comparison src/fftw-3.3.3/mpi/rdft-rank1-bigvec.c @ 10:37bf6b4a2645

Add FFTW3
author Chris Cannam
date Wed, 20 Mar 2013 15:35:50 +0000
parents
children
comparison
equal deleted inserted replaced
9:c0fb53affa76 10:37bf6b4a2645
1 /*
2 * Copyright (c) 2003, 2007-11 Matteo Frigo
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 */
20
21 /* Complex RDFTs of rank == 1 when the vector length vn is >= # processes.
22 In this case, we don't need to use a six-step type algorithm, and can
23 instead transpose the RDFT dimension with the vector dimension to
24 make the RDFT local. */
25
26 #include "mpi-rdft.h"
27 #include "mpi-transpose.h"
28
29 typedef struct {
30 solver super;
31 int preserve_input; /* preserve input even if DESTROY_INPUT was passed */
32 rearrangement rearrange;
33 } S;
34
35 typedef struct {
36 plan_mpi_rdft super;
37
38 plan *cldt_before, *cld, *cldt_after;
39 int preserve_input;
40 rearrangement rearrange;
41 } P;
42
43 static void apply(const plan *ego_, R *I, R *O)
44 {
45 const P *ego = (const P *) ego_;
46 plan_rdft *cld, *cldt_before, *cldt_after;
47
48 /* global transpose */
49 cldt_before = (plan_rdft *) ego->cldt_before;
50 cldt_before->apply(ego->cldt_before, I, O);
51
52 if (ego->preserve_input) I = O;
53
54 /* 1d RDFT(s) */
55 cld = (plan_rdft *) ego->cld;
56 cld->apply(ego->cld, O, I);
57
58 /* global transpose */
59 cldt_after = (plan_rdft *) ego->cldt_after;
60 cldt_after->apply(ego->cldt_after, I, O);
61 }
62
63 static int applicable(const S *ego, const problem *p_,
64 const planner *plnr)
65 {
66 const problem_mpi_rdft *p = (const problem_mpi_rdft *) p_;
67 int n_pes;
68 MPI_Comm_size(p->comm, &n_pes);
69 return (1
70 && p->sz->rnk == 1
71 && !(p->flags & ~RANK1_BIGVEC_ONLY)
72 && (!ego->preserve_input || (!NO_DESTROY_INPUTP(plnr)
73 && p->I != p->O))
74
75 #if 0 /* don't need this check since no other rank-1 rdft solver */
76 && (p->vn >= n_pes /* TODO: relax this, using more memory? */
77 || (p->flags & RANK1_BIGVEC_ONLY))
78 #endif
79
80 && XM(rearrange_applicable)(ego->rearrange,
81 p->sz->dims[0], p->vn, n_pes)
82
83 && (!NO_SLOWP(plnr) /* slow if rdft-serial is applicable */
84 || !XM(rdft_serial_applicable)(p))
85 );
86 }
87
88 static void awake(plan *ego_, enum wakefulness wakefulness)
89 {
90 P *ego = (P *) ego_;
91 X(plan_awake)(ego->cldt_before, wakefulness);
92 X(plan_awake)(ego->cld, wakefulness);
93 X(plan_awake)(ego->cldt_after, wakefulness);
94 }
95
96 static void destroy(plan *ego_)
97 {
98 P *ego = (P *) ego_;
99 X(plan_destroy_internal)(ego->cldt_after);
100 X(plan_destroy_internal)(ego->cld);
101 X(plan_destroy_internal)(ego->cldt_before);
102 }
103
104 static void print(const plan *ego_, printer *p)
105 {
106 const P *ego = (const P *) ego_;
107 const char descrip[][16] = { "contig", "discontig", "square-after",
108 "square-middle", "square-before" };
