comparison src/fftw-3.3.3/libbench2/verify-r2r.c @ 10:37bf6b4a2645

Add FFTW3
author Chris Cannam
date Wed, 20 Mar 2013 15:35:50 +0000
parents
children
comparison
equal deleted inserted replaced
9:c0fb53affa76 10:37bf6b4a2645
1 /*
2 * Copyright (c) 2003, 2007-11 Matteo Frigo
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 */
20
21 /* Lots of ugly duplication from verify-lib.c, plus lots of ugliness in
22 general for all of the r2r variants...oh well, for now */
23
24 #include "verify.h"
25 #include <math.h>
26 #include <stdlib.h>
27 #include <stdio.h>
28
29 typedef struct {
30 bench_problem *p;
31 bench_tensor *probsz;
32 bench_tensor *totalsz;
33 bench_tensor *pckdsz;
34 bench_tensor *pckdvecsz;
35 } info;
36
37 /*
38 * Utility functions:
39 */
40
41 static double dabs(double x) { return (x < 0.0) ? -x : x; }
42 static double dmin(double x, double y) { return (x < y) ? x : y; }
43
44 static double raerror(R *a, R *b, int n)
45 {
46 if (n > 0) {
47 /* compute the relative Linf error */
48 double e = 0.0, mag = 0.0;
49 int i;
50
51 for (i = 0; i < n; ++i) {
52 e = dmax(e, dabs(a[i] - b[i]));
53 mag = dmax(mag, dmin(dabs(a[i]), dabs(b[i])));
54 }
55 if (dabs(mag) < 1e-14 && dabs(e) < 1e-14)
56 e = 0.0;
57 else
58 e /= mag;
59
60 #ifdef HAVE_ISNAN
61 BENCH_ASSERT(!isnan(e));
62 #endif
63 return e;
64 } else
65 return 0.0;
66 }
67
68 #define by2pi(m, n) ((K2PI * (m)) / (n))
69
70 /*
71 * Improve accuracy by reducing x to range [0..1/8]
72 * before multiplication by 2 * PI.
73 */
74
75 static trigreal bench_sincos(trigreal m, trigreal n, int sinp)
76 {
77 /* waiting for C to get tail recursion... */
78 trigreal half_n = n * 0.5;
79 trigreal quarter_n = half_n * 0.5;
80 trigreal eighth_n = quarter_n * 0.5;
81 trigreal sgn = 1.0;
82
83 if (sinp) goto sin;
84 cos:
85 if (m < 0) { m = -m; /* goto cos; */ }
86 if (m > half_n) { m = n - m; goto cos; }
87 if (m > eighth_n) { m = quarter_n - m; goto sin; }
88 return sgn * COS(by2pi(m, n));
89
90 msin:
91 sgn = -sgn;
92 sin:
93 if (m < 0) { m = -m; goto msin; }
94 if (m > half_n) { m = n - m; goto msin; }
95 if (m > eighth_n) { m = quarter_n - m; goto cos; }
96 return sgn * SIN(by2pi(m, n));
97 }
98
99 static trigreal cos2pi(int m, int n)
100 {
101 return bench_sincos((trigreal)m, (trigreal)n, 0);
102 }
103
104 static trigreal sin2pi(int m, int n)
105 {
106 return bench_sincos((trigreal)m, (trigreal)n, 1);
107 }
108
109 static trigreal cos00(int i, int j, int n)
110 {
111 return cos2pi(i * j, n);
112 }
113
114 static trigreal cos01(int i, int j, int n)
115 {
116 return cos00(i, 2*j + 1, 2*n);
117 }
118
119 static trigreal cos10(int i, int j, int n)
120 {
121 return cos00(2*i + 1, j, 2*n);
122 }
123
124 static trigreal cos11(int i, int j, int n)
125 {
126 return cos00(2*i + 1, 2*j + 1, 4*n);
127 }
128
129 static trigreal sin00(int i, int j, int n)
130 {
131 return sin2pi(i * j, n);
132 }
133
134 static trigreal sin01(int i, int j, int n)
135 {
136 return sin00(i, 2*j + 1, 2*n);
137 }
138
139 static trigreal sin10(int i, int j, int n)
140 {
141 return sin00(2*i + 1, j, 2*n);
142 }
143
144 static trigreal sin11(int i, int j, int n)
145 {
146 return sin00(2*i + 1, 2*j + 1, 4*n);
147 }
148
149 static trigreal realhalf(int i, int j, int n)
150 {
151 UNUSED(i);
152 if (j <= n - j)
