comparison src/fftw-3.3.3/mpi/dft-rank1-bigvec.c @ 10:37bf6b4a2645

Add FFTW3
author Chris Cannam
date Wed, 20 Mar 2013 15:35:50 +0000
parents
children
comparison
equal deleted inserted replaced
9:c0fb53affa76 10:37bf6b4a2645
1 /*
2 * Copyright (c) 2003, 2007-11 Matteo Frigo
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 */
20
21 /* Complex DFTs of rank == 1 when the vector length vn is >= # processes.
22 In this case, we don't need to use a six-step type algorithm, and can
23 instead transpose the DFT dimension with the vector dimension to
24 make the DFT local. */
25
26 #include "mpi-dft.h"
27 #include "mpi-transpose.h"
28 #include "dft.h"
29
30 typedef struct {
31 solver super;
32 int preserve_input; /* preserve input even if DESTROY_INPUT was passed */
33 rearrangement rearrange;
34 } S;
35
36 typedef struct {
37 plan_mpi_dft super;
38
39 plan *cldt_before, *cld, *cldt_after;
40 INT roff, ioff;
41 int preserve_input;
42 rearrangement rearrange;
43 } P;
44
45 static void apply(const plan *ego_, R *I, R *O)
46 {
47 const P *ego = (const P *) ego_;
48 plan_dft *cld;
49 plan_rdft *cldt_before, *cldt_after;
50 INT roff = ego->roff, ioff = ego->ioff;
51
52 /* global transpose */
53 cldt_before = (plan_rdft *) ego->cldt_before;
54 cldt_before->apply(ego->cldt_before, I, O);
55
56 if (ego->preserve_input) I = O;
57
58 /* 1d DFT(s) */
59 cld = (plan_dft *) ego->cld;
60 cld->apply(ego->cld, O+roff, O+ioff, I+roff, I+ioff);
61
62 /* global transpose */
63 cldt_after = (plan_rdft *) ego->cldt_after;
64 cldt_after->apply(ego->cldt_after, I, O);
65 }
66
67 static int applicable(const S *ego, const problem *p_,
68 const planner *plnr)
69 {
70 const problem_mpi_dft *p = (const problem_mpi_dft *) p_;
71 int n_pes;
72 MPI_Comm_size(p->comm, &n_pes);
73 return (1
74 && p->sz->rnk == 1
75 && !(p->flags & ~RANK1_BIGVEC_ONLY)
76 && (!ego->preserve_input || (!NO_DESTROY_INPUTP(plnr)
77 && p->I != p->O))
78 && (p->vn >= n_pes /* TODO: relax this, using more memory? */
79 || (p->flags & RANK1_BIGVEC_ONLY))
80
81 && XM(rearrange_applicable)(ego->rearrange,
82 p->sz->dims[0], p->vn, n_pes)
83
84 && (!NO_SLOWP(plnr) /* slow if dft-serial is applicable */
85 || !XM(dft_serial_applicable)(p))
86 );
87 }
88
89 static void awake(plan *ego_, enum wakefulness wakefulness)
90 {
91 P *ego = (P *) ego_;
92 X(plan_awake)(ego->cldt_before, wakefulness);
93 X(plan_awake)(ego->cld, wakefulness);
94 X(plan_awake)(ego->cldt_after, wakefulness);
95 }
96
97 static void destroy(plan *ego_)
98 {
99 P *ego = (P *) ego_;
100 X(plan_destroy_internal)(ego->cldt_after);
101 X(plan_destroy_internal)(ego->cld);
102 X(plan_destroy_internal)(ego->cldt_before);
103 }
104
105 static void print(const plan *ego_, printer *p)
106 {
107 const P *ego = (const P *) ego_;
108 const char descrip[][16] = { "contig", "discontig", "square-after",
109 "square-middle", "square-before" };
110 p->print(p, "(mpi-dft-rank1-bigvec/%s%s %(%p%) %(%p%) %(%p%))",
