Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.3/mpi/rdft-rank-geq2-transposed.c @ 10:37bf6b4a2645
Add FFTW3
| author | Chris Cannam |
|---|---|
| date | Wed, 20 Mar 2013 15:35:50 +0000 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| 9:c0fb53affa76 | 10:37bf6b4a2645 |
|---|---|
| 1 /* | |
| 2 * Copyright (c) 2003, 2007-11 Matteo Frigo | |
| 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology | |
| 4 * | |
| 5 * This program is free software; you can redistribute it and/or modify | |
| 6 * it under the terms of the GNU General Public License as published by | |
| 7 * the Free Software Foundation; either version 2 of the License, or | |
| 8 * (at your option) any later version. | |
| 9 * | |
| 10 * This program is distributed in the hope that it will be useful, | |
| 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
| 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
| 13 * GNU General Public License for more details. | |
| 14 * | |
| 15 * You should have received a copy of the GNU General Public License | |
| 16 * along with this program; if not, write to the Free Software | |
| 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
| 18 * | |
| 19 */ | |
| 20 | |
| 21 /* Complex RDFTs of rank >= 2, for the case where we are distributed | |
| 22 across the first dimension only, and the output is transposed both | |
| 23 in data distribution and in ordering (for the first 2 dimensions). | |
| 24 | |
| 25 (Note that we don't have to handle the case where the input is | |
| 26 transposed, since this is equivalent to transposed output with the | |
| 27 first two dimensions swapped, and is automatically canonicalized as | |
| 28 such by rdft-problem.c. */ | |
| 29 | |
| 30 #include "mpi-rdft.h" | |
| 31 #include "mpi-transpose.h" | |
| 32 | |
| 33 typedef struct { | |
| 34 solver super; | |
| 35 int preserve_input; /* preserve input even if DESTROY_INPUT was passed */ | |
| 36 } S; | |
| 37 | |
| 38 typedef struct { | |
| 39 plan_mpi_rdft super; | |
| 40 | |
| 41 plan *cld1, *cldt, *cld2; | |
| 42 INT roff, ioff; | |
| 43 int preserve_input; | |
| 44 } P; | |
| 45 | |
| 46 static void apply(const plan *ego_, R *I, R *O) | |
| 47 { | |
| 48 const P *ego = (const P *) ego_; | |
| 49 plan_rdft *cld1, *cld2, *cldt; | |
| 50 | |
| 51 /* RDFT local dimensions */ | |
| 52 cld1 = (plan_rdft *) ego->cld1; | |
| 53 if (ego->preserve_input) { | |
| 54 cld1->apply(ego->cld1, I, O); | |
| 55 I = O; | |
| 56 } | |
| 57 else | |
| 58 cld1->apply(ego->cld1, I, I); | |
| 59 | |
| 60 /* global transpose */ | |
| 61 cldt = (plan_rdft *) ego->cldt; | |
| 62 cldt->apply(ego->cldt, I, O); | |
| 63 | |
| 64 /* RDFT final local dimension */ | |
| 65 cld2 = (plan_rdft *) ego->cld2; | |
| 66 cld2->apply(ego->cld2, O, O); | |
| 67 } | |
| 68 | |
| 69 static int applicable(const S *ego, const problem *p_, | |
| 70 const planner *plnr) | |
| 71 { | |
| 72 const problem_mpi_rdft *p = (const problem_mpi_rdft *) p_; | |
| 73 return (1 | |
| 74 && p->sz->rnk > 1 | |
| 75 && p->flags == TRANSPOSED_OUT | |
| 76 && (!ego->preserve_input || (!NO_DESTROY_INPUTP(plnr) | |
| 77 && p->I != p->O)) | |
| 78 && XM(is_local_after)(1, p->sz, IB) | |
| 79 && XM(is_local_after)(2, p->sz, OB) | |
| 80 && XM(num_blocks)(p->sz->dims[0].n, p->sz->dims[0].b[OB]) == 1 | |
| 81 && (!NO_SLOWP(plnr) /* slow if rdft-serial is applicable */ | |
| 82 || !XM(rdft_serial_applicable)(p)) | |
| 83 ); | |
| 84 } | |
| 85 | |
| 86 static void awake(plan *ego_, enum wakefulness wakefulness) | |
| 87 { | |
| 88 P *ego = (P *) ego_; | |
| 89 X(plan_awake)(ego->cld1, wakefulness); | |
| 90 X(plan_awake)(ego->cldt, wakefulness); | |
| 91 X(plan_awake)(ego->cld2, wakefulness); | |
| 92 } | |
| 93 | |
| 94 static void destroy(plan *ego_) | |
| 95 { | |
| 96 P *ego = (P *) ego_; | |
| 97 X(plan_destroy_internal)(ego->cld2); | |
| 98 X(plan_destroy_internal)(ego->cldt); | |