153 return 1.0;
154 else
155 return 0.0;
156 }
157
158 static trigreal coshalf(int i, int j, int n)
159 {
160 if (j <= n - j)
161 return cos00(i, j, n);
162 else
163 return cos00(i, n - j, n);
164 }
165
166 static trigreal unity(int i, int j, int n)
167 {
168 UNUSED(i);
169 UNUSED(j);
170 UNUSED(n);
171 return 1.0;
172 }
173
174 typedef trigreal (*trigfun)(int, int, int);
175
176 static void rarand(R *a, int n)
177 {
178 int i;
179
180 /* generate random inputs */
181 for (i = 0; i < n; ++i) {
182 a[i] = mydrand();
183 }
184 }
185
186 /* C = A + B */
187 static void raadd(R *c, R *a, R *b, int n)
188 {
189 int i;
190
191 for (i = 0; i < n; ++i) {
192 c[i] = a[i] + b[i];
193 }
194 }
195
196 /* C = A - B */
197 static void rasub(R *c, R *a, R *b, int n)
198 {
199 int i;
200
201 for (i = 0; i < n; ++i) {
202 c[i] = a[i] - b[i];
203 }
204 }
205
206 /* B = rotate left A + rotate right A */
207 static void rarolr(R *b, R *a, int n, int nb, int na,
208 r2r_kind_t k)
209 {
210 int isL0 = 0, isL1 = 0, isR0 = 0, isR1 = 0;
211 int i, ib, ia;
212
213 for (ib = 0; ib < nb; ++ib) {
214 for (i = 0; i < n - 1; ++i)
215 for (ia = 0; ia < na; ++ia)
216 b[(ib * n + i) * na + ia] =
217 a[(ib * n + i + 1) * na + ia];
218
219 /* ugly switch to do boundary conditions for various r2r types */
220 switch (k) {
221 /* periodic boundaries */
222 case R2R_DHT:
223 case R2R_R2HC:
224 for (ia = 0; ia < na; ++ia) {
225 b[(ib * n + n - 1) * na + ia] =
226 a[(ib * n + 0) * na + ia];
227 b[(ib * n + 0) * na + ia] +=
228 a[(ib * n + n - 1) * na + ia];
229 }
230 break;
231
232 case R2R_HC2R: /* ugh (hermitian halfcomplex boundaries) */
233 if (n > 2) {
234 if (n % 2 == 0)
235 for (ia = 0; ia < na; ++ia) {
236 b[(ib * n + n - 1) * na + ia] = 0.0;
237 b[(ib * n + 0) * na + ia] +=
238 a[(ib * n + 1) * na + ia];
239 b[(ib * n + n/2) * na + ia] +=
240 + a[(ib * n + n/2 - 1) * na + ia]
241 - a[(ib * n + n/2 + 1) * na + ia];
242 b[(ib * n + n/2 + 1) * na + ia] +=
243 - a[(ib * n + n/2) * na + ia];
244 }
245 else
246 for (ia = 0; ia < na; ++ia) {
247 b[(ib * n + n - 1) * na + ia] = 0.0;
248 b[(ib * n + 0) * na + ia] +=
249 a[(ib * n + 1) * na + ia];
250 b[(ib * n + n/2) * na + ia] +=
251 + a[(ib * n + n/2) * na + ia]
252 - a[(ib * n + n/2 + 1) * na + ia];
253 b[(ib * n + n/2 + 1) * na + ia] +=
254 - a[(ib * n + n/2 + 1) * na + ia]
255 - a[(ib * n + n/2) * na + ia];
256 }
257 } else /* n <= 2 */ {
258 for (ia = 0; ia < na; ++ia) {
259 b[(ib * n + n - 1) * na + ia] =
260 a[(ib * n + 0) * na + ia];
261 b[(ib * n + 0) * na + ia] +=
262 a[(ib * n + n - 1) * na + ia];
263 }
264 }
265 break;
266
267 /* various even/odd boundary conditions */
268 case R2R_REDFT00:
269 isL1 = isR1 = 1;
270 goto mirrors;
271 case R2R_REDFT01:
272 isL1 = 1;
273 goto mirrors;
274 case R2R_REDFT10:
275 isL0 = isR0 = 1;
276 goto mirrors;
277 case R2R_REDFT11:
278 isL0 = 1;
279 isR0 = -1;
280 goto mirrors;
281 case R2R_RODFT00:
282 goto mirrors;
283 case R2R_RODFT01:
284 isR1 = 1;
285 goto mirrors;
286 case R2R_RODFT10:
287 isL0 = isR0 = -1;
288 goto mirrors;
289 case R2R_RODFT11:
290 isL0 = -1;
291 isR0 = 1;
292 goto mirrors;
293
294 mirrors:
295
296 for (ia = 0; ia < na; ++ia)
297 b[(ib * n + n - 1) * na + ia] =
298 isR0 * a[(ib * n + n - 1) * na + ia]
299 + (n > 1 ? isR1 * a[(ib * n + n - 2) * na + ia]