111 descrip[ego->rearrange], ego->preserve_input==2 ?"/p":"",
112 ego->cldt_before, ego->cld, ego->cldt_after);
113 }
114
115 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
116 {
117 const S *ego = (const S *) ego_;
118 const problem_mpi_dft *p;
119 P *pln;
120 plan *cld = 0, *cldt_before = 0, *cldt_after = 0;
121 R *ri, *ii, *ro, *io, *I, *O;
122 INT yblock, yb, nx, ny, vn;
123 int my_pe, n_pes;
124 static const plan_adt padt = {
125 XM(dft_solve), awake, print, destroy
126 };
127
128 UNUSED(ego);
129
130 if (!applicable(ego, p_, plnr))
131 return (plan *) 0;
132
133 p = (const problem_mpi_dft *) p_;
134
135 MPI_Comm_rank(p->comm, &my_pe);
136 MPI_Comm_size(p->comm, &n_pes);
137
138 nx = p->sz->dims[0].n;
139 if (!(ny = XM(rearrange_ny)(ego->rearrange, p->sz->dims[0],p->vn,n_pes)))
140 return (plan *) 0;
141 vn = p->vn / ny;
142 A(ny * vn == p->vn);
143
144 yblock = XM(default_block)(ny, n_pes);
145 cldt_before = X(mkplan_d)(plnr,
146 XM(mkproblem_transpose)(
147 nx, ny, vn*2,
148 I = p->I, O = p->O,
149 p->sz->dims[0].b[IB], yblock,
150 p->comm, 0));
151 if (XM(any_true)(!cldt_before, p->comm)) goto nada;
152 if (ego->preserve_input || NO_DESTROY_INPUTP(plnr)) { I = O; }
153
154 X(extract_reim)(p->sign, I, &ri, &ii);
155 X(extract_reim)(p->sign, O, &ro, &io);
156
157 yb = XM(block)(ny, yblock, my_pe);
158 cld = X(mkplan_d)(plnr,
159 X(mkproblem_dft_d)(X(mktensor_1d)(nx, vn*2, vn*2),
160 X(mktensor_2d)(yb, vn*2*nx, vn*2*nx,
161 vn, 2, 2),
162 ro, io, ri, ii));
163 if (XM(any_true)(!cld, p->comm)) goto nada;
164
165 cldt_after = X(mkplan_d)(plnr,
166 XM(mkproblem_transpose)(
167 ny, nx, vn*2,
168 I, O,
169 yblock, p->sz->dims[0].b[OB],
170 p->comm, 0));
171 if (XM(any_true)(!cldt_after, p->comm)) goto nada;
172
173 pln = MKPLAN_MPI_DFT(P, &padt, apply);
174
175 pln->cldt_before = cldt_before;
176 pln->cld = cld;
177 pln->cldt_after = cldt_after;
178 pln->preserve_input = ego->preserve_input ? 2 : NO_DESTROY_INPUTP(plnr);
179 pln->roff = ro - p->O;
180 pln->ioff = io - p->O;
181 pln->rearrange = ego->rearrange;
182
183 X(ops_add)(&cldt_before->ops, &cld->ops, &pln->super.super.ops);
184 X(ops_add2)(&cldt_after->ops, &pln->super.super.ops);
185
186 return &(pln->super.super);
187
188 nada:
189 X(plan_destroy_internal)(cldt_after);
190 X(plan_destroy_internal)(cld);
191 X(plan_destroy_internal)(cldt_before);
192 return (plan *) 0;
193 }
194
195 static solver *mksolver(rearrangement rearrange, int preserve_input)
196 {
197 static const solver_adt sadt = { PROBLEM_MPI_DFT, mkplan, 0 };
198 S *slv = MKSOLVER(S, &sadt);
199 slv->rearrange = rearrange;
200 slv->preserve_input = preserve_input;
201 return &(slv->super);
202 }
203
204 void XM(dft_rank1_bigvec_register)(planner *p)
205 {
206 rearrangement rearrange;
207 int preserve_input;
208 FORALL_REARRANGE(rearrange)
209 for (preserve_input = 0; preserve_input <= 1; ++preserve_input)
210 REGISTER_SOLVER(p, mksolver(rearrange, preserve_input));
211 }