | |
563 } | |
564 } | |
565 } | |
566 } | |
567 } | |
568 } | |
569 } | |
570 | |
571 static const tw_instr twinstr[] = { | |
572 {TW_CEXP, 1, 1}, | |
573 {TW_CEXP, 1, 3}, | |
574 {TW_CEXP, 1, 9}, | |
575 {TW_CEXP, 1, 19}, | |
576 {TW_NEXT, 1, 0} | |
577 }; | |
578 | |
579 static const hc2c_desc desc = { 20, "hc2cb2_20", twinstr, &GENUS, {136, 58, 140, 0} }; | |
580 | |
581 void X(codelet_hc2cb2_20) (planner *p) { | |
582 X(khc2c_register) (p, hc2cb2_20, &desc, HC2C_VIA_RDFT); | |
583 } | |
584 #else /* HAVE_FMA */ | |
585 | |
586 /* Generated by: ../../../genfft/gen_hc2c.native -compact -variables 4 -pipeline-latency 4 -sign 1 -twiddle-log3 -precompute-twiddles -n 20 -dif -name hc2cb2_20 -include hc2cb.h */ | |
587 | |
588 /* | |
589 * This function contains 276 FP additions, 164 FP multiplications, | |
590 * (or, 204 additions, 92 multiplications, 72 fused multiply/add), | |
591 * 137 stack variables, 4 constants, and 80 memory accesses | |
592 */ | |
593 #include "hc2cb.h" | |
594 | |
595 static void hc2cb2_20(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) | |
596 { | |
597 DK(KP250000000, +0.250000000000000000000000000000000000000000000); | |
598 DK(KP559016994, +0.559016994374947424102293417182819058860154590); | |
599 DK(KP587785252, +0.587785252292473129168705954639072768597652438); | |
600 DK(KP951056516, +0.951056516295153572116439333379382143405698634); | |
601 { | |
602 INT m; | |
603 for (m = mb, W = W + ((mb - 1) * 8); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 8, MAKE_VOLATILE_STRIDE(80, rs)) { | |
604 E TD, TG, TE, TH, TJ, T1t, T27, T25, T1T, T1R, T1V, T2j, T2Z, T21, T2X; | |
605 E T2T, T2n, T2P, T3V, T41, T3R, T3X, T29, T2c, T4H, T4L, T1L, T1M, T1N, T2d; | |
606 E T4R, T1P, T4P, T49, T2N, T2f, T47, T2L; | |
607 { | |
608 E T1U, T2l, T1Z, T2i, T1S, T2m, T20, T2h; | |
609 { | |
610 E TF, T1s, TI, T1r; | |
611 TD = W[0]; | |
612 TG = W[1]; | |
613 TE = W[2]; | |
614 TH = W[3]; | |
615 TF = TD * TE; | |
616 T1s = TG * TE; | |
617 TI = TG * TH; | |
618 T1r = TD * TH; | |
619 TJ = TF + TI; | |
620 T1t = T1r - T1s; | |
621 T27 = T1r + T1s; | |
622 T25 = TF - TI; | |
623 T1T = W[5]; | |
624 T1U = TH * T1T; | |
625 T2l = TD * T1T; | |
626 T1Z = TE * T1T; | |
627 T2i = TG * T1T; | |
628 T1R = W[4]; | |
629 T1S = TE * T1R; | |
630 T2m = TG * T1R; | |
631 T20 = TH * T1R; | |
632 T2h = TD * T1R; | |
633 } | |
634 T1V = T1S + T1U; | |
635 T2j = T2h - T2i; | |
636 T2Z = T1Z + T20; | |
637 T21 = T1Z - T20; | |
638 T2X = T1S - T1U; | |
639 T2T = T2l - T2m; | |