300 : 0);
301
302 for (ia = 0; ia < na; ++ia)
303 b[(ib * n) * na + ia] +=
304 isL0 * a[(ib * n) * na + ia]
305 + (n > 1 ? isL1 * a[(ib * n + 1) * na + ia] : 0);
306
307 }
308
309 for (i = 1; i < n; ++i)
310 for (ia = 0; ia < na; ++ia)
311 b[(ib * n + i) * na + ia] +=
312 a[(ib * n + i - 1) * na + ia];
313 }
314 }
315
316 static void raphase_shift(R *b, R *a, int n, int nb, int na,
317 int n0, int k0, trigfun t)
318 {
319 int j, jb, ja;
320
321 for (jb = 0; jb < nb; ++jb)
322 for (j = 0; j < n; ++j) {
323 trigreal c = 2.0 * t(1, j + k0, n0);
324
325 for (ja = 0; ja < na; ++ja) {
326 int k = (jb * n + j) * na + ja;
327 b[k] = a[k] * c;
328 }
329 }
330 }
331
332 /* A = alpha * A (real, in place) */
333 static void rascale(R *a, R alpha, int n)
334 {
335 int i;
336
337 for (i = 0; i < n; ++i) {
338 a[i] *= alpha;
339 }
340 }
341
342 /*
343 * compute rdft:
344 */
345
346 /* copy real A into real B, using output stride of A and input stride of B */
347 typedef struct {
348 dotens2_closure k;
349 R *ra;
350 R *rb;
351 } cpyr_closure;
352
353 static void cpyr0(dotens2_closure *k_,
354 int indxa, int ondxa, int indxb, int ondxb)
355 {
356 cpyr_closure *k = (cpyr_closure *)k_;
357 k->rb[indxb] = k->ra[ondxa];
358 UNUSED(indxa); UNUSED(ondxb);
359 }
360
361 static void cpyr(R *ra, bench_tensor *sza, R *rb, bench_tensor *szb)
362 {
363 cpyr_closure k;
364 k.k.apply = cpyr0;
365 k.ra = ra; k.rb = rb;
366 bench_dotens2(sza, szb, &k.k);
367 }
368
369 static void dofft(info *nfo, R *in, R *out)
370 {
371 cpyr(in, nfo->pckdsz, (R *) nfo->p->in, nfo->totalsz);
372 after_problem_rcopy_from(nfo->p, (bench_real *)nfo->p->in);
373 doit(1, nfo->p);
374 after_problem_rcopy_to(nfo->p, (bench_real *)nfo->p->out);
375 cpyr((R *) nfo->p->out, nfo->totalsz, out, nfo->pckdsz);
376 }
377
378 static double racmp(R *a, R *b, int n, const char *test, double tol)
379 {
380 double d = raerror(a, b, n);
381 if (d > tol) {
382 ovtpvt_err("Found relative error %e (%s)\n", d, test);
383 {
384 int i, N;
385 N = n > 300 && verbose <= 2 ? 300 : n;
386 for (i = 0; i < N; ++i)
387 ovtpvt_err("%8d %16.12f %16.12f\n", i,
388 (double) a[i],
389 (double) b[i]);
390 }
391 bench_exit(EXIT_FAILURE);
392 }
393 return d;
394 }
395
396 /***********************************************************************/
397
398 typedef struct {
399 int n; /* physical size */
400 int n0; /* "logical" transform size */
401 int i0, k0; /* shifts of input/output */
402 trigfun ti, ts; /* impulse/shift trig functions */
403 } dim_stuff;
404
405 static void impulse_response(int rnk, dim_stuff *d, R impulse_amp,
406 R *A, int N)
407 {
408 if (rnk == 0)
409 A[0] = impulse_amp;
410 else {
411 int i;
412 N /= d->n;
413 for (i = 0; i < d->n; ++i) {
414 impulse_response(rnk - 1, d + 1,
415 impulse_amp * d->ti(d->i0, d->k0 + i, d->n0),
416 A + i * N, N);
417 }
418 }
419 }
420
421 /***************************************************************************/
422
423 /*
424 * Implementation of the FFT tester described in
425 *
426 * Funda Ergün. Testing multivariate linear functions: Overcoming the
427 * generator bottleneck. In Proceedings of the Twenty-Seventh Annual
428 * ACM Symposium on the Theory of Computing, pages 407-416, Las Vegas,
429 * Nevada, 29 May--1 June 1995.