109 p->print(p, "(mpi-rdft-rank1-bigvec/%s%s %(%p%) %(%p%) %(%p%))",
110 descrip[ego->rearrange], ego->preserve_input==2 ?"/p":"",
111 ego->cldt_before, ego->cld, ego->cldt_after);
112 }
113
114 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
115 {
116 const S *ego = (const S *) ego_;
117 const problem_mpi_rdft *p;
118 P *pln;
119 plan *cld = 0, *cldt_before = 0, *cldt_after = 0;
120 R *I, *O;
121 INT yblock, yb, nx, ny, vn;
122 int my_pe, n_pes;
123 static const plan_adt padt = {
124 XM(rdft_solve), awake, print, destroy
125 };
126
127 UNUSED(ego);
128
129 if (!applicable(ego, p_, plnr))
130 return (plan *) 0;
131
132 p = (const problem_mpi_rdft *) p_;
133
134 MPI_Comm_rank(p->comm, &my_pe);
135 MPI_Comm_size(p->comm, &n_pes);
136
137 nx = p->sz->dims[0].n;
138 if (!(ny = XM(rearrange_ny)(ego->rearrange, p->sz->dims[0],p->vn,n_pes)))
139 return (plan *) 0;
140 vn = p->vn / ny;
141 A(ny * vn == p->vn);
142
143 yblock = XM(default_block)(ny, n_pes);
144 cldt_before = X(mkplan_d)(plnr,
145 XM(mkproblem_transpose)(
146 nx, ny, vn,
147 I = p->I, O = p->O,
148 p->sz->dims[0].b[IB], yblock,
149 p->comm, 0));
150 if (XM(any_true)(!cldt_before, p->comm)) goto nada;
151 if (ego->preserve_input || NO_DESTROY_INPUTP(plnr)) { I = O; }
152
153 yb = XM(block)(ny, yblock, my_pe);
154 cld = X(mkplan_d)(plnr,
155 X(mkproblem_rdft_1_d)(X(mktensor_1d)(nx, vn, vn),
156 X(mktensor_2d)(yb, vn*nx, vn*nx,
157 vn, 1, 1),
158 O, I, p->kind[0]));
159 if (XM(any_true)(!cld, p->comm)) goto nada;
160
161 cldt_after = X(mkplan_d)(plnr,
162 XM(mkproblem_transpose)(
163 ny, nx, vn,
164 I, O,
165 yblock, p->sz->dims[0].b[OB],
166 p->comm, 0));
167 if (XM(any_true)(!cldt_after, p->comm)) goto nada;
168
169 pln = MKPLAN_MPI_RDFT(P, &padt, apply);
170
171 pln->cldt_before = cldt_before;
172 pln->cld = cld;
173 pln->cldt_after = cldt_after;
174 pln->preserve_input = ego->preserve_input ? 2 : NO_DESTROY_INPUTP(plnr);
175 pln->rearrange = ego->rearrange;
176
177 X(ops_add)(&cldt_before->ops, &cld->ops, &pln->super.super.ops);
178 X(ops_add2)(&cldt_after->ops, &pln->super.super.ops);
179
180 return &(pln->super.super);
181
182 nada:
183 X(plan_destroy_internal)(cldt_after);
184 X(plan_destroy_internal)(cld);
185 X(plan_destroy_internal)(cldt_before);
186 return (plan *) 0;
187 }
188
189 static solver *mksolver(rearrangement rearrange, int preserve_input)
190 {
191 static const solver_adt sadt = { PROBLEM_MPI_RDFT, mkplan, 0 };
192 S *slv = MKSOLVER(S, &sadt);
193 slv->rearrange = rearrange;
194 slv->preserve_input = preserve_input;
195 return &(slv->super);
196 }
197
198 void XM(rdft_rank1_bigvec_register)(planner *p)
199 {
200 rearrangement rearrange;
201 int preserve_input;
202 FORALL_REARRANGE(rearrange)
203 for (preserve_input = 0; preserve_input <= 1; ++preserve_input)
204 REGISTER_SOLVER(p, mksolver(rearrange, preserve_input));
205 }