640 T2n = T2l + T2m; | |
641 T2P = T2h + T2i; | |
642 { | |
643 E T3T, T3U, T3P, T3Q; | |
644 T3T = TJ * T1T; | |
645 T3U = T1t * T1R; | |
646 T3V = T3T - T3U; | |
647 T41 = T3T + T3U; | |
648 T3P = TJ * T1R; | |
649 T3Q = T1t * T1T; | |
650 T3R = T3P + T3Q; | |
651 T3X = T3P - T3Q; | |
652 { | |
653 E T26, T28, T2a, T2b; | |
654 T26 = T25 * T1R; | |
655 T28 = T27 * T1T; | |
656 T29 = T26 + T28; | |
657 T2a = T25 * T1T; | |
658 T2b = T27 * T1R; | |
659 T2c = T2a - T2b; | |
660 T4H = T26 - T28; | |
661 T4L = T2a + T2b; | |
662 T1L = W[6]; | |
663 T1M = W[7]; | |
664 T1N = FMA(TD, T1L, TG * T1M); | |
665 T2d = FMA(T29, T1L, T2c * T1M); | |
666 T4R = FNMS(T1t, T1L, TJ * T1M); | |
667 T1P = FNMS(TG, T1L, TD * T1M); | |
668 T4P = FMA(TJ, T1L, T1t * T1M); | |
669 T49 = FNMS(T27, T1L, T25 * T1M); | |
670 T2N = FNMS(TH, T1L, TE * T1M); | |
671 T2f = FNMS(T2c, T1L, T29 * T1M); | |
672 T47 = FMA(T25, T1L, T27 * T1M); | |
673 T2L = FMA(TE, T1L, TH * T1M); | |
674 } | |
675 } | |
676 } | |
677 { | |
678 E T7, T4i, T4x, TK, T1D, T3i, T3E, T2D, T19, T3L, T3M, T1o, T2x, T4C, T4B; | |
679 E T2u, T1v, T4r, T4o, T1u, T2H, T37, T2I, T3e, T3p, T3w, T3x, Tm, TB, TC; | |
680 E T4u, T4v, T4y, T2A, T2B, T2E, T1E, T1F, T1G, T4d, T4g, T4j, T3F, T3G, T3H; | |
681 E TN, TQ, TR, T48, T4a; | |
682 { | |
683 E T3, T3g, T1z, T3C, T6, T3D, T1C, T3h; | |
684 { | |
685 E T1, T2, T1x, T1y; | |
686 T1 = Rp[0]; | |
687 T2 = Rm[WS(rs, 9)]; | |
688 T3 = T1 + T2; | |
689 T3g = T1 - T2; | |
690 T1x = Ip[0]; | |
691 T1y = Im[WS(rs, 9)]; | |
692 T1z = T1x - T1y; | |
693 T3C = T1x + T1y; | |
694 } | |
695 { | |
696 E T4, T5, T1A, T1B; | |
697 T4 = Rp[WS(rs, 5)]; | |
698 T5 = Rm[WS(rs, 4)]; | |
699 T6 = T4 + T5; | |
700 T3D = T4 - T5; | |
701 T1A = Ip[WS(rs, 5)]; | |
702 T1B = Im[WS(rs, 4)]; | |
703 T1C = T1A - T1B; | |
704 T3h = T1A + T1B; | |
705 } | |
706 T7 = T3 + T6; | |
707 T4i = T3g - T3h; | |
708 T4x = T3D + T3C; | |
709 TK = T3 - T6; | |
710 T1D = T1z - T1C; | |
711 T3i = T3g + T3h; | |
712 T3E = T3C - T3D; | |
713 T2D = T1z + T1C; | |
714 } | |
715 { | |
716 E Te, T4b, T4m, TL, T11, T33, T3l, T2s, TA, T4f, T4q, TP, T1n, T3d, T3v; | |
717 E T2w, Tl, T4c, T4n, TM, T18, T36, T3o, T2t, Tt, T4e, T4p, TO, T1g, T3a; | |
718 E T3s, T2v; | |
719 { | |
720 E Ta, T3j, TX, T31, Td, T32, T10, T3k; | |
721 { | |
722 E T8, T9, TV, TW; | |
723 T8 = Rp[WS(rs, 4)]; | |
724 T9 = Rm[WS(rs, 5)]; | |
725 Ta = T8 + T9; | |
726 T3j = T8 - T9; | |
727 TV = Ip[WS(rs, 4)]; | |
728 TW = Im[WS(rs, 5)]; | |
729 TX = TV - TW; | |
730 T31 = TV + TW; | |
