comparison src/fftw-3.3.3/doc/html/1d-Real_002dodd-DFTs-_0028DSTs_0029.html @ 10:37bf6b4a2645

Add FFTW3
author Chris Cannam
date Wed, 20 Mar 2013 15:35:50 +0000
parents
children
comparison
equal deleted inserted replaced
9:c0fb53affa76 10:37bf6b4a2645
1 <html lang="en">
2 <head>
3 <title>1d Real-odd DFTs (DSTs) - FFTW 3.3.3</title>
4 <meta http-equiv="Content-Type" content="text/html">
5 <meta name="description" content="FFTW 3.3.3">
6 <meta name="generator" content="makeinfo 4.13">
7 <link title="Top" rel="start" href="index.html#Top">
8 <link rel="up" href="What-FFTW-Really-Computes.html#What-FFTW-Really-Computes" title="What FFTW Really Computes">
9 <link rel="prev" href="1d-Real_002deven-DFTs-_0028DCTs_0029.html#g_t1d-Real_002deven-DFTs-_0028DCTs_0029" title="1d Real-even DFTs (DCTs)">
10 <link rel="next" href="1d-Discrete-Hartley-Transforms-_0028DHTs_0029.html#g_t1d-Discrete-Hartley-Transforms-_0028DHTs_0029" title="1d Discrete Hartley Transforms (DHTs)">
11 <link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage">
12 <!--
13 This manual is for FFTW
14 (version 3.3.3, 25 November 2012).
15
16 Copyright (C) 2003 Matteo Frigo.
17
18 Copyright (C) 2003 Massachusetts Institute of Technology.
19
20 Permission is granted to make and distribute verbatim copies of
21 this manual provided the copyright notice and this permission
22 notice are preserved on all copies.
23
24 Permission is granted to copy and distribute modified versions of
25 this manual under the conditions for verbatim copying, provided
26 that the entire resulting derived work is distributed under the
27 terms of a permission notice identical to this one.
28
29 Permission is granted to copy and distribute translations of this
30 manual into another language, under the above conditions for
31 modified versions, except that this permission notice may be
32 stated in a translation approved by the Free Software Foundation.
33 -->
34 <meta http-equiv="Content-Style-Type" content="text/css">
35 <style type="text/css"><!--
36 pre.display { font-family:inherit }
37 pre.format { font-family:inherit }
38 pre.smalldisplay { font-family:inherit; font-size:smaller }
39 pre.smallformat { font-family:inherit; font-size:smaller }
40 pre.smallexample { font-size:smaller }
41 pre.smalllisp { font-size:smaller }
42 span.sc { font-variant:small-caps }
43 span.roman { font-family:serif; font-weight:normal; }
44 span.sansserif { font-family:sans-serif; font-weight:normal; }
45 --></style>
46 </head>
47 <body>
48 <div class="node">
49 <a name="1d-Real-odd-DFTs-(DSTs)"></a>
50 <a name="g_t1d-Real_002dodd-DFTs-_0028DSTs_0029"></a>
51 <p>
52 Next:&nbsp;<a rel="next" accesskey="n" href="1d-Discrete-Hartley-Transforms-_0028DHTs_0029.html#g_t1d-Discrete-Hartley-Transforms-_0028DHTs_0029">1d Discrete Hartley Transforms (DHTs)</a>,
53 Previous:&nbsp;<a rel="previous" accesskey="p" href="1d-Real_002deven-DFTs-_0028DCTs_0029.html#g_t1d-Real_002deven-DFTs-_0028DCTs_0029">1d Real-even DFTs (DCTs)</a>,
54 Up:&nbsp;<a rel="up" accesskey="u" href="What-FFTW-Really-Computes.html#What-FFTW-Really-Computes">What FFTW Really Computes</a>
55 <hr>
56 </div>
57
58 <h4 class="subsection">4.8.4 1d Real-odd DFTs (DSTs)</h4>
59
60 <p>The Real-odd symmetry DFTs in FFTW are exactly equivalent to the unnormalized
61 forward (and backward) DFTs as defined above, where the input array
62 X of length N is purely real and is also <dfn>odd</dfn> symmetry. In
63 this case, the output is odd symmetry and purely imaginary.