430 *
431 * Also: F. Ergun, S. R. Kumar, and D. Sivakumar, "Self-testing without
432 * the generator bottleneck," SIAM J. on Computing 29 (5), 1630-51 (2000).
433 */
434
435 static double rlinear(int n, info *nfo, R *inA, R *inB, R *inC, R *outA,
436 R *outB, R *outC, R *tmp, int rounds, double tol)
437 {
438 double e = 0.0;
439 int j;
440
441 for (j = 0; j < rounds; ++j) {
442 R alpha, beta;
443 alpha = mydrand();
444 beta = mydrand();
445 rarand(inA, n);
446 rarand(inB, n);
447 dofft(nfo, inA, outA);
448 dofft(nfo, inB, outB);
449
450 rascale(outA, alpha, n);
451 rascale(outB, beta, n);
452 raadd(tmp, outA, outB, n);
453 rascale(inA, alpha, n);
454 rascale(inB, beta, n);
455 raadd(inC, inA, inB, n);
456 dofft(nfo, inC, outC);
457
458 e = dmax(e, racmp(outC, tmp, n, "linear", tol));
459 }
460 return e;
461 }
462
463 static double rimpulse(dim_stuff *d, R impulse_amp,
464 int n, int vecn, info *nfo,
465 R *inA, R *inB, R *inC,
466 R *outA, R *outB, R *outC,
467 R *tmp, int rounds, double tol)
468 {
469 double e = 0.0;
470 int N = n * vecn;
471 int i;
472 int j;
473
474 /* test 2: check that the unit impulse is transformed properly */
475
476 for (i = 0; i < N; ++i) {
477 /* pls */
478 inA[i] = 0.0;
479 }
480 for (i = 0; i < vecn; ++i) {
481 inA[i * n] = (i+1) / (double)(vecn+1);
482
483 /* transform of the pls */
484 impulse_response(nfo->probsz->rnk, d, impulse_amp * inA[i * n],
485 outA + i * n, n);
486 }
487
488 dofft(nfo, inA, tmp);
489 e = dmax(e, racmp(tmp, outA, N, "impulse 1", tol));
490
491 for (j = 0; j < rounds; ++j) {
492 rarand(inB, N);
493 rasub(inC, inA, inB, N);
494 dofft(nfo, inB, outB);
495 dofft(nfo, inC, outC);
496 raadd(tmp, outB, outC, N);
497 e = dmax(e, racmp(tmp, outA, N, "impulse", tol));
498 }
499 return e;
500 }
501
502 static double t_shift(int n, int vecn, info *nfo,
503 R *inA, R *inB, R *outA, R *outB, R *tmp,
504 int rounds, double tol,
505 dim_stuff *d)
506 {
507 double e = 0.0;
508 int nb, na, dim, N = n * vecn;
509 int i, j;
510 bench_tensor *sz = nfo->probsz;
511
512 /* test 3: check the time-shift property */
513 /* the paper performs more tests, but this code should be fine too */
514
515 nb = 1;
516 na = n;
517
518 /* check shifts across all SZ dimensions */
519 for (dim = 0; dim < sz->rnk; ++dim) {
520 int ncur = sz->dims[dim].n;
521
522 na /= ncur;
523
524 for (j = 0; j < rounds; ++j) {
525 rarand(inA, N);
526
527 for (i = 0; i < vecn; ++i) {
528 rarolr(inB + i * n, inA + i*n, ncur, nb,na,
529 nfo->p->k[dim]);
530 }
531 dofft(nfo, inA, outA);
532 dofft(nfo, inB, outB);
533 for (i = 0; i < vecn; ++i)
534 raphase_shift(tmp + i * n, outA + i * n, ncur,
