Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.3/libbench2/verify-r2r.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
9:c0fb53affa76 | 10:37bf6b4a2645 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-11 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* Lots of ugly duplication from verify-lib.c, plus lots of ugliness in | |
22 general for all of the r2r variants...oh well, for now */ | |
23 | |
24 #include "verify.h" | |
25 #include <math.h> | |
26 #include <stdlib.h> | |
27 #include <stdio.h> | |
28 | |
29 typedef struct { | |
30 bench_problem *p; | |
31 bench_tensor *probsz; | |
32 bench_tensor *totalsz; | |
33 bench_tensor *pckdsz; | |
34 bench_tensor *pckdvecsz; | |
35 } info; | |
36 | |
37 /* | |
38 * Utility functions: | |
39 */ | |
40 | |
41 static double dabs(double x) { return (x < 0.0) ? -x : x; } | |
42 static double dmin(double x, double y) { return (x < y) ? x : y; } | |
43 | |
44 static double raerror(R *a, R *b, int n) | |
45 { | |
46 if (n > 0) { | |
47 /* compute the relative Linf error */ | |
48 double e = 0.0, mag = 0.0; | |
49 int i; | |
50 | |
51 for (i = 0; i < n; ++i) { | |
52 e = dmax(e, dabs(a[i] - b[i])); | |
53 mag = dmax(mag, dmin(dabs(a[i]), dabs(b[i]))); | |
54 } | |
55 if (dabs(mag) < 1e-14 && dabs(e) < 1e-14) | |
56 e = 0.0; | |
57 else | |
58 e /= mag; | |
59 | |
60 #ifdef HAVE_ISNAN | |
61 BENCH_ASSERT(!isnan(e)); | |
62 #endif | |
63 return e; | |
64 } else | |
65 return 0.0; | |
66 } | |
67 | |
68 #define by2pi(m, n) ((K2PI * (m)) / (n)) | |
69 | |
70 /* | |
71 * Improve accuracy by reducing x to range [0..1/8] | |
72 * before multiplication by 2 * PI. | |
73 */ | |
74 | |
75 static trigreal bench_sincos(trigreal m, trigreal n, int sinp) | |
76 { | |
77 /* waiting for C to get tail recursion... */ | |
78 trigreal half_n = n * 0.5; | |
79 trigreal quarter_n = half_n * 0.5; | |
80 trigreal eighth_n = quarter_n * 0.5; | |
81 trigreal sgn = 1.0; | |
82 | |
83 if (sinp) goto sin; | |
84 cos: | |
85 if (m < 0) { m = -m; /* goto cos; */ } | |
86 if (m > half_n) { m = n - m; goto cos; } | |
87 if (m > eighth_n) { m = quarter_n - m; goto sin; } | |
88 return sgn * COS(by2pi(m, n)); | |
89 | |
90 msin: | |
91 sgn = -sgn; | |
92 sin: | |
93 if (m < 0) { m = -m; goto msin; } | |
94 if (m > half_n) { m = n - m; goto msin; } | |
95 if (m > eighth_n) { m = quarter_n - m; goto cos; } | |
96 return sgn * SIN(by2pi(m, n)); | |
97 } | |
98 | |
99 static trigreal cos2pi(int m, int n) | |
100 { | |
101 return bench_sincos((trigreal)m, (trigreal)n, 0); | |
102 } | |
103 | |
104 static trigreal sin2pi(int m, int n) | |
105 { | |
106 return bench_sincos((trigreal)m, (trigreal)n, 1); | |
107 } | |
108 | |
109 static trigreal cos00(int i, int j, int n) | |
110 { | |
111 return cos2pi(i * j, n); | |
112 } | |
113 | |
114 static trigreal cos01(int i, int j, int n) | |
115 { | |
116 return cos00(i, 2*j + 1, 2*n); | |
117 } | |
118 | |
119 static trigreal cos10(int i, int j, int n) | |
120 { | |
121 return cos00(2*i + 1, j, 2*n); | |
122 } | |
123 | |
124 static trigreal cos11(int i, int j, int n) | |
125 { | |
126 return cos00(2*i + 1, 2*j + 1, 4*n); | |
127 } | |
128 | |
129 static trigreal sin00(int i, int j, int n) | |
130 { | |
131 return sin2pi(i * j, n); | |
132 } | |
133 | |
134 static trigreal sin01(int i, int j, int n) | |
135 { | |