64 <a name="index-real_002dodd-DFT-312"></a><a name="index-RODFT-313"></a>
65
66 <p><a name="index-RODFT00-314"></a>For the case of <code>RODFT00</code>, this odd symmetry means that
67 <i>X<sub>j</sub> = -X<sub>N-j</sub></i>,where we take X to be periodic so that
68 <i>X<sub>N</sub> = X</i><sub>0</sub>. Because of this redundancy, only the first n real numbers
69 starting at j=1 are actually stored (the j=0 element is
70 zero), where N = 2(n+1).
71
72 <p>The proper definition of odd symmetry for <code>RODFT10</code>,
73 <code>RODFT01</code>, and <code>RODFT11</code> transforms is somewhat more intricate
74 because of the shifts by 1/2 of the input and/or output, although
75 the corresponding boundary conditions are given in <a href="Real-even_002fodd-DFTs-_0028cosine_002fsine-transforms_0029.html#Real-even_002fodd-DFTs-_0028cosine_002fsine-transforms_0029">Real even/odd DFTs (cosine/sine transforms)</a>. Because of the odd symmetry, however,
76 the cosine terms in the DFT all cancel and the remaining sine terms are
77 written explicitly below. This formulation often leads people to call
78 such a transform a <dfn>discrete sine transform</dfn> (DST), although it is
79 really just a special case of the DFT.
80 <a name="index-discrete-sine-transform-315"></a><a name="index-DST-316"></a>
81
82 <p>In each of the definitions below, we transform a real array X of
83 length n to a real array Y of length n:
84
85 <h5 class="subsubheading">RODFT00 (DST-I)</h5>
86
87 <p><a name="index-RODFT00-317"></a>An <code>RODFT00</code> transform (type-I DST) in FFTW is defined by:
88 <center><img src="equation-rodft00.png" align="top">.</center>
89
90 <h5 class="subsubheading">RODFT10 (DST-II)</h5>
91
92 <p><a name="index-RODFT10-318"></a>An <code>RODFT10</code> transform (type-II DST) in FFTW is defined by:
93 <center><img src="equation-rodft10.png" align="top">.</center>
94
95 <h5 class="subsubheading">RODFT01 (DST-III)</h5>
96
97 <p><a name="index-RODFT01-319"></a>An <code>RODFT01</code> transform (type-III DST) in FFTW is defined by:
98 <center><img src="equation-rodft01.png" align="top">.</center>In the case of n=1, this reduces to
99 <i>Y</i><sub>0</sub> = <i>X</i><sub>0</sub>.
100
101 <h5 class="subsubheading">RODFT11 (DST-IV)</h5>
102
103 <p><a name="index-RODFT11-320"></a>An <code>RODFT11</code> transform (type-IV DST) in FFTW is defined by:
104 <center><img src="equation-rodft11.png" align="top">.</center>
105
106 <h5 class="subsubheading">Inverses and Normalization</h5>
107
108 <p>These definitions correspond directly to the unnormalized DFTs used
109 elsewhere in FFTW (hence the factors of 2 in front of the
110 summations). The unnormalized inverse of <code>RODFT00</code> is
111 <code>RODFT00</code>, of <code>RODFT10</code> is <code>RODFT01</code> and vice versa, and
112 of <code>RODFT11</code> is <code>RODFT11</code>. Each unnormalized inverse results
113 in the original array multiplied by N, where N is the
114 <em>logical</em> DFT size. For <code>RODFT00</code>, N=2(n+1);
115 otherwise, N=2n.
116 <a name="index-normalization-321"></a>
117
118 <p>In defining the discrete sine transform, some authors also include
119 additional factors of
120 &radic;2(or its inverse) multiplying selected inputs and/or outputs. This is a
121 mostly cosmetic change that makes the transform orthogonal, but
122 sacrifices the direct equivalence to an antisymmetric DFT.
123
124 <!-- =========> -->
125 </body></html>
126