731 } | |
732 { | |
733 E Tb, Tc, TY, TZ; | |
734 Tb = Rp[WS(rs, 9)]; | |
735 Tc = Rm[0]; | |
736 Td = Tb + Tc; | |
737 T32 = Tb - Tc; | |
738 TY = Ip[WS(rs, 9)]; | |
739 TZ = Im[0]; | |
740 T10 = TY - TZ; | |
741 T3k = TY + TZ; | |
742 } | |
743 Te = Ta + Td; | |
744 T4b = T3j - T3k; | |
745 T4m = T32 + T31; | |
746 TL = Ta - Td; | |
747 T11 = TX - T10; | |
748 T33 = T31 - T32; | |
749 T3l = T3j + T3k; | |
750 T2s = TX + T10; | |
751 } | |
752 { | |
753 E Tw, T3t, T1j, T3c, Tz, T3b, T1m, T3u; | |
754 { | |
755 E Tu, Tv, T1h, T1i; | |
756 Tu = Rm[WS(rs, 7)]; | |
757 Tv = Rp[WS(rs, 2)]; | |
758 Tw = Tu + Tv; | |
759 T3t = Tu - Tv; | |
760 T1h = Ip[WS(rs, 2)]; | |
761 T1i = Im[WS(rs, 7)]; | |
762 T1j = T1h - T1i; | |
763 T3c = T1h + T1i; | |
764 } | |
765 { | |
766 E Tx, Ty, T1k, T1l; | |
767 Tx = Rm[WS(rs, 2)]; | |
768 Ty = Rp[WS(rs, 7)]; | |
769 Tz = Tx + Ty; | |
770 T3b = Tx - Ty; | |
771 T1k = Ip[WS(rs, 7)]; | |
772 T1l = Im[WS(rs, 2)]; | |
773 T1m = T1k - T1l; | |
774 T3u = T1k + T1l; | |
775 } | |
776 TA = Tw + Tz; | |
777 T4f = T3t + T3u; | |
778 T4q = T3b - T3c; | |
779 TP = Tw - Tz; | |
780 T1n = T1j - T1m; | |
781 T3d = T3b + T3c; | |
782 T3v = T3t - T3u; | |
783 T2w = T1j + T1m; | |
784 } | |
785 { | |
786 E Th, T3m, T14, T35, Tk, T34, T17, T3n; | |
787 { | |
788 E Tf, Tg, T12, T13; | |
789 Tf = Rm[WS(rs, 3)]; | |
790 Tg = Rp[WS(rs, 6)]; | |
791 Th = Tf + Tg; | |
792 T3m = Tf - Tg; | |
793 T12 = Ip[WS(rs, 6)]; | |
794 T13 = Im[WS(rs, 3)]; | |
795 T14 = T12 - T13; | |
796 T35 = T12 + T13; | |
797 } | |
798 { | |
799 E Ti, Tj, T15, T16; | |
800 Ti = Rp[WS(rs, 1)]; | |
801 Tj = Rm[WS(rs, 8)]; | |
802 Tk = Ti + Tj; | |
803 T34 = Ti - Tj; | |
804 T15 = Ip[WS(rs, 1)]; | |
805 T16 = Im[WS(rs, 8)]; | |
806 T17 = T15 - T16; | |
807 T3n = T15 + T16; | |
808 } | |
809 Tl = Th + Tk; | |
810 T4c = T3m - T3n; | |
811 T4n = T34 - T35; | |
812 TM = Th - Tk; | |
813 T18 = T14 - T17; | |
814 T36 = T34 + T35; | |
815 T3o = T3m + T3n; | |
816 T2t = T14 + T17; | |
817 } | |
818 { | |
819 E Tp, T3q, T1c, T38, Ts, T39, T1f, T3r; | |
820 { | |
821 E Tn, To, T1a, T1b; | |
822 Tn = Rp[WS(rs, 8)]; | |
823 To = Rm[WS(rs, 1)]; | |
824 Tp = Tn + To; | |
825 T3q = Tn - To; | |
826 T1a = Ip[WS(rs, 8)]; | |
827 T1b = Im[WS(rs, 1)]; | |
828 T1c = T1a - T1b; | |
829 T38 = T1a + T1b; | |
830 } | |
831 { | |
832 E Tq, Tr, T1d, T1e; | |
833 Tq = Rm[WS(rs, 6)]; | |
834 Tr = Rp[WS(rs, 3)]; | |
835 Ts = Tq + Tr; | |
836 T39 = Tq - Tr; | |
837 T1d = Ip[WS(rs, 3)]; | |
838 T1e = Im[WS(rs, 6)]; | |
839 T1f = T1d - T1e; | |