136 return sin00(i, 2*j + 1, 2*n); | |
137 } | |
138 | |
139 static trigreal sin10(int i, int j, int n) | |
140 { | |
141 return sin00(2*i + 1, j, 2*n); | |
142 } | |
143 | |
144 static trigreal sin11(int i, int j, int n) | |
145 { | |
146 return sin00(2*i + 1, 2*j + 1, 4*n); | |
147 } | |
148 | |
149 static trigreal realhalf(int i, int j, int n) | |
150 { | |
151 UNUSED(i); | |
152 if (j <= n - j) | |
153 return 1.0; | |
154 else | |
155 return 0.0; | |
156 } | |
157 | |
158 static trigreal coshalf(int i, int j, int n) | |
159 { | |
160 if (j <= n - j) | |
161 return cos00(i, j, n); | |
162 else | |
163 return cos00(i, n - j, n); | |
164 } | |
165 | |
166 static trigreal unity(int i, int j, int n) | |
167 { | |
168 UNUSED(i); | |
169 UNUSED(j); | |
170 UNUSED(n); | |
171 return 1.0; | |
172 } | |
173 | |
174 typedef trigreal (*trigfun)(int, int, int); | |
175 | |
176 static void rarand(R *a, int n) | |
177 { | |
178 int i; | |
179 | |
180 /* generate random inputs */ | |
181 for (i = 0; i < n; ++i) { | |
182 a[i] = mydrand(); | |
183 } | |
184 } | |
185 | |
186 /* C = A + B */ | |
187 static void raadd(R *c, R *a, R *b, int n) | |
188 { | |
189 int i; | |
190 | |
191 for (i = 0; i < n; ++i) { | |
192 c[i] = a[i] + b[i]; | |
193 } | |
194 } | |
195 | |
196 /* C = A - B */ | |
197 static void rasub(R *c, R *a, R *b, int n) | |
198 { | |
199 int i; | |
200 | |
201 for (i = 0; i < n; ++i) { | |
202 c[i] = a[i] - b[i]; | |
203 } | |
204 } | |
205 | |
206 /* B = rotate left A + rotate right A */ | |
207 static void rarolr(R *b, R *a, int n, int nb, int na, | |
208 r2r_kind_t k) | |
209 { | |
210 int isL0 = 0, isL1 = 0, isR0 = 0, isR1 = 0; | |
211 int i, ib, ia; | |
212 | |
213 for (ib = 0; ib < nb; ++ib) { | |
214 for (i = 0; i < n - 1; ++i) | |
215 for (ia = 0; ia < na; ++ia) | |
216 b[(ib * n + i) * na + ia] = | |
217 a[(ib * n + i + 1) * na + ia]; | |
218 | |
219 /* ugly switch to do boundary conditions for various r2r types */ | |
220 switch (k) { | |
221 /* periodic boundaries */ | |
222 case R2R_DHT: | |
223 case R2R_R2HC: | |
224 for (ia = 0; ia < na; ++ia) { | |
225 b[(ib * n + n - 1) * na + ia] = | |
226 a[(ib * n + 0) * na + ia]; | |
227 b[(ib * n + 0) * na + ia] += | |
228 a[(ib * n + n - 1) * na + ia]; | |
229 } | |
230 break; | |
231 | |
232 case R2R_HC2R: /* ugh (hermitian halfcomplex boundaries) */ | |
233 if (n > 2) { | |
234 if (n % 2 == 0) | |
235 for (ia = 0; ia < na; ++ia) { | |
236 b[(ib * n + n - 1) * na + ia] = 0.0; | |
237 b[(ib * n + 0) * na + ia] += | |
238 a[(ib * n + 1) * na + ia]; | |
239 b[(ib * n + n/2) * na + ia] += | |
240 + a[(ib * n + n/2 - 1) * na + ia] | |
241 - a[(ib * n + n/2 + 1) * na + ia]; | |
242 b[(ib * n + n/2 + 1) * na + ia] += | |
243 - a[(ib * n + n/2) * na + ia]; | |
244 } | |
245 else | |
246 for (ia = 0; ia < na; ++ia) { | |
247 b[(ib * n + n - 1) * na + ia] = 0.0; | |
248 b[(ib * n + 0) * na + ia] += | |
249 a[(ib * n + 1) * na + ia]; | |
250 b[(ib * n + n/2) * na + ia] += | |
251 + a[(ib * n + n/2) * na + ia] | |
252 - a[(ib * n + n/2 + 1) * na + ia]; | |
253 b[(ib * n + n/2 + 1) * na + ia] += | |
254 - a[(ib * n + n/2 + 1) * na + ia] | |
255 - a[(ib * n + n/2) * na + ia]; | |
256 } | |
257 } else /* n <= 2 */ { | |
258 for (ia = 0; ia < na; ++ia) { | |
259 b[(ib * n + n - 1) * na + ia] = | |
260 a[(ib * n + 0) * na + ia]; | |