535 nb, na, d[dim].n0, d[dim].k0, d[dim].ts);
536 e = dmax(e, racmp(tmp, outB, N, "time shift", tol));
537 }
538
539 nb *= ncur;
540 }
541 return e;
542 }
543
544 /***********************************************************************/
545
546 void verify_r2r(bench_problem *p, int rounds, double tol, errors *e)
547 {
548 R *inA, *inB, *inC, *outA, *outB, *outC, *tmp;
549 info nfo;
550 int n, vecn, N;
551 double impulse_amp = 1.0;
552 dim_stuff *d;
553 int i;
554
555 if (rounds == 0)
556 rounds = 20; /* default value */
557
558 n = tensor_sz(p->sz);
559 vecn = tensor_sz(p->vecsz);
560 N = n * vecn;
561
562 d = (dim_stuff *) bench_malloc(sizeof(dim_stuff) * p->sz->rnk);
563 for (i = 0; i < p->sz->rnk; ++i) {
564 int n0, i0, k0;
565 trigfun ti, ts;
566
567 d[i].n = n0 = p->sz->dims[i].n;
568 if (p->k[i] > R2R_DHT)
569 n0 = 2 * (n0 + (p->k[i] == R2R_REDFT00 ? -1 :
570 (p->k[i] == R2R_RODFT00 ? 1 : 0)));
571
572 switch (p->k[i]) {
573 case R2R_R2HC:
574 i0 = k0 = 0;
575 ti = realhalf;
576 ts = coshalf;
577 break;
578 case R2R_DHT:
579 i0 = k0 = 0;
580 ti = unity;
581 ts = cos00;
582 break;
583 case R2R_HC2R:
584 i0 = k0 = 0;
585 ti = unity;
586 ts = cos00;
587 break;
588 case R2R_REDFT00:
589 i0 = k0 = 0;
590 ti = ts = cos00;
591 break;
592 case R2R_REDFT01:
593 i0 = k0 = 0;
594 ti = ts = cos01;
595 break;
596 case R2R_REDFT10:
597 i0 = k0 = 0;
598 ti = cos10; impulse_amp *= 2.0;
599 ts = cos00;
600 break;
601 case R2R_REDFT11:
602 i0 = k0 = 0;
603 ti = cos11; impulse_amp *= 2.0;
604 ts = cos01;
605 break;
606 case R2R_RODFT00:
607 i0 = k0 = 1;
608 ti = sin00; impulse_amp *= 2.0;
609 ts = cos00;
610 break;
611 case R2R_RODFT01:
612 i0 = 1; k0 = 0;
613 ti = sin01; impulse_amp *= n == 1 ? 1.0 : 2.0;
614 ts = cos01;
615 break;
616 case R2R_RODFT10:
617 i0 = 0; k0 = 1;
618 ti = sin10; impulse_amp *= 2.0;
619 ts = cos00;
620 break;
621 case R2R_RODFT11:
622 i0 = k0 = 0;
623 ti = sin11; impulse_amp *= 2.0;
624 ts = cos01;
625 break;
626 default:
627 BENCH_ASSERT(0);
628 return;
629 }
630
631 d[i].n0 = n0;
632 d[i].i0 = i0;
633 d[i].k0 = k0;
634 d[i].ti = ti;
635 d[i].ts = ts;
636 }
637
638
639 inA = (R *) bench_malloc(N * sizeof(R));
640 inB = (R *) bench_malloc(N * sizeof(R));
641 inC = (R *) bench_malloc(N * sizeof(R));
642 outA = (R *) bench_malloc(N * sizeof(R));
643 outB = (R *) bench_malloc(N * sizeof(R));
644 outC = (R *) bench_malloc(N * sizeof(R));
645 tmp = (R *) bench_malloc(N * sizeof(R));
646
647 nfo.p = p;
648 nfo.probsz = p->sz;
649 nfo.totalsz = tensor_append(p->vecsz, nfo.probsz);
650 nfo.pckdsz = verify_pack(nfo.totalsz, 1);