840 T3r = T1d + T1e; | |
841 } | |
842 Tt = Tp + Ts; | |
843 T4e = T3q + T3r; | |
844 T4p = T39 + T38; | |
845 TO = Tp - Ts; | |
846 T1g = T1c - T1f; | |
847 T3a = T38 - T39; | |
848 T3s = T3q - T3r; | |
849 T2v = T1c + T1f; | |
850 } | |
851 T19 = T11 - T18; | |
852 T3L = T3l - T3o; | |
853 T3M = T3s - T3v; | |
854 T1o = T1g - T1n; | |
855 T2x = T2v - T2w; | |
856 T4C = T4e - T4f; | |
857 T4B = T4b - T4c; | |
858 T2u = T2s - T2t; | |
859 T1v = TO - TP; | |
860 T4r = T4p - T4q; | |
861 T4o = T4m - T4n; | |
862 T1u = TL - TM; | |
863 T2H = Te - Tl; | |
864 T37 = T33 + T36; | |
865 T2I = Tt - TA; | |
866 T3e = T3a + T3d; | |
867 T3p = T3l + T3o; | |
868 T3w = T3s + T3v; | |
869 T3x = T3p + T3w; | |
870 Tm = Te + Tl; | |
871 TB = Tt + TA; | |
872 TC = Tm + TB; | |
873 T4u = T4m + T4n; | |
874 T4v = T4p + T4q; | |
875 T4y = T4u + T4v; | |
876 T2A = T2s + T2t; | |
877 T2B = T2v + T2w; | |
878 T2E = T2A + T2B; | |
879 T1E = T11 + T18; | |
880 T1F = T1g + T1n; | |
881 T1G = T1E + T1F; | |
882 T4d = T4b + T4c; | |
883 T4g = T4e + T4f; | |
884 T4j = T4d + T4g; | |
885 T3F = T33 - T36; | |
886 T3G = T3a - T3d; | |
887 T3H = T3F + T3G; | |
888 TN = TL + TM; | |
889 TQ = TO + TP; | |
890 TR = TN + TQ; | |
891 } | |
892 Rp[0] = T7 + TC; | |
893 Rm[0] = T2D + T2E; | |
894 { | |
895 E T2k, T2o, T4T, T4U; | |
896 T2k = TK + TR; | |
897 T2o = T1D + T1G; | |
898 Rp[WS(rs, 5)] = FNMS(T2n, T2o, T2j * T2k); | |
899 Rm[WS(rs, 5)] = FMA(T2n, T2k, T2j * T2o); | |
900 T4T = T4i + T4j; | |
901 T4U = T4x + T4y; | |
902 Ip[WS(rs, 2)] = FNMS(T2c, T4U, T29 * T4T); | |
903 Im[WS(rs, 2)] = FMA(T29, T4U, T2c * T4T); | |
904 } | |
905 T48 = T3i + T3x; | |
906 T4a = T3E + T3H; | |
907 Ip[WS(rs, 7)] = FNMS(T49, T4a, T47 * T48); | |
908 Im[WS(rs, 7)] = FMA(T47, T4a, T49 * T48); | |
909 { | |
910 E T2y, T2J, T2V, T2R, T2G, T2U, T2r, T2Q; | |
911 T2y = FMA(KP951056516, T2u, KP587785252 * T2x); | |
912 T2J = FMA(KP951056516, T2H, KP587785252 * T2I); | |
913 T2V = FNMS(KP951056516, T2I, KP587785252 * T2H); | |
914 T2R = FNMS(KP951056516, T2x, KP587785252 * T2u); | |
915 { | |
916 E T2C, T2F, T2p, T2q; | |
917 T2C = KP559016994 * (T2A - T2B); | |
918 T2F = FNMS(KP250000000, T2E, T2D); | |
919 T2G = T2C + T2F; | |
920 T2U = T2F - T2C; | |
921 T2p = KP559016994 * (Tm - TB); | |
922 T2q = FNMS(KP250000000, TC, T7); | |
923 T2r = T2p + T2q; | |
924 T2Q = T2q - T2p; | |
925 } | |
926 { | |
927 E T2z, T2K, T2Y, T30; | |
928 T2z = T2r + T2y; | |
929 T2K = T2G - T2J; | |
930 Rp[WS(rs, 2)] = FNMS(T27, T2K, T25 * T2z); | |