261 b[(ib * n + 0) * na + ia] += | |
262 a[(ib * n + n - 1) * na + ia]; | |
263 } | |
264 } | |
265 break; | |
266 | |
267 /* various even/odd boundary conditions */ | |
268 case R2R_REDFT00: | |
269 isL1 = isR1 = 1; | |
270 goto mirrors; | |
271 case R2R_REDFT01: | |
272 isL1 = 1; | |
273 goto mirrors; | |
274 case R2R_REDFT10: | |
275 isL0 = isR0 = 1; | |
276 goto mirrors; | |
277 case R2R_REDFT11: | |
278 isL0 = 1; | |
279 isR0 = -1; | |
280 goto mirrors; | |
281 case R2R_RODFT00: | |
282 goto mirrors; | |
283 case R2R_RODFT01: | |
284 isR1 = 1; | |
285 goto mirrors; | |
286 case R2R_RODFT10: | |
287 isL0 = isR0 = -1; | |
288 goto mirrors; | |
289 case R2R_RODFT11: | |
290 isL0 = -1; | |
291 isR0 = 1; | |
292 goto mirrors; | |
293 | |
294 mirrors: | |
295 | |
296 for (ia = 0; ia < na; ++ia) | |
297 b[(ib * n + n - 1) * na + ia] = | |
298 isR0 * a[(ib * n + n - 1) * na + ia] | |
299 + (n > 1 ? isR1 * a[(ib * n + n - 2) * na + ia] | |
300 : 0); | |
301 | |
302 for (ia = 0; ia < na; ++ia) | |
303 b[(ib * n) * na + ia] += | |
304 isL0 * a[(ib * n) * na + ia] | |
305 + (n > 1 ? isL1 * a[(ib * n + 1) * na + ia] : 0); | |
306 | |
307 } | |
308 | |
309 for (i = 1; i < n; ++i) | |
310 for (ia = 0; ia < na; ++ia) | |
311 b[(ib * n + i) * na + ia] += | |
312 a[(ib * n + i - 1) * na + ia]; | |
313 } | |
314 } | |
315 | |
316 static void raphase_shift(R *b, R *a, int n, int nb, int na, | |
317 int n0, int k0, trigfun t) | |
318 { | |
319 int j, jb, ja; | |
320 | |
321 for (jb = 0; jb < nb; ++jb) | |
322 for (j = 0; j < n; ++j) { | |
323 trigreal c = 2.0 * t(1, j + k0, n0); | |
324 | |
325 for (ja = 0; ja < na; ++ja) { | |
326 int k = (jb * n + j) * na + ja; | |
327 b[k] = a[k] * c; | |
328 } | |
329 } | |
330 } | |
331 | |
332 /* A = alpha * A (real, in place) */ | |
333 static void rascale(R *a, R alpha, int n) | |
334 { | |
335 int i; | |
336 | |
337 for (i = 0; i < n; ++i) { | |
338 a[i] *= alpha; | |
339 } | |
340 } | |
341 | |
342 /* | |
343 * compute rdft: | |
344 */ | |
345 | |
346 /* copy real A into real B, using output stride of A and input stride of B */ | |
347 typedef struct { | |
348 dotens2_closure k; | |
349 R *ra; | |
350 R *rb; | |
351 } cpyr_closure; | |
352 | |
353 static void cpyr0(dotens2_closure *k_, | |
354 int indxa, int ondxa, int indxb, int ondxb) | |
355 { | |
356 cpyr_closure *k = (cpyr_closure *)k_; | |
357 k->rb[indxb] = k->ra[ondxa]; | |
358 UNUSED(indxa); UNUSED(ondxb); | |
359 } | |
360 | |
361 static void cpyr(R *ra, bench_tensor *sza, R *rb, bench_tensor *szb) | |
362 { | |
363 cpyr_closure k; | |
364 k.k.apply = cpyr0; | |
365 k.ra = ra; k.rb = rb; | |
366 bench_dotens2(sza, szb, &k.k); | |
367 } | |
368 | |
369 static void dofft(info *nfo, R *in, R *out) | |
370 { | |
371 cpyr(in, nfo->pckdsz, (R *) nfo->p->in, nfo->totalsz); | |
372 after_problem_rcopy_from(nfo->p, (bench_real *)nfo->p->in); | |
373 doit(1, nfo->p); | |
374 after_problem_rcopy_to(nfo->p, (bench_real *)nfo->p->out); | |
375 cpyr((R *) nfo->p->out, nfo->totalsz, out, nfo->pckdsz); | |
376 } | |
377 | |
378 static double racmp(R *a, R *b, int n, const char *test, double tol) | |
379 { | |
380 double d = raerror(a, b, n); | |
381 if (d > tol) { | |
382 ovtpvt_err("Found relative error %e (%s)\n", d, test); | |
383 { | |
384 int i, N; | |
385 N = n > 300 && verbose <= 2 ? 300 : n; | |