651 nfo.pckdvecsz = verify_pack(p->vecsz, tensor_sz(nfo.probsz));
652
653 e->i = rimpulse(d, impulse_amp, n, vecn, &nfo,
654 inA, inB, inC, outA, outB, outC, tmp, rounds, tol);
655 e->l = rlinear(N, &nfo, inA, inB, inC, outA, outB, outC, tmp, rounds,tol);
656 e->s = t_shift(n, vecn, &nfo, inA, inB, outA, outB, tmp,
657 rounds, tol, d);
658
659 /* grr, verify-lib.c:preserves_input() only works for complex */
660 if (!p->in_place && !p->destroy_input) {
661 bench_tensor *totalsz_swap, *pckdsz_swap;
662 totalsz_swap = tensor_copy_swapio(nfo.totalsz);
663 pckdsz_swap = tensor_copy_swapio(nfo.pckdsz);
664
665 for (i = 0; i < rounds; ++i) {
666 rarand(inA, N);
667 dofft(&nfo, inA, outB);
668 cpyr((R *) nfo.p->in, totalsz_swap, inB, pckdsz_swap);
669 racmp(inB, inA, N, "preserves_input", 0.0);
670 }
671
672 tensor_destroy(totalsz_swap);
673 tensor_destroy(pckdsz_swap);
674 }
675
676 tensor_destroy(nfo.totalsz);
677 tensor_destroy(nfo.pckdsz);
678 tensor_destroy(nfo.pckdvecsz);
679 bench_free(tmp);
680 bench_free(outC);
681 bench_free(outB);
682 bench_free(outA);
683 bench_free(inC);
684 bench_free(inB);
685 bench_free(inA);
686 bench_free(d);
687 }
688
689
690 typedef struct {
691 dofft_closure k;
692 bench_problem *p;
693 int n0;
694 } dofft_r2r_closure;
695
696 static void cpyr1(int n, R *in, int is, R *out, int os, R scale)
697 {
698 int i;
699 for (i = 0; i < n; ++i)
700 out[i * os] = in[i * is] * scale;
701 }
702
703 static void mke00(C *a, int n, int c)
704 {
705 int i;
706 for (i = 1; i + i < n; ++i)
707 a[n - i][c] = a[i][c];
708 }
709
710 static void mkre00(C *a, int n)
711 {
712 mkreal(a, n);
713 mke00(a, n, 0);
714 }
715
716 static void mkimag(C *a, int n)
717 {
718 int i;
719 for (i = 0; i < n; ++i)
720 c_re(a[i]) = 0.0;
721 }
722
723 static void mko00(C *a, int n, int c)
724 {
725 int i;
726 a[0][c] = 0.0;
727 for (i = 1; i + i < n; ++i)
728 a[n - i][c] = -a[i][c];
729 if (i + i == n)
730 a[i][c] = 0.0;
731 }
732
733 static void mkro00(C *a, int n)
734 {
735 mkreal(a, n);
736 mko00(a, n, 0);
737 }
738
739 static void mkio00(C *a, int n)
740 {
741 mkimag(a, n);
742 mko00(a, n, 1);
743 }
744
745 static void mkre01(C *a, int n) /* n should be be multiple of 4 */
746 {
747 R a0;
748 a0 = c_re(a[0]);
749 mko00(a, n/2, 0);
750 c_re(a[n/2]) = -(c_re(a[0]) = a0);
751 mkre00(a, n);
752 }
753
754 static void mkro01(C *a, int n) /* n should be be multiple of 4 */
755 {
756 c_re(a[0]) = c_im(a[0]) = 0.0;
757 mkre00(a, n/2);
758 mkro00(a, n);
759 }
760
761 static void mkoddonly(C *a, int n)
762 {
763 int i;
764 for (i = 0; i < n; i += 2)
765 c_re(a[i]) = c_im(a[i]) = 0.0;
766 }
767
768 static void mkre10(C *a, int n)