931 Rm[WS(rs, 2)] = FMA(T27, T2z, T25 * T2K); | |
932 T2Y = T2Q - T2R; | |
933 T30 = T2V + T2U; | |
934 Rp[WS(rs, 6)] = FNMS(T2Z, T30, T2X * T2Y); | |
935 Rm[WS(rs, 6)] = FMA(T2Z, T2Y, T2X * T30); | |
936 } | |
937 { | |
938 E T2M, T2O, T2S, T2W; | |
939 T2M = T2r - T2y; | |
940 T2O = T2J + T2G; | |
941 Rp[WS(rs, 8)] = FNMS(T2N, T2O, T2L * T2M); | |
942 Rm[WS(rs, 8)] = FMA(T2N, T2M, T2L * T2O); | |
943 T2S = T2Q + T2R; | |
944 T2W = T2U - T2V; | |
945 Rp[WS(rs, 4)] = FNMS(T2T, T2W, T2P * T2S); | |
946 Rm[WS(rs, 4)] = FMA(T2T, T2S, T2P * T2W); | |
947 } | |
948 } | |
949 { | |
950 E T4s, T4D, T4N, T4I, T4A, T4M, T4l, T4J; | |
951 T4s = FMA(KP951056516, T4o, KP587785252 * T4r); | |
952 T4D = FMA(KP951056516, T4B, KP587785252 * T4C); | |
953 T4N = FNMS(KP951056516, T4C, KP587785252 * T4B); | |
954 T4I = FNMS(KP951056516, T4r, KP587785252 * T4o); | |
955 { | |
956 E T4w, T4z, T4h, T4k; | |
957 T4w = KP559016994 * (T4u - T4v); | |
958 T4z = FNMS(KP250000000, T4y, T4x); | |
959 T4A = T4w + T4z; | |
960 T4M = T4z - T4w; | |
961 T4h = KP559016994 * (T4d - T4g); | |
962 T4k = FNMS(KP250000000, T4j, T4i); | |
963 T4l = T4h + T4k; | |
964 T4J = T4k - T4h; | |
965 } | |
966 { | |
967 E T4t, T4E, T4Q, T4S; | |
968 T4t = T4l - T4s; | |
969 T4E = T4A + T4D; | |
970 Ip[0] = FNMS(TG, T4E, TD * T4t); | |
971 Im[0] = FMA(TD, T4E, TG * T4t); | |
972 T4Q = T4J - T4I; | |
973 T4S = T4M + T4N; | |
974 Ip[WS(rs, 8)] = FNMS(T4R, T4S, T4P * T4Q); | |
975 Im[WS(rs, 8)] = FMA(T4P, T4S, T4R * T4Q); | |
976 } | |
977 { | |
978 E T4F, T4G, T4K, T4O; | |
979 T4F = T4s + T4l; | |
980 T4G = T4A - T4D; | |
981 Ip[WS(rs, 4)] = FNMS(T1T, T4G, T1R * T4F); | |
982 Im[WS(rs, 4)] = FMA(T1R, T4G, T1T * T4F); | |
983 T4K = T4I + T4J; | |
984 T4O = T4M - T4N; | |
985 Ip[WS(rs, 6)] = FNMS(T4L, T4O, T4H * T4K); | |
986 Im[WS(rs, 6)] = FMA(T4H, T4O, T4L * T4K); | |
987 } | |
988 } | |
989 { | |
990 E T1p, T1w, T22, T1X, T1J, T23, TU, T1W; | |
991 T1p = FNMS(KP951056516, T1o, KP587785252 * T19); | |
992 T1w = FNMS(KP951056516, T1v, KP587785252 * T1u); | |
993 T22 = FMA(KP951056516, T1u, KP587785252 * T1v); | |
994 T1X = FMA(KP951056516, T19, KP587785252 * T1o); | |
995 { | |
996 E T1H, T1I, TS, TT; | |
997 T1H = FNMS(KP250000000, T1G, T1D); | |
998 T1I = KP559016994 * (T1E - T1F); | |
999 T1J = T1H - T1I; | |
1000 T23 = T1I + T1H; | |
1001 TS = FNMS(KP250000000, TR, TK); | |
1002 TT = KP559016994 * (TN - TQ); | |
1003 TU = TS - TT; | |
1004 T1W = TT + TS; | |
1005 } | |
1006 { | |
1007 E T1q, T1K, T2e, T2g; | |
1008 T1q = TU - T1p; | |