386 for (i = 0; i < N; ++i) | |
387 ovtpvt_err("%8d %16.12f %16.12f\n", i, | |
388 (double) a[i], | |
389 (double) b[i]); | |
390 } | |
391 bench_exit(EXIT_FAILURE); | |
392 } | |
393 return d; | |
394 } | |
395 | |
396 /***********************************************************************/ | |
397 | |
398 typedef struct { | |
399 int n; /* physical size */ | |
400 int n0; /* "logical" transform size */ | |
401 int i0, k0; /* shifts of input/output */ | |
402 trigfun ti, ts; /* impulse/shift trig functions */ | |
403 } dim_stuff; | |
404 | |
405 static void impulse_response(int rnk, dim_stuff *d, R impulse_amp, | |
406 R *A, int N) | |
407 { | |
408 if (rnk == 0) | |
409 A[0] = impulse_amp; | |
410 else { | |
411 int i; | |
412 N /= d->n; | |
413 for (i = 0; i < d->n; ++i) { | |
414 impulse_response(rnk - 1, d + 1, | |
415 impulse_amp * d->ti(d->i0, d->k0 + i, d->n0), | |
416 A + i * N, N); | |
417 } | |
418 } | |
419 } | |
420 | |
421 /***************************************************************************/ | |
422 | |
423 /* | |
424 * Implementation of the FFT tester described in | |
425 * | |
426 * Funda Ergün. Testing multivariate linear functions: Overcoming the | |
427 * generator bottleneck. In Proceedings of the Twenty-Seventh Annual | |
428 * ACM Symposium on the Theory of Computing, pages 407-416, Las Vegas, | |
429 * Nevada, 29 May--1 June 1995. | |
430 * | |
431 * Also: F. Ergun, S. R. Kumar, and D. Sivakumar, "Self-testing without | |
432 * the generator bottleneck," SIAM J. on Computing 29 (5), 1630-51 (2000). | |
433 */ | |
434 | |
435 static double rlinear(int n, info *nfo, R *inA, R *inB, R *inC, R *outA, | |
436 R *outB, R *outC, R *tmp, int rounds, double tol) | |
437 { | |
438 double e = 0.0; | |
439 int j; | |
440 | |
441 for (j = 0; j < rounds; ++j) { | |
442 R alpha, beta; | |
443 alpha = mydrand(); | |
444 beta = mydrand(); | |
445 rarand(inA, n); | |
446 rarand(inB, n); | |
447 dofft(nfo, inA, outA); | |
448 dofft(nfo, inB, outB); | |
449 | |
450 rascale(outA, alpha, n); | |
451 rascale(outB, beta, n); | |
452 raadd(tmp, outA, outB, n); | |
453 rascale(inA, alpha, n); | |
454 rascale(inB, beta, n); | |
455 raadd(inC, inA, inB, n); | |
456 dofft(nfo, inC, outC); | |
457 | |
458 e = dmax(e, racmp(outC, tmp, n, "linear", tol)); | |
459 } | |
460 return e; | |
461 } | |
462 | |
463 static double rimpulse(dim_stuff *d, R impulse_amp, | |
464 int n, int vecn, info *nfo, | |
465 R *inA, R *inB, R *inC, | |
466 R *outA, R *outB, R *outC, | |
467 R *tmp, int rounds, double tol) | |
468 { | |
469 double e = 0.0; | |
470 int N = n * vecn; | |
471 int i; | |
472 int j; | |
473 | |
474 /* test 2: check that the unit impulse is transformed properly */ | |
475 | |
476 for (i = 0; i < N; ++i) { | |
477 /* pls */ | |
478 inA[i] = 0.0; | |
479 } | |
480 for (i = 0; i < vecn; ++i) { | |
481 inA[i * n] = (i+1) / (double)(vecn+1); | |
482 | |
483 /* transform of the pls */ | |
484 impulse_response(nfo->probsz->rnk, d, impulse_amp * inA[i * n], | |
485 outA + i * n, n); | |
486 } | |
487 | |
488 dofft(nfo, inA, tmp); | |
489 e = dmax(e, racmp(tmp, outA, N, "impulse 1", tol)); | |
490 | |
491 for (j = 0; j < rounds; ++j) { | |
492 rarand(inB, N); | |
493 rasub(inC, inA, inB, N); | |
494 dofft(nfo, inB, outB); | |
495 dofft(nfo, inC, outC); | |
