comparison src/fftw-3.3.3/genfft/genutil.ml @ 10:37bf6b4a2645

Add FFTW3
author Chris Cannam
date Wed, 20 Mar 2013 15:35:50 +0000
parents
children
comparison
equal deleted inserted replaced
9:c0fb53affa76 10:37bf6b4a2645
1 (*
2 * Copyright (c) 1997-1999 Massachusetts Institute of Technology
3 * Copyright (c) 2003, 2007-11 Matteo Frigo
4 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19 *
20 *)
21
22 (* utilities common to all generators *)
23 open Util
24
25 let choose_simd a b = if !Simdmagic.simd_mode then b else a
26
27 let unique_array n = array n (fun _ -> Unique.make ())
28 let unique_array_c n =
29 array n (fun _ ->
30 (Unique.make (), Unique.make ()))
31
32 let unique_v_array_c veclen n =
33 array veclen (fun _ ->
34 unique_array_c n)
35
36 let locative_array_c n rarr iarr loc vs =
37 array n (fun i ->
38 let klass = Unique.make () in
39 let (rloc, iloc) = loc i in
40 (Variable.make_locative rloc klass rarr i vs,
41 Variable.make_locative iloc klass iarr i vs))
42
43 let locative_v_array_c veclen n rarr iarr loc vs =
44 array veclen (fun v ->
45 array n (fun i ->
46 let klass = Unique.make () in
47 let (rloc, iloc) = loc v i in
48 (Variable.make_locative rloc klass (rarr v) i vs,
49 Variable.make_locative iloc klass (iarr v) i vs)))
50
51 let temporary_array n =
52 array n (fun i -> Variable.make_temporary ())
53
54 let temporary_array_c n =
55 let tmpr = temporary_array n
56 and tmpi = temporary_array n
57 in
58 array n (fun i -> (tmpr i, tmpi i))
59
60 let temporary_v_array_c veclen n =
61 array veclen (fun v -> temporary_array_c n)
62
63 let temporary_array_c n =
64 let tmpr = temporary_array n
65 and tmpi = temporary_array n
66 in
67 array n (fun i -> (tmpr i, tmpi i))
68
69 let load_c (vr, vi) = Complex.make (Expr.Load vr, Expr.Load vi)
70 let load_r (vr, vi) = Complex.make (Expr.Load vr, Expr.Num (Number.zero))
71
72 let twiddle_array nt w =
73 array (nt/2) (fun i ->
74 let stride = choose_simd (C.SInteger 1) (C.SConst "TWVL")
75 and klass = Unique.make () in
76 let (refr, refi) = (C.array_subscript w stride (2 * i),
77 C.array_subscript w stride (2 * i + 1))
78 in
79 let (kr, ki) = (Variable.make_constant klass refr,
80 Variable.make_constant klass refi)
81 in
82 load_c (kr, ki))
83
84
85 let load_array_c n var = array n (fun i -> load_c (var i))
86 let load_array_r n var = array n (fun i -> load_r (var i))
87 let load_array_hc n var =
88 array n (fun i ->
89 if (i < n - i) then
90 load_c (var i)
91 else if (i > n - i) then
92 Complex.times Complex.i (load_c (var (n - i)))
93 else
94 load_r (var i))
95
96 let load_v_array_c veclen n var =
97 array veclen (fun v -> load_array_c n (var v))
98
99 let store_c (vr, vi) x = [Complex.store_real vr x; Complex.store_imag vi x]
100 let store_r (vr, vi) x = Complex.store_real vr x
101 let store_i (vr, vi) x = Complex.store_imag vi x
102
103 let assign_array_c n dst src =
104 List.flatten
105 (rmap (iota n)
106 (fun i ->
107 let (ar, ai) = Complex.assign (dst i) (src i)
108 in [ar; ai]))
109 let assign_v_array_c veclen n dst src =
110 List.flatten
111 (rmap (iota veclen)
112 (fun v ->
113 assign_array_c n (dst v) (src v)))
114
115 let vassign_v_array_c veclen n dst src =
116 List.flatten
117 (rmap (iota n) (fun i ->
118 List.flatten
119 (rmap (iota veclen)
120 (fun v ->
121 let (ar, ai) = Complex.assign (dst v i) (src v i)
122 in [ar; ai]))))
123
124 let store_array_r n dst src =
125 rmap (iota n)
126 (fun i -> store_r (dst i) (src i))
127
128 let store_array_c n dst src =
129 List.flatten
130 (rmap (iota n)
131 (fun i -> store_c (dst i) (src i)))
132
133 let store_array_hc n dst src =
134 List.flatten
135 (rmap (iota n)
136 (fun i ->
137 if (i < n - i) then
138 store_c (dst i) (src i)
139 else if (i > n - i) then
140 []
141 else
142 [store_r (dst i) (Complex.real (src i))]))
143
144
145 let store_v_array_c veclen n dst src =
146 List.flatten
147 (rmap (iota veclen)
148 (fun v ->
149 store_array_c n (dst v) (src v)))
150
151
152 let elementwise f n a = array n (fun i -> f (a i))
153 let conj_array_c = elementwise Complex.conj
154 let real_array_c = elementwise Complex.real
155 let imag_array_c = elementwise Complex.imag
156
157 let elementwise_v f veclen n a =
158 array veclen (fun v ->
159 array n (fun i -> f (a v i)))
160 let conj_v_array_c = elementwise_v Complex.conj
161 let real_v_array_c = elementwise_v Complex.real
162 let imag_v_array_c = elementwise_v Complex.imag