1009 T1K = T1w + T1J; | |
1010 Rp[WS(rs, 1)] = FNMS(T1t, T1K, TJ * T1q); | |
1011 Rm[WS(rs, 1)] = FMA(T1t, T1q, TJ * T1K); | |
1012 T2e = T1W + T1X; | |
1013 T2g = T23 - T22; | |
1014 Rp[WS(rs, 7)] = FNMS(T2f, T2g, T2d * T2e); | |
1015 Rm[WS(rs, 7)] = FMA(T2f, T2e, T2d * T2g); | |
1016 } | |
1017 { | |
1018 E T1O, T1Q, T1Y, T24; | |
1019 T1O = TU + T1p; | |
1020 T1Q = T1J - T1w; | |
1021 Rp[WS(rs, 9)] = FNMS(T1P, T1Q, T1N * T1O); | |
1022 Rm[WS(rs, 9)] = FMA(T1P, T1O, T1N * T1Q); | |
1023 T1Y = T1W - T1X; | |
1024 T24 = T22 + T23; | |
1025 Rp[WS(rs, 3)] = FNMS(T21, T24, T1V * T1Y); | |
1026 Rm[WS(rs, 3)] = FMA(T21, T1Y, T1V * T24); | |
1027 } | |
1028 } | |
1029 { | |
1030 E T3f, T3N, T43, T3Z, T3K, T42, T3A, T3Y; | |
1031 T3f = FNMS(KP951056516, T3e, KP587785252 * T37); | |
1032 T3N = FNMS(KP951056516, T3M, KP587785252 * T3L); | |
1033 T43 = FMA(KP951056516, T3L, KP587785252 * T3M); | |
1034 T3Z = FMA(KP951056516, T37, KP587785252 * T3e); | |
1035 { | |
1036 E T3I, T3J, T3y, T3z; | |
1037 T3I = FNMS(KP250000000, T3H, T3E); | |
1038 T3J = KP559016994 * (T3F - T3G); | |
1039 T3K = T3I - T3J; | |
1040 T42 = T3J + T3I; | |
1041 T3y = FNMS(KP250000000, T3x, T3i); | |
1042 T3z = KP559016994 * (T3p - T3w); | |
1043 T3A = T3y - T3z; | |
1044 T3Y = T3z + T3y; | |
1045 } | |
1046 { | |
1047 E T3B, T3O, T45, T46; | |
1048 T3B = T3f + T3A; | |
1049 T3O = T3K - T3N; | |
1050 Ip[WS(rs, 1)] = FNMS(TH, T3O, TE * T3B); | |
1051 Im[WS(rs, 1)] = FMA(TE, T3O, TH * T3B); | |
1052 T45 = T3Z + T3Y; | |
1053 T46 = T42 - T43; | |
1054 Ip[WS(rs, 9)] = FNMS(T1M, T46, T1L * T45); | |
1055 Im[WS(rs, 9)] = FMA(T1L, T46, T1M * T45); | |
1056 } | |
1057 { | |
1058 E T3S, T3W, T40, T44; | |
1059 T3S = T3A - T3f; | |
1060 T3W = T3K + T3N; | |
1061 Ip[WS(rs, 3)] = FNMS(T3V, T3W, T3R * T3S); | |
1062 Im[WS(rs, 3)] = FMA(T3R, T3W, T3V * T3S); | |
1063 T40 = T3Y - T3Z; | |
1064 T44 = T42 + T43; | |
1065 Ip[WS(rs, 5)] = FNMS(T41, T44, T3X * T40); | |
1066 Im[WS(rs, 5)] = FMA(T3X, T44, T41 * T40); | |
1067 } | |
1068 } | |
1069 } | |
1070 } | |
1071 } | |
1072 } | |
1073 | |
1074 static const tw_instr twinstr[] = { | |
1075 {TW_CEXP, 1, 1}, | |
1076 {TW_CEXP, 1, 3}, | |
1077 {TW_CEXP, 1, 9}, | |
1078 {TW_CEXP, 1, 19}, | |
1079 {TW_NEXT, 1, 0} | |
1080 }; | |
1081 | |
1082 static const hc2c_desc desc = { 20, "hc2cb2_20", twinstr, &GENUS, {204, 92, 72, 0} }; | |
1083 | |
1084 void X(codelet_hc2cb2_20) (planner *p) { | |
1085 X(khc2c_register) (p, hc2cb2_20, &desc, HC2C_VIA_RDFT); | |
1086 } | |
1087 #endif /* HAVE_FMA */ |