496 raadd(tmp, outB, outC, N); | |
497 e = dmax(e, racmp(tmp, outA, N, "impulse", tol)); | |
498 } | |
499 return e; | |
500 } | |
501 | |
502 static double t_shift(int n, int vecn, info *nfo, | |
503 R *inA, R *inB, R *outA, R *outB, R *tmp, | |
504 int rounds, double tol, | |
505 dim_stuff *d) | |
506 { | |
507 double e = 0.0; | |
508 int nb, na, dim, N = n * vecn; | |
509 int i, j; | |
510 bench_tensor *sz = nfo->probsz; | |
511 | |
512 /* test 3: check the time-shift property */ | |
513 /* the paper performs more tests, but this code should be fine too */ | |
514 | |
515 nb = 1; | |
516 na = n; | |
517 | |
518 /* check shifts across all SZ dimensions */ | |
519 for (dim = 0; dim < sz->rnk; ++dim) { | |
520 int ncur = sz->dims[dim].n; | |
521 | |
522 na /= ncur; | |
523 | |
524 for (j = 0; j < rounds; ++j) { | |
525 rarand(inA, N); | |
526 | |
527 for (i = 0; i < vecn; ++i) { | |
528 rarolr(inB + i * n, inA + i*n, ncur, nb,na, | |
529 nfo->p->k[dim]); | |
530 } | |
531 dofft(nfo, inA, outA); | |
532 dofft(nfo, inB, outB); | |
533 for (i = 0; i < vecn; ++i) | |
534 raphase_shift(tmp + i * n, outA + i * n, ncur, | |
535 nb, na, d[dim].n0, d[dim].k0, d[dim].ts); | |
536 e = dmax(e, racmp(tmp, outB, N, "time shift", tol)); | |
537 } | |
538 | |
539 nb *= ncur; | |
540 } | |
541 return e; | |
542 } | |
543 | |
544 /***********************************************************************/ | |
545 | |
546 void verify_r2r(bench_problem *p, int rounds, double tol, errors *e) | |
547 { | |
548 R *inA, *inB, *inC, *outA, *outB, *outC, *tmp; | |
549 info nfo; | |
550 int n, vecn, N; | |
551 double impulse_amp = 1.0; | |
552 dim_stuff *d; | |
553 int i; | |
554 | |
555 if (rounds == 0) | |
556 rounds = 20; /* default value */ | |
557 | |
558 n = tensor_sz(p->sz); | |
559 vecn = tensor_sz(p->vecsz); | |
560 N = n * vecn; | |
561 | |
562 d = (dim_stuff *) bench_malloc(sizeof(dim_stuff) * p->sz->rnk); | |
563 for (i = 0; i < p->sz->rnk; ++i) { | |
564 int n0, i0, k0; | |
565 trigfun ti, ts; | |
566 | |
567 d[i].n = n0 = p->sz->dims[i].n; | |
568 if (p->k[i] > R2R_DHT) | |
569 n0 = 2 * (n0 + (p->k[i] == R2R_REDFT00 ? -1 : | |
570 (p->k[i] == R2R_RODFT00 ? 1 : 0))); | |
571 | |
572 switch (p->k[i]) { | |
573 case R2R_R2HC: | |
574 i0 = k0 = 0; | |
575 ti = realhalf; | |
576 ts = coshalf; | |
577 break; | |
578 case R2R_DHT: | |
579 i0 = k0 = 0; | |
580 ti = unity; | |
581 ts = cos00; | |
582 break; | |
583 case R2R_HC2R: | |
584 i0 = k0 = 0; | |
585 ti = unity; | |
586 ts = cos00; | |
587 break; | |
588 case R2R_REDFT00: | |
589 i0 = k0 = 0; | |
590 ti = ts = cos00; | |
591 break; | |
592 case R2R_REDFT01: | |
593 i0 = k0 = 0; | |
594 ti = ts = cos01; | |
595 break; | |
596 case R2R_REDFT10: | |
597 i0 = k0 = 0; | |
598 ti = cos10; impulse_amp *= 2.0; | |
599 ts = cos00; | |
600 break; | |
601 case R2R_REDFT11: | |
602 i0 = k0 = 0; | |
603 ti = cos11; impulse_amp *= 2.0; | |
604 ts = cos01; | |
605 break; | |
606 case R2R_RODFT00: | |
607 i0 = k0 = 1; | |
608 ti = sin00; impulse_amp *= 2.0; | |
609 ts = cos00; | |
610 break; | |
611 case R2R_RODFT01: | |
612 i0 = 1; k0 = 0; | |
613 ti = sin01; impulse_amp *= n == 1 ? 1.0 : 2.0; | |
614 ts = cos01; | |
615 break; | |
616 case R2R_RODFT10: | |
617 i0 = 0; k0 = 1; | |
618 ti = sin10; impulse_amp *= 2.0; | |
619 ts = cos00; | |
620 break; | |