769 {
770 mkoddonly(a, n);
771 mkre00(a, n);
772 }
773
774 static void mkio10(C *a, int n)
775 {
776 mkoddonly(a, n);
777 mkio00(a, n);
778 }
779
780 static void mkre11(C *a, int n)
781 {
782 mkoddonly(a, n);
783 mko00(a, n/2, 0);
784 mkre00(a, n);
785 }
786
787 static void mkro11(C *a, int n)
788 {
789 mkoddonly(a, n);
790 mkre00(a, n/2);
791 mkro00(a, n);
792 }
793
794 static void mkio11(C *a, int n)
795 {
796 mkoddonly(a, n);
797 mke00(a, n/2, 1);
798 mkio00(a, n);
799 }
800
801 static void r2r_apply(dofft_closure *k_, bench_complex *in, bench_complex *out)
802 {
803 dofft_r2r_closure *k = (dofft_r2r_closure *)k_;
804 bench_problem *p = k->p;
805 bench_real *ri, *ro;
806 int n, is, os;
807
808 n = p->sz->dims[0].n;
809 is = p->sz->dims[0].is;
810 os = p->sz->dims[0].os;
811
812 ri = (bench_real *) p->in;
813 ro = (bench_real *) p->out;
814
815 switch (p->k[0]) {
816 case R2R_R2HC:
817 cpyr1(n, &c_re(in[0]), 2, ri, is, 1.0);
818 break;
819 case R2R_HC2R:
820 cpyr1(n/2 + 1, &c_re(in[0]), 2, ri, is, 1.0);
821 cpyr1((n+1)/2 - 1, &c_im(in[n-1]), -2, ri + is*(n-1), -is, 1.0);
822 break;
823 case R2R_REDFT00:
824 cpyr1(n, &c_re(in[0]), 2, ri, is, 1.0);
825 break;
826 case R2R_RODFT00:
827 cpyr1(n, &c_re(in[1]), 2, ri, is, 1.0);
828 break;
829 case R2R_REDFT01:
830 cpyr1(n, &c_re(in[0]), 2, ri, is, 1.0);
831 break;
832 case R2R_REDFT10:
833 cpyr1(n, &c_re(in[1]), 4, ri, is, 1.0);
834 break;
835 case R2R_RODFT01:
836 cpyr1(n, &c_re(in[1]), 2, ri, is, 1.0);
837 break;
838 case R2R_RODFT10:
839 cpyr1(n, &c_im(in[1]), 4, ri, is, 1.0);
840 break;
841 case R2R_REDFT11:
842 cpyr1(n, &c_re(in[1]), 4, ri, is, 1.0);
843 break;
844 case R2R_RODFT11:
845 cpyr1(n, &c_re(in[1]), 4, ri, is, 1.0);
846 break;
847 default:
848 BENCH_ASSERT(0); /* not yet implemented */
849 }
850
851 after_problem_rcopy_from(p, ri);
852 doit(1, p);
853 after_problem_rcopy_to(p, ro);
854
855 switch (p->k[0]) {
856 case R2R_R2HC:
857 if (k->k.recopy_input)
858 cpyr1(n, ri, is, &c_re(in[0]), 2, 1.0);
859 cpyr1(n/2 + 1, ro, os, &c_re(out[0]), 2, 1.0);
860 cpyr1((n+1)/2 - 1, ro + os*(n-1), -os, &c_im(out[1]), 2, 1.0);
861 c_im(out[0]) = 0.0;
862 if (n % 2 == 0)
863 c_im(out[n/2]) = 0.0;
864 mkhermitian1(out, n);
865 break;
866 case R2R_HC2R:
867 if (k->k.recopy_input) {
868 cpyr1(n/2 + 1, ri, is, &c_re(in[0]), 2, 1.0);
869 cpyr1((n+1)/2 - 1, ri + is*(n-1), -is, &c_im(in[1]), 2,1.0);
870 }
871 cpyr1(n, ro, os, &c_re(out[0]), 2, 1.0);
872 mkreal(out, n);
873 break;
874 case R2R_REDFT00:
875 if (k->k.recopy_input)
876 cpyr1(n, ri, is, &c_re(in[0]), 2, 1.0);
877 cpyr1(n, ro, os, &c_re(out[0]), 2, 1.0);
878 mkre00(out, k->n0);
