comparison src/fftw-3.3.3/doc/html/Allocating-aligned-memory-in-Fortran.html @ 10:37bf6b4a2645

Add FFTW3
author Chris Cannam
date Wed, 20 Mar 2013 15:35:50 +0000
parents
children
comparison
equal deleted inserted replaced
9:c0fb53affa76 10:37bf6b4a2645
1 <html lang="en">
2 <head>
3 <title>Allocating aligned memory in Fortran - FFTW 3.3.3</title>
4 <meta http-equiv="Content-Type" content="text/html">
5 <meta name="description" content="FFTW 3.3.3">
6 <meta name="generator" content="makeinfo 4.13">
7 <link title="Top" rel="start" href="index.html#Top">
8 <link rel="up" href="Calling-FFTW-from-Modern-Fortran.html#Calling-FFTW-from-Modern-Fortran" title="Calling FFTW from Modern Fortran">
9 <link rel="prev" href="Plan-execution-in-Fortran.html#Plan-execution-in-Fortran" title="Plan execution in Fortran">
10 <link rel="next" href="Accessing-the-wisdom-API-from-Fortran.html#Accessing-the-wisdom-API-from-Fortran" title="Accessing the wisdom API from Fortran">
11 <link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage">
12 <!--
13 This manual is for FFTW
14 (version 3.3.3, 25 November 2012).
15
16 Copyright (C) 2003 Matteo Frigo.
17
18 Copyright (C) 2003 Massachusetts Institute of Technology.
19
20 Permission is granted to make and distribute verbatim copies of
21 this manual provided the copyright notice and this permission
22 notice are preserved on all copies.
23
24 Permission is granted to copy and distribute modified versions of
25 this manual under the conditions for verbatim copying, provided
26 that the entire resulting derived work is distributed under the
27 terms of a permission notice identical to this one.
28
29 Permission is granted to copy and distribute translations of this
30 manual into another language, under the above conditions for
31 modified versions, except that this permission notice may be
32 stated in a translation approved by the Free Software Foundation.
33 -->
34 <meta http-equiv="Content-Style-Type" content="text/css">
35 <style type="text/css"><!--
36 pre.display { font-family:inherit }
37 pre.format { font-family:inherit }
38 pre.smalldisplay { font-family:inherit; font-size:smaller }
39 pre.smallformat { font-family:inherit; font-size:smaller }
40 pre.smallexample { font-size:smaller }
41 pre.smalllisp { font-size:smaller }
42 span.sc { font-variant:small-caps }
43 span.roman { font-family:serif; font-weight:normal; }
44 span.sansserif { font-family:sans-serif; font-weight:normal; }
45 --></style>
46 </head>
47 <body>
48 <div class="node">
49 <a name="Allocating-aligned-memory-in-Fortran"></a>
50 <p>
51 Next:&nbsp;<a rel="next" accesskey="n" href="Accessing-the-wisdom-API-from-Fortran.html#Accessing-the-wisdom-API-from-Fortran">Accessing the wisdom API from Fortran</a>,
52 Previous:&nbsp;<a rel="previous" accesskey="p" href="Plan-execution-in-Fortran.html#Plan-execution-in-Fortran">Plan execution in Fortran</a>,
53 Up:&nbsp;<a rel="up" accesskey="u" href="Calling-FFTW-from-Modern-Fortran.html#Calling-FFTW-from-Modern-Fortran">Calling FFTW from Modern Fortran</a>
54 <hr>
55 </div>
56
57 <h3 class="section">7.5 Allocating aligned memory in Fortran</h3>
58
59 <p><a name="index-alignment-560"></a><a name="index-fftw_005falloc_005freal-561"></a><a name="index-fftw_005falloc_005fcomplex-562"></a>In order to obtain maximum performance in FFTW, you should store your
60 data in arrays that have been specially aligned in memory (see <a href="SIMD-alignment-and-fftw_005fmalloc.html#SIMD-alignment-and-fftw_005fmalloc">SIMD alignment and fftw_malloc</a>). Enforcing alignment also permits you to
61 safely use the new-array execute functions (see <a href="New_002darray-Execute-Functions.html#New_002darray-Execute-Functions">New-array Execute Functions</a>) to apply a given plan to more than one pair of in/out
62 arrays. Unfortunately, standard Fortran arrays do <em>not</em> provide
63 any alignment guarantees. The <em>only</em> way to allocate aligned
64 memory in standard Fortran is to allocate it with an external C
65 function, like the <code>fftw_alloc_real</code> and
66 <code>fftw_alloc_complex</code> functions. Fortunately, Fortran 2003 provides
67 a simple way to associate such allocated memory with a standard Fortran
68 array pointer that you can then use normally.