621 case R2R_RODFT11: | |
622 i0 = k0 = 0; | |
623 ti = sin11; impulse_amp *= 2.0; | |
624 ts = cos01; | |
625 break; | |
626 default: | |
627 BENCH_ASSERT(0); | |
628 return; | |
629 } | |
630 | |
631 d[i].n0 = n0; | |
632 d[i].i0 = i0; | |
633 d[i].k0 = k0; | |
634 d[i].ti = ti; | |
635 d[i].ts = ts; | |
636 } | |
637 | |
638 | |
639 inA = (R *) bench_malloc(N * sizeof(R)); | |
640 inB = (R *) bench_malloc(N * sizeof(R)); | |
641 inC = (R *) bench_malloc(N * sizeof(R)); | |
642 outA = (R *) bench_malloc(N * sizeof(R)); | |
643 outB = (R *) bench_malloc(N * sizeof(R)); | |
644 outC = (R *) bench_malloc(N * sizeof(R)); | |
645 tmp = (R *) bench_malloc(N * sizeof(R)); | |
646 | |
647 nfo.p = p; | |
648 nfo.probsz = p->sz; | |
649 nfo.totalsz = tensor_append(p->vecsz, nfo.probsz); | |
650 nfo.pckdsz = verify_pack(nfo.totalsz, 1); | |
651 nfo.pckdvecsz = verify_pack(p->vecsz, tensor_sz(nfo.probsz)); | |
652 | |
653 e->i = rimpulse(d, impulse_amp, n, vecn, &nfo, | |
654 inA, inB, inC, outA, outB, outC, tmp, rounds, tol); | |
655 e->l = rlinear(N, &nfo, inA, inB, inC, outA, outB, outC, tmp, rounds,tol); | |
656 e->s = t_shift(n, vecn, &nfo, inA, inB, outA, outB, tmp, | |
657 rounds, tol, d); | |
658 | |
659 /* grr, verify-lib.c:preserves_input() only works for complex */ | |
660 if (!p->in_place && !p->destroy_input) { | |
661 bench_tensor *totalsz_swap, *pckdsz_swap; | |
662 totalsz_swap = tensor_copy_swapio(nfo.totalsz); | |
663 pckdsz_swap = tensor_copy_swapio(nfo.pckdsz); | |
664 | |
665 for (i = 0; i < rounds; ++i) { | |
666 rarand(inA, N); | |
667 dofft(&nfo, inA, outB); | |
668 cpyr((R *) nfo.p->in, totalsz_swap, inB, pckdsz_swap); | |
669 racmp(inB, inA, N, "preserves_input", 0.0); | |
670 } | |
671 | |
672 tensor_destroy(totalsz_swap); | |
673 tensor_destroy(pckdsz_swap); | |
674 } | |
675 | |
676 tensor_destroy(nfo.totalsz); | |
677 tensor_destroy(nfo.pckdsz); | |
678 tensor_destroy(nfo.pckdvecsz); | |
679 bench_free(tmp); | |
680 bench_free(outC); | |
681 bench_free(outB); | |
682 bench_free(outA); | |
683 bench_free(inC); | |
684 bench_free(inB); | |
685 bench_free(inA); | |
686 bench_free(d); | |
687 } | |
688 | |
689 | |
690 typedef struct { | |
691 dofft_closure k; | |
692 bench_problem *p; | |
693 int n0; | |
694 } dofft_r2r_closure; | |
695 | |
696 static void cpyr1(int n, R *in, int is, R *out, int os, R scale) | |
697 { | |
698 int i; | |
699 for (i = 0; i < n; ++i) | |
700 out[i * os] = in[i * is] * scale; | |
701 } | |
702 | |
703 static void mke00(C *a, int n, int c) | |
704 { | |
705 int i; | |
706 for (i = 1; i + i < n; ++i) | |
707 a[n - i][c] = a[i][c]; | |
708 } | |
709 | |
710 static void mkre00(C *a, int n) | |
711 { | |
712 mkreal(a, n); | |
713 mke00(a, n, 0); | |
714 } | |
715 | |
716 static void mkimag(C *a, int n) | |
717 { | |
718 int i; | |
719 for (i = 0; i < n; ++i) | |
720 c_re(a[i]) = 0.0; | |
721 } | |
722 | |
723 static void mko00(C *a, int n, int c) | |
724 { | |
725 int i; | |
726 a[0][c] = 0.0; | |
727 for (i = 1; i + i < n; ++i) | |
728 a[n - i][c] = -a[i][c]; | |
729 if (i + i == n) | |
730 a[i][c] = 0.0; | |
731 } | |
732 | |
733 static void mkro00(C *a, int n) | |
734 { | |
735 mkreal(a, n); | |
736 mko00(a, n, 0); | |
737 } | |
738 | |
739 static void mkio00(C *a, int n) | |
740 { | |
741 mkimag(a, n); | |
742 mko00(a, n, 1); | |