879 break;
880 case R2R_RODFT00:
881 if (k->k.recopy_input)
882 cpyr1(n, ri, is, &c_im(in[1]), 2, -1.0);
883 cpyr1(n, ro, os, &c_im(out[1]), 2, -1.0);
884 mkio00(out, k->n0);
885 break;
886 case R2R_REDFT01:
887 if (k->k.recopy_input)
888 cpyr1(n, ri, is, &c_re(in[0]), 2, 1.0);
889 cpyr1(n, ro, os, &c_re(out[1]), 4, 2.0);
890 mkre10(out, k->n0);
891 break;
892 case R2R_REDFT10:
893 if (k->k.recopy_input)
894 cpyr1(n, ri, is, &c_re(in[1]), 4, 2.0);
895 cpyr1(n, ro, os, &c_re(out[0]), 2, 1.0);
896 mkre01(out, k->n0);
897 break;
898 case R2R_RODFT01:
899 if (k->k.recopy_input)
900 cpyr1(n, ri, is, &c_re(in[1]), 2, 1.0);
901 cpyr1(n, ro, os, &c_im(out[1]), 4, -2.0);
902 mkio10(out, k->n0);
903 break;
904 case R2R_RODFT10:
905 if (k->k.recopy_input)
906 cpyr1(n, ri, is, &c_im(in[1]), 4, -2.0);
907 cpyr1(n, ro, os, &c_re(out[1]), 2, 1.0);
908 mkro01(out, k->n0);
909 break;
910 case R2R_REDFT11:
911 if (k->k.recopy_input)
912 cpyr1(n, ri, is, &c_re(in[1]), 4, 2.0);
913 cpyr1(n, ro, os, &c_re(out[1]), 4, 2.0);
914 mkre11(out, k->n0);
915 break;
916 case R2R_RODFT11:
917 if (k->k.recopy_input)
918 cpyr1(n, ri, is, &c_im(in[1]), 4, -2.0);
919 cpyr1(n, ro, os, &c_im(out[1]), 4, -2.0);
920 mkio11(out, k->n0);
921 break;
922 default:
923 BENCH_ASSERT(0); /* not yet implemented */
924 }
925 }
926
927 void accuracy_r2r(bench_problem *p, int rounds, int impulse_rounds,
928 double t[6])
929 {
930 dofft_r2r_closure k;
931 int n, n0 = 1;
932 C *a, *b;
933 aconstrain constrain = 0;
934
935 BENCH_ASSERT(p->kind == PROBLEM_R2R);
936 BENCH_ASSERT(p->sz->rnk == 1);
937 BENCH_ASSERT(p->vecsz->rnk == 0);
938
939 k.k.apply = r2r_apply;
940 k.k.recopy_input = 0;
941 k.p = p;
942 n = tensor_sz(p->sz);
943
944 switch (p->k[0]) {
945 case R2R_R2HC: constrain = mkreal; n0 = n; break;
946 case R2R_HC2R: constrain = mkhermitian1; n0 = n; break;
947 case R2R_REDFT00: constrain = mkre00; n0 = 2*(n-1); break;
948 case R2R_RODFT00: constrain = mkro00; n0 = 2*(n+1); break;
949 case R2R_REDFT01: constrain = mkre01; n0 = 4*n; break;
950 case R2R_REDFT10: constrain = mkre10; n0 = 4*n; break;
951 case R2R_RODFT01: constrain = mkro01; n0 = 4*n; break;
952 case R2R_RODFT10: constrain = mkio10; n0 = 4*n; break;
953 case R2R_REDFT11: constrain = mkre11; n0 = 8*n; break;
954 case R2R_RODFT11: constrain = mkro11; n0 = 8*n; break;
955 default: BENCH_ASSERT(0); /* not yet implemented */
956 }
957 k.n0 = n0;
958
959 a = (C *) bench_malloc(n0 * sizeof(C));
960 b = (C *) bench_malloc(n0 * sizeof(C));
961 accuracy_test(&k.k, constrain, -1, n0, a, b, rounds, impulse_rounds, t);
962 bench_free(b);
963 bench_free(a);
964 }