163
164
165 let transpose f i j = f j i
166 let symmetrize f i j = if i <= j then f i j else f j i
167
168 (* utilities for command-line parsing *)
169 let standard_arg_parse_fail _ = failwith "too many arguments"
170
171 let dump_dag alist =
172 let fnam = !Magic.dag_dump_file in
173 if (String.length fnam > 0) then
174 let ochan = open_out fnam in
175 begin
176 To_alist.dump (output_string ochan) alist;
177 close_out ochan;
178 end
179
180 let dump_alist alist =
181 let fnam = !Magic.alist_dump_file in
182 if (String.length fnam > 0) then
183 let ochan = open_out fnam in
184 begin
185 Expr.dump (output_string ochan) alist;
186 close_out ochan;
187 end
188
189 let dump_asched asched =
190 let fnam = !Magic.asched_dump_file in
191 if (String.length fnam > 0) then
192 let ochan = open_out fnam in
193 begin
194 Annotate.dump (output_string ochan) asched;
195 close_out ochan;
196 end
197
198 (* utilities for optimization *)
199 let standard_scheduler dag =
200 let optim = Algsimp.algsimp dag in
201 let alist = To_alist.to_assignments optim in
202 let _ = dump_alist alist in
203 let _ = dump_dag alist in
204 if !Magic.precompute_twiddles then
205 Schedule.isolate_precomputations_and_schedule alist
206 else
207 Schedule.schedule alist
208
209 let standard_optimizer dag =
210 let sched = standard_scheduler dag in
211 let annot = Annotate.annotate [] sched in
212 let _ = dump_asched annot in
213 annot
214
215 let size = ref None
216 let sign = ref (-1)
217
218 let speclist = [
219 "-n", Arg.Int(fun i -> size := Some i), " generate a codelet of size <n>";
220 "-sign",
221 Arg.Int(fun i ->
222 if (i > 0) then
223 sign := 1
224 else
225 sign := (-1)),
226 " sign of transform";
227 ]
228
229 let check_size () =
230 match !size with
231 | Some i -> i
232 | None -> failwith "must specify -n"
233
234 let expand_name name = if name = "" then "noname" else name
235
236 let declare_register_fcn name =
237 if name = "" then
238 "void NAME(planner *p)\n"
239 else
240 "void " ^ (choose_simd "X" "XSIMD") ^
241 "(codelet_" ^ name ^ ")(planner *p)\n"
242
243 let stringify name =
244 if name = "" then "STRINGIZE(NAME)" else
245 choose_simd ("\"" ^ name ^ "\"")
246 ("XSIMD_STRING(\"" ^ name ^ "\")")
247
248 let parse user_speclist usage =
249 Arg.parse
250 (user_speclist @ speclist @ Magic.speclist @ Simdmagic.speclist)
251 standard_arg_parse_fail
252 usage
253
254 let rec list_to_c = function
255 [] -> ""
256 | [a] -> (string_of_int a)
257 | a :: b -> (string_of_int a) ^ ", " ^ (list_to_c b)
258
259 let rec list_to_comma = function
260 | [a; b] -> C.Comma (a, b)
261 | a :: b -> C.Comma (a, list_to_comma b)
262 | _ -> failwith "list_to_comma"
263
264
265 type stride = Stride_variable | Fixed_int of int | Fixed_string of string
266
267 let either_stride a b =
268 match a with
269 Fixed_int x -> C.SInteger x
270 | Fixed_string x -> C.SConst x
271 | _ -> b
272
273 let stride_fixed = function
274 Stride_variable -> false
275 | _ -> true
276
277 let arg_to_stride s =
278 try
279 Fixed_int (int_of_string s)
280 with Failure "int_of_string" ->
281 Fixed_string s
282
283 let stride_to_solverparm = function
284 Stride_variable -> "0"
285 | Fixed_int x -> string_of_int x
286 | Fixed_string x -> x
287
288 let stride_to_string s = function
289 Stride_variable -> s
290 | Fixed_int x -> string_of_int x
291 | Fixed_string x -> x
292
293 (* output the command line *)
294 let cmdline () =
295 List.fold_right (fun a b -> a ^ " " ^ b) (Array.to_list Sys.argv) ""
296
297 let unparse tree =
298 "/* Generated by: " ^ (cmdline ()) ^ "*/\n\n" ^
299 (C.print_cost tree) ^
300 (if String.length !Magic.inklude > 0
301 then
302 (Printf.sprintf "#include \"%s\"\n\n" !Magic.inklude)
303 else "") ^
304 (if !Simdmagic.simd_mode then
305 Simd.unparse_function tree
306 else
307 C.unparse_function tree)
308
309 let finalize_fcn ast =
310 let mergedecls = function
311 C.Block (d1, [C.Block (d2, s)]) -> C.Block (d1 @ d2, s)
312 | x -> x
313 and extract_constants =
314 if !Simdmagic.simd_mode then
315 Simd.extract_constants
316 else
317 C.extract_constants
318
319 in mergedecls (C.Block (extract_constants ast, [ast; C.Simd_leavefun]))
320
321 let twinstr_to_string vl x =
322 if !Simdmagic.simd_mode then
323 Twiddle.twinstr_to_simd_string vl x
324 else
325 Twiddle.twinstr_to_c_string x
326
327 let make_volatile_stride n x =
328 C.CCall ("MAKE_VOLATILE_STRIDE", C.Comma((C.Integer n), x))