743 } | |
744 | |
745 static void mkre01(C *a, int n) /* n should be be multiple of 4 */ | |
746 { | |
747 R a0; | |
748 a0 = c_re(a[0]); | |
749 mko00(a, n/2, 0); | |
750 c_re(a[n/2]) = -(c_re(a[0]) = a0); | |
751 mkre00(a, n); | |
752 } | |
753 | |
754 static void mkro01(C *a, int n) /* n should be be multiple of 4 */ | |
755 { | |
756 c_re(a[0]) = c_im(a[0]) = 0.0; | |
757 mkre00(a, n/2); | |
758 mkro00(a, n); | |
759 } | |
760 | |
761 static void mkoddonly(C *a, int n) | |
762 { | |
763 int i; | |
764 for (i = 0; i < n; i += 2) | |
765 c_re(a[i]) = c_im(a[i]) = 0.0; | |
766 } | |
767 | |
768 static void mkre10(C *a, int n) | |
769 { | |
770 mkoddonly(a, n); | |
771 mkre00(a, n); | |
772 } | |
773 | |
774 static void mkio10(C *a, int n) | |
775 { | |
776 mkoddonly(a, n); | |
777 mkio00(a, n); | |
778 } | |
779 | |
780 static void mkre11(C *a, int n) | |
781 { | |
782 mkoddonly(a, n); | |
783 mko00(a, n/2, 0); | |
784 mkre00(a, n); | |
785 } | |
786 | |
787 static void mkro11(C *a, int n) | |
788 { | |
789 mkoddonly(a, n); | |
790 mkre00(a, n/2); | |
791 mkro00(a, n); | |
792 } | |
793 | |
794 static void mkio11(C *a, int n) | |
795 { | |
796 mkoddonly(a, n); | |
797 mke00(a, n/2, 1); | |
798 mkio00(a, n); | |
799 } | |
800 | |
801 static void r2r_apply(dofft_closure *k_, bench_complex *in, bench_complex *out) | |
802 { | |
803 dofft_r2r_closure *k = (dofft_r2r_closure *)k_; | |
804 bench_problem *p = k->p; | |
805 bench_real *ri, *ro; | |
806 int n, is, os; | |
807 | |
808 n = p->sz->dims[0].n; | |
809 is = p->sz->dims[0].is; | |
810 os = p->sz->dims[0].os; | |
811 | |
812 ri = (bench_real *) p->in; | |
813 ro = (bench_real *) p->out; | |
814 | |
815 switch (p->k[0]) { | |
816 case R2R_R2HC: | |
817 cpyr1(n, &c_re(in[0]), 2, ri, is, 1.0); | |
818 break; | |
819 case R2R_HC2R: | |
820 cpyr1(n/2 + 1, &c_re(in[0]), 2, ri, is, 1.0); | |
821 cpyr1((n+1)/2 - 1, &c_im(in[n-1]), -2, ri + is*(n-1), -is, 1.0); | |
822 break; | |
823 case R2R_REDFT00: | |
824 cpyr1(n, &c_re(in[0]), 2, ri, is, 1.0); | |
825 break; | |
826 case R2R_RODFT00: | |
827 cpyr1(n, &c_re(in[1]), 2, ri, is, 1.0); | |
828 break; | |
829 case R2R_REDFT01: | |
830 cpyr1(n, &c_re(in[0]), 2, ri, is, 1.0); | |
831 break; | |
832 case R2R_REDFT10: | |
833 cpyr1(n, &c_re(in[1]), 4, ri, is, 1.0); | |
834 break; | |
835 case R2R_RODFT01: | |
836 cpyr1(n, &c_re(in[1]), 2, ri, is, 1.0); | |
837 break; | |
838 case R2R_RODFT10: | |
839 cpyr1(n, &c_im(in[1]), 4, ri, is, 1.0); | |
840 break; | |
841 case R2R_REDFT11: | |
842 cpyr1(n, &c_re(in[1]), 4, ri, is, 1.0); | |
843 break; | |
844 case R2R_RODFT11: | |
845 cpyr1(n, &c_re(in[1]), 4, ri, is, 1.0); | |
846 break; | |
847 default: | |
848 BENCH_ASSERT(0); /* not yet implemented */ | |
849 } | |
850 | |
851 after_problem_rcopy_from(p, ri); | |
852 doit(1, p); | |
853 after_problem_rcopy_to(p, ro); | |
854 | |
855 switch (p->k[0]) { | |
856 case R2R_R2HC: | |
857 if (k->k.recopy_input) | |
858 cpyr1(n, ri, is, &c_re(in[0]), 2, 1.0); | |
859 cpyr1(n/2 + 1, ro, os, &c_re(out[0]), 2, 1.0); | |
860 cpyr1((n+1)/2 - 1, ro + os*(n-1), -os, &c_im(out[1]), 2, 1.0); | |
861 c_im(out[0]) = 0.0; | |
862 if (n % 2 == 0) | |
863 c_im(out[n/2]) = 0.0; | |
864 mkhermitian1(out, n); | |
865 break; | |
866 case R2R_HC2R: | |
867 if (k->k.recopy_input) { | |