| 99 X(plan_destroy_internal)(ego->cld1); | |
| 100 } | |
| 101 | |
| 102 static void print(const plan *ego_, printer *p) | |
| 103 { | |
| 104 const P *ego = (const P *) ego_; | |
| 105 p->print(p, "(mpi-rdft-rank-geq2-transposed%s%(%p%)%(%p%)%(%p%))", | |
| 106 ego->preserve_input==2 ?"/p":"", | |
| 107 ego->cld1, ego->cldt, ego->cld2); | |
| 108 } | |
| 109 | |
| 110 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) | |
| 111 { | |
| 112 const S *ego = (const S *) ego_; | |
| 113 const problem_mpi_rdft *p; | |
| 114 P *pln; | |
| 115 plan *cld1 = 0, *cldt = 0, *cld2 = 0; | |
| 116 R *I, *O, *I2; | |
| 117 tensor *sz; | |
| 118 int i, my_pe, n_pes; | |
| 119 INT nrest; | |
| 120 static const plan_adt padt = { | |
| 121 XM(rdft_solve), awake, print, destroy | |
| 122 }; | |
| 123 | |
| 124 UNUSED(ego); | |
| 125 | |
| 126 if (!applicable(ego, p_, plnr)) | |
| 127 return (plan *) 0; | |
| 128 | |
| 129 p = (const problem_mpi_rdft *) p_; | |
| 130 | |
| 131 I2 = I = p->I; | |
| 132 O = p->O; | |
| 133 if (ego->preserve_input || NO_DESTROY_INPUTP(plnr)) | |
| 134 I = O; | |
| 135 MPI_Comm_rank(p->comm, &my_pe); | |
| 136 MPI_Comm_size(p->comm, &n_pes); | |
| 137 | |
| 138 sz = X(mktensor)(p->sz->rnk - 1); /* tensor of last rnk-1 dimensions */ | |
| 139 i = p->sz->rnk - 2; A(i >= 0); | |
| 140 sz->dims[i].n = p->sz->dims[i+1].n; | |
| 141 sz->dims[i].is = sz->dims[i].os = p->vn; | |
| 142 for (--i; i >= 0; --i) { | |
| 143 sz->dims[i].n = p->sz->dims[i+1].n; | |
| 144 sz->dims[i].is = sz->dims[i].os = sz->dims[i+1].n * sz->dims[i+1].is; | |
| 145 } | |
| 146 nrest = 1; for (i = 1; i < sz->rnk; ++i) nrest *= sz->dims[i].n; | |
| 147 { | |
| 148 INT is = sz->dims[0].n * sz->dims[0].is; | |
| 149 INT b = XM(block)(p->sz->dims[0].n, p->sz->dims[0].b[IB], my_pe); | |
| 150 cld1 = X(mkplan_d)(plnr, | |
| 151 X(mkproblem_rdft_d)(sz, | |
| 152 X(mktensor_2d)(b, is, is, | |
| 153 p->vn, 1, 1), | |
| 154 I2, I, p->kind + 1)); | |
| 155 if (XM(any_true)(!cld1, p->comm)) goto nada; | |
| 156 } | |
| 157 | |
| 158 nrest *= p->vn; | |
| 159 cldt = X(mkplan_d)(plnr, | |
| 160 XM(mkproblem_transpose)( | |
| 161 p->sz->dims[0].n, p->sz->dims[1].n, nrest, | |
| 162 I, O, | |
| 163 p->sz->dims[0].b[IB], p->sz->dims[1].b[OB], | |
| 164 p->comm, 0)); | |
| 165 if (XM(any_true)(!cldt, p->comm)) goto nada; | |
| 166 | |
| 167 { | |
| 168 INT is = p->sz->dims[0].n * nrest; | |
| 169 INT b = XM(block)(p->sz->dims[1].n, p->sz->dims[1].b[OB], my_pe); | |
| 170 cld2 = X(mkplan_d)(plnr, | |
| 171 X(mkproblem_rdft_1_d)(X(mktensor_1d)( | |
| 172 p->sz->dims[0].n, | |
| 173 nrest, nrest), | |
| 174 X(mktensor_2d)(b, is, is, | |
| 175 nrest, 1, 1), | |
| 176 O, O, p->kind[0])); | |
| 177 if (XM(any_true)(!cld2, p->comm)) goto nada; | |
| 178 } | |
| 179 | |
| 180 pln = MKPLAN_MPI_RDFT(P, &padt, apply); | |
| 181 pln->cld1 = cld1; | |
| 182 pln->cldt = cldt; | |
| 183 pln->cld2 = cld2; | |
| 184 pln->preserve_input = ego->preserve_input ? 2 : NO_DESTROY_INPUTP(plnr); | |
| 185 | |
| 186 X(ops_add)(&cld1->ops, &cld2->ops, &pln->super.super.ops); | |
| 187 X(ops_add2)(&cldt->ops, &pln->super.super.ops); | |
| 188 | |
| 189 return &(pln->super.super); | |
| 190 | |
| 191 nada: | |
| 192 X(plan_destroy_internal)(cld2); | |
| 193 X(plan_destroy_internal)(cldt); | |
| 194 X(plan_destroy_internal)(cld1); | |
| 195 return (plan *) 0; | |
| 196 } | |
| 197 | |
| 198 static solver *mksolver(int preserve_input) | |
| 199 { | |
| 200 static const solver_adt sadt = { PROBLEM_MPI_RDFT, mkplan, 0 }; | |
| 201 S *slv = MKSOLVER(S, &sadt); | |
| 202 slv->preserve_input = preserve_input; | |
| 203 return &(slv->super); | |
| 204 } | |
| 205 | |
| 206 void XM(rdft_rank_geq2_transposed_register)(planner *p) | |
| 207 { | |
| 208 int preserve_input; | |
| 209 for (preserve_input = 0; preserve_input <= 1; ++preserve_input) | |
| 210 REGISTER_SOLVER(p, mksolver(preserve_input)); | |
| 211 } |