69
70 <p>We therefore recommend allocating all your input/output arrays using
71 the following technique:
72
73 <ol type=1 start=1>
74
75 <li>Declare a <code>pointer</code>, <code>arr</code>, to your array of the desired type
76 and dimensions. For example, <code>real(C_DOUBLE), pointer :: a(:,:)</code>
77 for a 2d real array, or <code>complex(C_DOUBLE_COMPLEX), pointer ::
78 a(:,:,:)</code> for a 3d complex array.
79
80 <li>The number of elements to allocate must be an
81 <code>integer(C_SIZE_T)</code>. You can either declare a variable of this
82 type, e.g. <code>integer(C_SIZE_T) :: sz</code>, to store the number of
83 elements to allocate, or you can use the <code>int(..., C_SIZE_T)</code>
84 intrinsic function. e.g. set <code>sz = L * M * N</code> or use
85 <code>int(L * M * N, C_SIZE_T)</code> for an L&nbsp;&times;&nbsp;M&nbsp;&times;&nbsp;N array.
86
87 <li>Declare a <code>type(C_PTR) :: p</code> to hold the return value from
88 FFTW's allocation routine. Set <code>p = fftw_alloc_real(sz)</code> for a real array, or <code>p = fftw_alloc_complex(sz)</code> for a complex array.
89
90 <li><a name="index-c_005ff_005fpointer-563"></a>Associate your pointer <code>arr</code> with the allocated memory <code>p</code>
91 using the standard <code>c_f_pointer</code> subroutine: <code>call
92 c_f_pointer(p, arr, [...dimensions...])</code>, where
93 <code>[...dimensions...])</code> are an array of the dimensions of the array
94 (in the usual Fortran order). e.g. <code>call c_f_pointer(p, arr,
95 [L,M,N])</code> for an L&nbsp;&times;&nbsp;M&nbsp;&times;&nbsp;N array. (Alternatively, you can
96 omit the dimensions argument if you specified the shape explicitly
97 when declaring <code>arr</code>.) You can now use <code>arr</code> as a usual
98 multidimensional array.
99
100 <li>When you are done using the array, deallocate the memory by <code>call
101 fftw_free(p)</code> on <code>p</code>.
102
103 </ol>
104
105 <p>For example, here is how we would allocate an L&nbsp;&times;&nbsp;M 2d real array:
106
107 <pre class="example"> real(C_DOUBLE), pointer :: arr(:,:)
108 type(C_PTR) :: p
109 p = fftw_alloc_real(int(L * M, C_SIZE_T))
110 call c_f_pointer(p, arr, [L,M])
111 <em>...use arr and arr(i,j) as usual...</em>
112 call fftw_free(p)
113 </pre>
114 <p>and here is an L&nbsp;&times;&nbsp;M&nbsp;&times;&nbsp;N 3d complex array:
115
116 <pre class="example"> complex(C_DOUBLE_COMPLEX), pointer :: arr(:,:,:)
117 type(C_PTR) :: p
118 p = fftw_alloc_complex(int(L * M * N, C_SIZE_T))
119 call c_f_pointer(p, arr, [L,M,N])
120 <em>...use arr and arr(i,j,k) as usual...</em>
121 call fftw_free(p)
122 </pre>
123 <p>See <a href="Reversing-array-dimensions.html#Reversing-array-dimensions">Reversing array dimensions</a> for an example allocating a
124 single array and associating both real and complex array pointers with
125 it, for in-place real-to-complex transforms.
126
127 <!-- -->
128 </body></html>
129