868 cpyr1(n/2 + 1, ri, is, &c_re(in[0]), 2, 1.0); | |
869 cpyr1((n+1)/2 - 1, ri + is*(n-1), -is, &c_im(in[1]), 2,1.0); | |
870 } | |
871 cpyr1(n, ro, os, &c_re(out[0]), 2, 1.0); | |
872 mkreal(out, n); | |
873 break; | |
874 case R2R_REDFT00: | |
875 if (k->k.recopy_input) | |
876 cpyr1(n, ri, is, &c_re(in[0]), 2, 1.0); | |
877 cpyr1(n, ro, os, &c_re(out[0]), 2, 1.0); | |
878 mkre00(out, k->n0); | |
879 break; | |
880 case R2R_RODFT00: | |
881 if (k->k.recopy_input) | |
882 cpyr1(n, ri, is, &c_im(in[1]), 2, -1.0); | |
883 cpyr1(n, ro, os, &c_im(out[1]), 2, -1.0); | |
884 mkio00(out, k->n0); | |
885 break; | |
886 case R2R_REDFT01: | |
887 if (k->k.recopy_input) | |
888 cpyr1(n, ri, is, &c_re(in[0]), 2, 1.0); | |
889 cpyr1(n, ro, os, &c_re(out[1]), 4, 2.0); | |
890 mkre10(out, k->n0); | |
891 break; | |
892 case R2R_REDFT10: | |
893 if (k->k.recopy_input) | |
894 cpyr1(n, ri, is, &c_re(in[1]), 4, 2.0); | |
895 cpyr1(n, ro, os, &c_re(out[0]), 2, 1.0); | |
896 mkre01(out, k->n0); | |
897 break; | |
898 case R2R_RODFT01: | |
899 if (k->k.recopy_input) | |
900 cpyr1(n, ri, is, &c_re(in[1]), 2, 1.0); | |
901 cpyr1(n, ro, os, &c_im(out[1]), 4, -2.0); | |
902 mkio10(out, k->n0); | |
903 break; | |
904 case R2R_RODFT10: | |
905 if (k->k.recopy_input) | |
906 cpyr1(n, ri, is, &c_im(in[1]), 4, -2.0); | |
907 cpyr1(n, ro, os, &c_re(out[1]), 2, 1.0); | |
908 mkro01(out, k->n0); | |
909 break; | |
910 case R2R_REDFT11: | |
911 if (k->k.recopy_input) | |
912 cpyr1(n, ri, is, &c_re(in[1]), 4, 2.0); | |
913 cpyr1(n, ro, os, &c_re(out[1]), 4, 2.0); | |
914 mkre11(out, k->n0); | |
915 break; | |
916 case R2R_RODFT11: | |
917 if (k->k.recopy_input) | |
918 cpyr1(n, ri, is, &c_im(in[1]), 4, -2.0); | |
919 cpyr1(n, ro, os, &c_im(out[1]), 4, -2.0); | |
920 mkio11(out, k->n0); | |
921 break; | |
922 default: | |
923 BENCH_ASSERT(0); /* not yet implemented */ | |
924 } | |
925 } | |
926 | |
927 void accuracy_r2r(bench_problem *p, int rounds, int impulse_rounds, | |
928 double t[6]) | |
929 { | |
930 dofft_r2r_closure k; | |
931 int n, n0 = 1; | |
932 C *a, *b; | |
933 aconstrain constrain = 0; | |
934 | |
935 BENCH_ASSERT(p->kind == PROBLEM_R2R); | |
936 BENCH_ASSERT(p->sz->rnk == 1); | |
937 BENCH_ASSERT(p->vecsz->rnk == 0); | |
938 | |
939 k.k.apply = r2r_apply; | |
940 k.k.recopy_input = 0; | |
941 k.p = p; | |
942 n = tensor_sz(p->sz); | |
943 | |
944 switch (p->k[0]) { | |
945 case R2R_R2HC: constrain = mkreal; n0 = n; break; | |
946 case R2R_HC2R: constrain = mkhermitian1; n0 = n; break; | |
947 case R2R_REDFT00: constrain = mkre00; n0 = 2*(n-1); break; | |
948 case R2R_RODFT00: constrain = mkro00; n0 = 2*(n+1); break; | |
949 case R2R_REDFT01: constrain = mkre01; n0 = 4*n; break; | |
950 case R2R_REDFT10: constrain = mkre10; n0 = 4*n; break; | |
951 case R2R_RODFT01: constrain = mkro01; n0 = 4*n; break; | |
952 case R2R_RODFT10: constrain = mkio10; n0 = 4*n; break; | |
953 case R2R_REDFT11: constrain = mkre11; n0 = 8*n; break; | |
954 case R2R_RODFT11: constrain = mkro11; n0 = 8*n; break; | |
955 default: BENCH_ASSERT(0); /* not yet implemented */ | |
956 } | |
957 k.n0 = n0; | |
958 | |
959 a = (C *) bench_malloc(n0 * sizeof(C)); | |
960 b = (C *) bench_malloc(n0 * sizeof(C)); | |
961 accuracy_test(&k.k, constrain, -1, n0, a, b, rounds, impulse_rounds, t); | |
962 bench_free(b); | |
963 bench_free(a); | |
964 } |